
mathematics

Article

On the Calculation of the Moore–Penrose and Drazin Inverses:
Application to Fractional Calculus

Khosro Sayevand 1 , Ahmad Pourdarvish 2, José A. Tenreiro Machado 3,* and Raziye Erfanifar 1

����������
�������

Citation: Sayevand, K.; Pourdarvish,

A.; Machado, J.A.T.; Erfanifar, R. On

the Calculation of the Moore–Penrose

and Drazin Inverses: Application to

Fractional Calculus. Mathematics 2021,

9, 2501. https://doi.org/10.3390/

math9192501

Academic Editor:

Christopher Goodrich

Received: 12 August 2021

Accepted: 30 September 2021

Published: 6 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Mathematical Sciences, Malayer University, Malayer P.O. Box 16846-13114, Iran;
ksayehvand@malayeru.ac.ir (K.S.); raziye.erfanifar@stu.malayeru.ac.ir (R.E.)

2 Faculty of Mathematical Sciences, Department of Statistics, Mazandaran University,
Mazandaran P.O. Box 47416-135534, Iran; a.pourdarvish@umz.ac.ir

3 Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, 4249-015 Porto, Portugal
* Correspondence: jtm@isep.ipp.pt

Abstract: This paper presents a third order iterative method for obtaining the Moore–Penrose and
Drazin inverses with a computational cost of O(n3), where n ∈ N. The performance of the new
approach is compared with other methods discussed in the literature. The results show that the
algorithm is remarkably efficient and accurate. Furthermore, sufficient criteria in the fractional
sense are presented, both for smooth and non-smooth solutions. The fractional elliptic Poisson and
fractional sub-diffusion equations in the Caputo sense are considered as prototype examples. The
results can be extended to other scientific areas involving numerical linear algebra.

Keywords: Caputo sense; convergence order; Drazin inverse; fractional calculus; iterative method;
Moore–Penrose inverse; non-smooth solution

1. Introduction

Computing the inverse matrix, particularly for a high dimension, has been a time
consuming task. Therefore, numerical methods are important for the calculation of the
inverse of a matrix, and numerical iterative algorithms have a special role among the
available techniques.

The Moore–Penrose inverse of a matrix A ∈ Cm×n, denoted by A† ∈ Cn×m, is the
unique matrix X that obeys the four conditions [1]

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA, (1)

where A∗ is the conjugate transpose of A. If rank(A) = min{m, n}, then

A† =


(A∗A)−1 A∗, m > n,
A−1, m = n,
A∗(AA∗)−1, m < n.

(2)

We find in the published literature a number of different iterative methods for comput-
ing the Moore–Penrose inverse. The most common approach for the approximate inverse,
A−1, is the Newton’s iterative method (NM):

Vr+1 = Vr(2I − AVr), r = 0, 1, 2, · · · , (3)

where I is the identity matrix. For more details, interested readers can see [2,3].
Li et al. [4] investigated the following third-order method, known as Chebyshev’s

iterative method: {
Wr = AVr,
Vr+1 = Vr

(
3I −Wr(3I −Wr)

)
.

(4)
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In addition, Toutounian and Soleymani [5] proposed another iterative method to find
A−1 of the fourth order given byWr = AVr,

Vr+1 = 0.5Vr

(
9I −Wr

(
16I −Wr(14I −Wr(6I −Wr)))

))
,

(5)

Pan et al. [6] investigated the following eighteenth-order scheme:
Wr = AVr, Zr = I −Wr, Pr = Z2

r , Ur = P2
r ,

Mr = (I + c1Pr + Ur)(I + c2Pr + Ur),
Tr = Mr + c3Pr, Sr = Mr + d1Pr + d2Ur,

Vr+1 = Vr

(
(I + Zr)(TrSr + µPr + ψUr)

)
,

(6)

where 
c1 =

1
4
(
√

27− 2
√

93− 1), c2 =
1
2
(1−

√
27−

√
93),

c3 =
1

496
(5
√

93− 93), d1 =
1

496
(−93− 5

√
93),

d2 = −93
4

, µ =
3
8

, ψ =
321

1984
.

(7)

Esmaieli et al. [7] proposed the second-order method{
Wr = AVr,
Vr+1 = Vr

(
5.5I −Wr(8I − 3.5Wr)

)
,

(8)

which is superior in terms of computational efficiency.

To initialize these algorithms, an initial matrix V0 was introduced by Pan et al. [8]

V0 = αA∗, where α =
1

‖A‖1‖A‖∞
. (9)

In 1958, a different kind of generalized inverse was introduced by Drazin [9]. This
definition does not have flexibility in the rings and semi-groups of associations but com-
mutes with the element. The importance of this type of inverse and its calculation was later
discussed by Wilkinson [10], and several researchers proposed direct or iterative methods
for calculating the solution of this problem [11–14]. In this paper, a characterization of the
Drazin inverse in the scope of fractional calculus is investigated.

The paper is organized as follows. Section 2 introduces the essential concepts, fun-
damental definitions, and properties of fractional calculus. Sections 3 and 4 analyse the
performance of a novel iterative method for obtaining the Moore–Penrose and Drazin
inverses. Section 5 introduces the error measurement. Section 6 compares the numerical
results of the proposed approach with other available schemes, especially for high dimen-
sional values. Section 7 highlights several applications of the new method and provides a
numerical assessment of their effectiveness in a fractional sense. Finally, Section 8 presents
the main conclusions.

Table 1 lists the abbreviations and acronyms used in the follow-up.
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Table 1. List of abbreviations and acronyms used in the paper.

The Abbreviations Description

NM Newton’s method (3)
CH Chebyshev method (4)
TS Method (5)
E1 Method (6)
E2 Method (8)
E3 Method (22)
CO Convergence order of method
MM Number of operations for Qn×n.Rn×n
PM Number of operations for Qn×n + Rn×n
SM Number of operations for βQn×n
IM Number of operations for γIn×n + Qn×n
CPU CPU time spent
PDE Partial differential equation
FDE Fractional differential equation

2. Fractional Calculus

In recent decades, fractional calculus and fractional differential equations (FDE)
have had a significant impact in science, with particular emphases in system dynamical
modelling [15–24]. This mathematical tool generalises the standard calculus, and several
definitions of fractional derivatives and integrals have been proposed.

Let ξ(x) be defined as a function on the interval [a, b]. The Riemann–Liouville integral
is defined by

Iγ =
1

Γ(γ)

∫ x

a
f (t)(x− t)γ−1dt, (10)

where Γ is the gamma function, and a is an arbitrary but fixed base point. The γth order
(m− 1 < γ < m) left and right sided Riemann–Liouville fractional derivatives of ξ(x) are
defined as

R
a Dγ

x ξ(x) =
1

Γ(m− γ)

dm

dxm

∫ x

a

ξ(τ)

(x− τ)γ−m+1 dτ, (11)

R
x Dγ

b ξ(x) =
(−1)m

Γ(n− γ)

dm

dxm

∫ b

x

ξ(τ)

(x− τ)γ−m+1 dτ. (12)

The Riemann–Liouville fractional derivative and integral played an important role in
the development of theoretical problems of fractional calculus. However, since the solution
of FDE requires initial conditions with fractional derivatives, they pose difficulties in their
application. In 1967, the Caputo fractional derivative was formulated [17]:

∂γξ(x, t)
∂tγ

=
1

Γ(m− γ)

∫ t

0

1
(t− τ)γ−m+1

∂mξ(x, τ)

∂τm dτ, γ ∈ (m− 1, m), m ∈ N. (13)

This definition simplifies the initial condition problem. The relationship between the
Riemann–Liouville and Caputo fractional derivatives is as follows:

RL
a Dγ

x ξ(x) =C
a Dγ

x ξ(x) +
m−1

∑
k=0

f (k)(a)(t−a)k−γ

Γ(k + 1− γ)
, m− 1 ≤ γ < m. (14)

Nonetheless, during the discretization of the FDE, we obtain a matrix, and therefore,
a problem of linear algebra has a relationship with the solution of FDE.

3. New Iterative Method
Iterative methods for solving nonlinear equations are pervasive in applied mathe-

matics, and many researchers have studied a variety of algorithms [25–28], keeping in
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mind that the efficiency of the method is of key importance. The existence of a function
derivative in the algorithm often poses constraints and increases the computational cost.
Therefore, the use of function high derivatives is usually avoided. We suppose that the
function F(χ) has a simple root at a and that χ0 is an initial guess sufficiently close to a.
To solve the equation F(χ) = 0, we consider the iterative algorithm

χr+1 = χr − F(χr)

F′(χr)

(
1 +

F′′(χr)F(χr)

2F′(χr)2

)
− F(χr)3

4F′(χr)4

( F′′(χr)2

2F′(χr)

+
F′′′′(χr)F(χr)

F′(χr)
− F′′′(χr)

6

)
, r = 0, 1, · · · . (15)

In the following, the convergence analysis of this method is investigated.

Theorem 1. Suppose that F : D ⊆ R → R is sufficiently differentiable in a neighbourhood of
a ∈ D and that a is a simple zero of F(χ) = 0. The iterative method (15) converges to a with
convergence order three. The error equation is given by

εr+1 =
3
4

(
2J2

2 − J3

)
(εr)

3 +O(ε4
r ), (16)

where Ji =
1
i!

F(i)(a)
F′(a)

for i ≥ 2.

Proof. Based on the Taylor expansion for F about a, we can write

F(χr) = F′(a)[εr + J2ε2
r + J3ε3

r + J4ε4
r + J5ε5

r + J6ε6
r +O(ε7

r )],
F′(χr) = F′(a)[1 + 2J2εr + 3J3ε2

r + 4J4ε3
r + 5J5ε4

r + 6J6ε5
r +O(ε6

r )],
...

F′′′′(χr) = F′(a)[24J4 + 120J5εr + 360J6ε2
r +O(ε3

r )].

(17)

From the above relations, we have

F(χr)

F′(χr)
= εr − J2ε2

r + 2(J2
2 − J3)ε

3
r +O(ε4

r ),

F′′(χr)F(χr)

2F(χr)2 = J2εr + (−3J2
2 + 3J3)ε

2
r +O(ε3

r )],
(18)

F(χr)3

4F′(χr)4 =
1

4F′(a)
[ε3

r − 5J2ε4
r +O(ε5

r )],

F′′(χr)2

2F′(χr)
= F′(a)[2J2

2 − 4(J3
2 − 3J2 J3)εr +O(ε2

r )],

F′′′′(χr)F(χr)

F′(χr)
= 24F′(a)[J4εr − (J2 J4 − 5J5)ε

2
r +O(ε3

r )].

(19)

Then, according to (15), we can write

εr+1 =
3
4

(
2J2

2 − J3

)
ε3

r +O(ε4
r ). (20)

Let F(V) = V−1 − A. Then, the following iterative method is obtained from (15):

Vr+1 =
1
4

Vr

(
37I − 111AVr + 151(AVr)

2 − 97(AVr)
3 + 24(AVr)

4
)

, (21)
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or 
ϑr = AVr,
ξr = ϑ2

r ,

Vr+1 =
1
4

Vr

(
37I − 111ϑr + ξr

(
151I − 97ϑr + 24ξr

))
.

(22)

Note: It is pointed out that in the body of this paper, methods (6), (8) and (22) are
represented by the acronyms E1, E2, and E3, respectively.

Theorem 2. Suppose that A ∈ Cn×n is a nonsingular matrix and that the initial approximation
V0 satisfies

‖I − AV0‖ < 1. (23)

Then, the iterative method (22) converges to A−1 with third order.

Proof. The proof is similar to that of Theorem 2.1 in [29].

Now, consider tr = ‖Aεr‖ and sr = ‖Er‖. In the following, we show the convergence
properties of the iterative method, namely the behaviour of the sequences tr and sr.

Corollary 1. Assume that the conditions of (9) hold. If limr→∞ tr = 0 and limr→∞ sr = 0, then,
for the iterative method (22), it yields

lim
r→∞

tr+1

t3
r

= lim
r→∞

sr+1

s3
r

=
3
4

. (24)

Proof. From Theorem 2, we have

Aεr+1 =
3
4
(Aεr)

3 − 23
4
(Aεr)

4 + 6(Aεr)
5. (25)

Consequently,

tr+1 = ‖Aεr+1‖ ≥
3
4
‖Aεr‖3 − 23

4
‖Aεr‖4 + 6‖Aεr‖5 = t3

r

(
3
4
− 23

4
tr + 6t2

r

)
, (26)

or

tr+1 = ‖Aεr+1‖ ≤
3
4
‖Aεr‖3 +

23
4
‖Aεr‖4 + 6‖Aεr‖5 = t3

r

(
3
4
+

23
4

tr + 6t2
r

)
, (27)

which implies that

3
4
− 23

4
tr + 6t2

r ≤
tr+1

t3
r
≤ 3

4
+

23
4

tr + 6t2
r , or lim

r→∞

tr+1

t3
r

=
3
4

. (28)

Again, by an argument similar to Theorem 2, we have

3
4
− 23

4
sr + 6s2

r ≤
sr+1

s3
r
≤ 3

4
+

23
4

sr + 6s2
r , or lim

r→∞

sr+1

s3
r

=
3
4

. (29)

Theorem 3. Suppose that A is a nonsingular matrix. If AV0 = V0 A, then for the sequence (22),
we have

AVi = Vi A, i = 1, 2, · · · . (30)

Proof. The proof is similar to the proofs presented in [30].
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Lemma 1. For the sequence {Vk}k=∞
k=0 , generated by the iterative method (22), it holds that

(Vk A)∗ = Vk A, (AVk)
∗ = AVk, Vk AA† = Vk, A† AVk = Vk. (31)

Proof. The proof is similar to Lemma 2.1 in [31].

Theorem 4. According to the same assumptions as in Theorem 2, the iterative method (22) is
asymptotically stable.

Proof. This theorem is similar to those adopted for a general family of methods in [32].
Thus, the proof is omitted.

Lemma 2. [33] For M ∈ Cn×n and any given ξ > 0, there is at least one matrix norm ‖ · ‖
such that

ρ(M) ≤ ‖M‖ ≤ ρ(M) + ξ, (32)

where ρ(M) = max|λi| and λi are eigenvalues of matrix M.

Lemma 3 ([34]). For P, S ∈ Cn×n, such that P = P2 and PS = SP, it holds that

ρ(PS) ≤ ρ(S). (33)

Theorem 5. Let A ∈ Cm×n
r and let us consider that σ1 > σ2 > · · · > σr > 0 are the singular

values of A. Then, (22) converges to the Moore–Penrose inverse A† in the third order, provided that
V0 = A∗

C , where C > σ2
1 is a constant.

Proof. According to Lemma 1, we have

‖Vr+1 − A†‖ = ‖Vr+1 AA† − A† AA†‖ ≤ ‖Vr+1 A− A† A‖‖A†‖, (34)

and if Er = Vr − A†, then A† AEr A = Er A. From the conditions of the Moore–Penrose
inverse, Er, and from (22), we have

(I − A† A)t = I − A† A, t = 2, 3, (I − A† A)Er A = 0, Er A(I − A† A) = 0, (35)

and

Er+1 A =
[1

4
Vr

(
37I − 111AVr + 151(AVr)2 − 97(AVr)3 + 24(AVr)4

)
− A†

]
A

= −(I −Vr A)3
(3

4
I − 23

4
(I −Vr A) + 6(I −Vr A)2

)
+ I − A† A

= −(I − A† A− Er A)3
(3

4
I − 23

4
(I − A† A− Er A) + 6(I − A† A− Er A)2

)
+I − A† A

= −
(
(I − A† A)− 3(I − A† A)Er A + 3(I − A† A)(Er A)− (Er A)3

)
×
(3

4
I − 23

4
(I − A† A) +

23
4
(Er A) + 6(I − A† A)

− 12(I − A† A)(Er A) + 6(Er A)2
)
+ I − A† A.

(36)

So, it is proved that

Er+1 A =
(3

4
I +

23
4
(Er A) + 6(Er A)2

)
(Er A)3. (37)

Now, consider P = A† A and S = V0 A− I, so that P2 = P and

PS = A† A(V0 A− I) = A† AV0 A− A† A = (A† A)∗V0 A− A† A

= V0 A− A† A = V0 AA† A− A† A = (V0 A− I)A† A = SP.
(38)
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Therefore, according to Lemma 3

ρ
(
(V0 − A†)A

)
= ρ

((A∗

C
− A†)A

)
≤ ρ

(A∗

C
A− I

)
= max

1≤i≤r

∣∣∣1− λi

(A∗

C
A
)∣∣∣. (39)

Since C > σ2
1 , we have

max
1≤i≤r

∣∣∣1− λi

(A∗

C
A
)∣∣∣ < 1, (40)

and from Lemma 2, ∥∥∥(V0 − A†)A
∥∥∥ ≤ ρ

((
V0 − A†)A

)
+ ξ < 1. (41)

Consequently, according to (34) and (37), we obtain limk→∞ ‖Vk − A†‖ = 0 with the
third order.

Theorem 6. The sequence Vr produced by (22) and with (9) satisfies

R(Vr) = R(A∗), N (Vr) = N (A∗), (42)

for r ≥ 0, whereR(·) and N (·) denote the range and the null space of the matrix, respectively.

Proof. Since V0 = αA∗, the theorem obviously holds for r = 0. Suppose that y ∈ N (Vr) is
an arbitrary vector. According to the method (22), we have

Vr+1y =
1
4

(
37Vry− 111Vr AVry + 151Vr(AVr)

2y− 97(Vr AVr)
3y + 24Vr(AVr)

4y
)
= 0. (43)

As we know y ∈ N (Vr+1), we can conclude that N (Vr) ⊆ N (Vr+1). Similarly we
haveR(Vr) ⊇ R(Vr+1). Therefore, by mathematical induction we can write

N (Vr) ⊇ N (V0) = N (A∗), R(Vr) ⊆ R(V0) = R(A∗). (44)

To prove the equality, let
N =

⋃
r∈N0

N (Vr). (45)

Suppose that y ∈ N . Then, y ∈ N (Vr0) for r0 ∈ N0. Since y ∈ N (Vr) for every r ≥ r0,
then Vry = 0, and according to Theorem 2,

Vy = lim
r→+∞

Vry = 0. (46)

Finally, y ∈ N (V) = N (A∗) and N ⊆ N (A∗). On the other hand, it comes to be that

N (A∗) ⊆ N (Vr) ⊆ N ⊆ N (A∗), (47)

and so N (Vr) = N (A∗).
Now, according to the relation

dim R(Vr) = m− dim N (Vr) = m− dim N (A∗) = dim R(A∗), (48)

andR(Vr) ⊆ R(A∗), we conclude thatR(Vr) = R(A∗).

Theorem 7. Let {Vk}∞
k=0 generated by method (22), for all V̂k, such that

V̂k = Vk + ∆k, (49)
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where ∆k is a numerical perturbation of the k-th exact iterate Vk having a sufficiently small norm,
we can ignore quadratic and higher order terms in O(∆2

k), and one has

‖∆k‖ < ‖∆k‖‖A‖‖Vk‖+O(‖∆k‖). (50)

Proof. Let Êk = I − AV̂k. Then,

‖Êj
k‖ = ‖(Ek − A∆k)

j‖ ≤ ‖Ek − A∆k‖j ≤ (‖Ek‖+ ‖A∆k‖)j = Cj
0, j = 1, 2, 3, (51)

where C0 = ‖Ek‖+ ‖A∆k‖ = ‖Ek‖+O(‖∆k‖). Furthermore,

‖Êj
k − Ej

k‖ = ‖(Ek − A∆k)
j − Ej

k‖ ≤ (‖Ek‖+ ‖A∆k‖)j − ‖Ek‖j

= ‖A∆k‖
(

∑
j−1
i=0

( j
j− 1− i

)
‖A∆k‖i‖Ek‖j−1−i

)
,

(52)

meaning
‖Êj

k − Ej
k‖ ≤ Tj‖A∆k‖, (53)

where

Tj =
j−1

∑
i=0

( j
j− 1− i

)
‖A∆k‖i‖Ek‖j−1−i = j‖Ek‖j−1 +O(‖∆k‖), (54)

and we have

∆k+1 = V̂k+1 −Vk+1

=
1
4

V̂k

(
37I − 111AV̂k + 151(AV̂k)

2 − 97(AV̂k)
3 + 24(AV̂k)

4
)

− 1
4

Vk

(
37I − 111AVk + 151(AVk)

2 − 97(AVk)
3 + 24(AVk)

4
)

=
1
4

V̂k

(
4I + 4Êk + 4Ê2

k + Ê3
k + 24Ê4

k

)
−1

4
Vk

(
4I + 4Ek + 4E2

k + E3
k + 24E4

k

)
= ∆k(I + Êk + Ê2

k +
1
4

Ê3
k + 6Ê4

k)

+ Vk

(
I + (Êk − Ek) + (Ê2

k − E2
k) +

1
4
(Ê3

k − E3
k) + 6(Ê6

k − E6
k)
)

.

(55)

Therefore,

‖∆k+1‖ ≤ ‖∆k‖(1 + ‖Êk‖+ ‖Ê2
k‖+

1
4
‖Ê3

k‖+ 6‖Ê4
k‖)

+ ‖Vk‖
(

1 + ‖Êk − Ek‖+ ‖Ê2
k − E2

k‖+
1
4
‖Ê3

k − E3
k‖+ 6‖Ê4

k − E4
k‖
)

= ‖∆k‖(1 + C0 + C2
0 +

1
4

C3
0 + 6C6

0)

+‖A∆k‖‖Vk‖
(

1 + T1 + T2 + T3 + 6T4

)
< ‖∆k‖‖A‖‖Vk‖+O(‖∆k‖).

(56)

This expression yields the claimed estimates (50) for the numerical perturbation at iteration
loop k + 1.

Proof. The proof is straightforward.

Corollary 2. The computational cost of the iterative method (22) is O(n3).

Proof. To calculate the computational cost of the suggested method, the following facts
hold. Suppose that Qn×n and Rn×n are given matrices. Then, we verify that n3 operations
are needed to compute Qn×n.Rn×n, n2 operations are needed for Qn×n + Rn×n and βQn×n,
and n operations for γIn×n + Qn×n. Consequently, the sum of all required operations in
(22) is 4n3 + 6n2 + 2n, and we have O(n3).
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Table 2 lists the convergence order (CO), the number of operations for Qn×nRn×n
(MM), Qn×n + Rn×n (PM), βQn×n (SM), γIn×n + Qn×n (IM), and the computational cost
(CC) in every iteration of the methods E1 and E3.

Table 2. Computational cost for every iteration of the methods.

Method CO MM PM SM IM CC

NM 2 2 0 0 1 2n3 + 2n
CH 3 3 0 0 2 3n3 + 2n
TS 4 5 0 1 4 5n3 + n2 + 4n
E1 18 7 7 7 4 7n3 + 14n2 + 4n
E2 2 3 0 1 2 3n3 + n2 + 2n
E3 3 4 2 4 2 4n3 + 6n2 + 2n

4. Application in Finding the Drazin Inverse

Drazin inverses were first introduced and used by Drazin himself in the study of
abstract ring theory in finite dimensional algebra. Later, the definition of Drazin inverses
was generalized to bounded linear operators in Banach spaces and was used to study
linear abstract differential equations in Banach spaces [9,35]. Some of the most important
applications of the Drazin inverse are Markov chains, control theory, singular differential
and difference equations, and iterative methods in numerical linear algebra [36–38].

Definition 1. The smallest non-negative integer k = ind(·) that holds

rank(Ak+1) = rank(Ak), (57)

is called the index of matrix A.

Definition 2. Suppose that A ∈ Cn×n. Then, the Drazin inverse of A, denoted by AD, is the
matrix V, which holds in the following equations:

AkVA = Ak, VAV = V, AV = VA, (58)

where k = ind(A).

Li and Wei [39] proved that NM can be used to find the Drazin inverse of square
matrices, and they proposed the initial matrix

V0 = W0 = βAl , l ≥ ind(A) = k, (59)

where β must satisfy the condition ‖I − AV0‖ < 1.

We now consider the iterative method (22) for finding the Drazin inverse, with the
initial matrix

V0 = W0 =
2

tr(Ak+1)
Ak, (60)

where tr(·) stands for the trace of the matrix.

Proposition 1 ([40]). Let PL,M be the projector on a space L along a space M. Then,

(i) PL,MQ = Q⇔ R(Q) ⊆ L,

(ii) QPL,MQ = Q⇔ N (Q) ⊇ M.
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Theorem 8. Suppose that A is a singular square matrix. Additionally, let the initial matrix be
chosen by (60). Then, for Wr generated by the iterative method (22), the following asymptotic error
estimate holds to find the Drazin inverse

‖AD −Wr‖ ≤ O(‖AD‖‖F0‖3r
), (61)

where F0 = I − AW0.

Proof. Let F0 = I − AW0. Then, Fr = I − AWr. Thus, we have

Fr+1 = I − AWr+1 = (I − AWr)3
(3

4
I − 23

4
(I − AWr) + 6(I − AWr)2

)
=

3
4

F3
r −

23
4

F4
r + 6F5

r .
(62)

Using an arbitrary matrix norm of (62) results in

‖Fr+1‖ ≤
3
4
‖Fr‖3 +

23
4
‖Fr‖4 + 6‖Fr‖5. (63)

Here, since ‖F0‖ < 1, from relation (63), we have

‖F1‖ ≤
3
4
‖F0‖3 +

23
4
‖F0‖4 + 6‖F0‖5 ≤ O(‖F0‖3). (64)

By continuing this process, we arrive at

‖Fr+1‖ ≤
3
4
‖Fr‖3 +

23
4
‖Fr‖4 + 6‖Fr‖5 ≤ O(‖Fr‖3). (65)

Thus, ‖Fr+1‖ ≤ O(‖Fr)‖ for every r ≥ 0. Therefore, we obtain

‖Fr‖3 ≤ O(‖F0‖3r
), r ≥ 0. (66)

According to relation (59), we haveR(W0) ⊆ R(Ak). In addition, the use of this result
together with (21) implies thatR(Wr) ⊆ R(Wr−1), and we can write

R(Wr) ⊆ R(Ak), r ≥ 0. (67)

On the other hand, we have

Wr+1 =
1
4

Wr

(
37I − 111AWr + 151(AWr)

2 − 97(AWr)
3 + 24(AWr)

4
)

. (68)

It is straightforward to verify that

N (Wr) ⊇ N (Ak), r ≥ 0. (69)

According to Ben-Israel et al. [41], one can readily show that

AAD = AD A = PR(Ak),N (Ak), (70)

and from Proposition 1 and expressions (67) and (69), we have

Wr AAD = Wr = AD AWr, r ≥ 0. (71)

Therefore, if the error matrix is δr = AD −Wr, then it follows that

δr = AD −Wr = AD − AD AWr = AD(I − AWr) = ADFr, (72)
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and from (72) and (66), we have

‖δr‖ = ‖AD‖‖Fr‖ ≤ O(‖AD‖‖F3r

0 ‖), (73)

which completes the proof.

Corollary 3. Assume that the condition of Theorem 8 and the following stabilization condition

‖F0‖ ≤ ‖I − AW0‖ < 1 (74)

are satisfied. Then, expression (22) converges to AD.

Theorem 9. (Stability) Suppose the same assumptions as in Theorem 8 hold. Then, the iterative
method (22) has asymptotic stability for finding the Drazin inverse.

Proof. The proof of asymptotic stability of the iterative method (22) is similar to that in [32].
Thus, the proof is omitted.

5. Error Measurement

If the quantity V is viewed as an approximation to V, then the absolute (eA) and
relative (eR) errors in the approximation are defined as

eA = |V −V|, (75)

and

eR =
|V −V|
|V| , (76)

respectively. However, the absolute error is not useful for large sets, and the relative error
can sometimes be misleading when |V| is small. To avoid the need to choose between the
absolute and relative errors, the following mixed error measure is often used in practice:

e =
|V −V|
1 + |V| . (77)

The value of e in (77) is similar to the absolute error eA when |V| � 1 and to the
relative error eR when |V| � 1 [42].

6. Numerical Results

In this section, we compare the results of the proposed approach with other schemes
available in the literature. Since the comparison of the method E2 reported in [7] shows
that it has better performance than others, we only compare our proposed method E3 with
E2, NM, CH, TS, and E1. According to (77), the stop criterion is

‖Vr+1 −Vr‖∞

1 + ‖Vr‖∞
< 10−10. (78)

We denote by CPU the required calculation time using Mathematica and by MM the
number of matrix-matrix products. Furthermore for computing the inverse of a matrix and
based on Method (22), the producers is presented in Algorithm 1.
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Algorithm 1 Method (22) for computing the inverse of a matrix

Step 1: Input matrix A ∈ Cn×n.

Step 2: Take the initial matrix V0 =
1

‖A‖1‖A‖∞
A∗ and the tolerance ε ≥ 0. Set r := 0.

Step 3: Let

ϑr = AVr,
ξr = ϑ2

r ,

Vr+1 =
1
4

Vr

(
37I − 111ϑr + ξr

(
151I − 97ϑr + 24ξr

))
.

(79)

Step 4: Stop if
‖Vr+1 −Vr‖∞

1 + ‖Vr‖∞
≤ ε. Otherwise, r := r + 1, and go to Step 3.

Example 1. Consider a real-valued tri-diagonal matrix with dimension 1000× 1000, where the
diagonals are as follows:

(1, 360) = −2.35, (1, 1) = −2.35, (700, 1) = 1.85. (80)

Example 2. Consider the complex-valued tri-diagonal matrix with dimension 1000× 1000, where
the diagonals are as follows:

(1, 280) = 0.9− 0.45i, (1, 1) = −1.25 + 0.14i, (850, 1) = −2.25 + 0.6i. (81)

Example 3. Consider the complex-valued tri-diagonal matrix with dimension 2000× 2000, where
the diagonals are as follows:

(1, 420) = −6.5 + 0.25i, (1, 1) = −1.5 + 2.25i, (1650, 1) = 2.5− 2i. (82)

The results of Examples 1–3 are presented in Tables 3–5 and Figures 1–3.

(a) (b)

Figure 1. Representation of the (a) matrix and (b) inverse matrix for Example (1).
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(a) (b)

Figure 2. Representation of the (a) matrix and (b) inverse matrix for Example (2), respectively.

(a) (b)

Figure 3. Representation of the (a) matrix and (b) inverse matrix for Example (3), respectively.

Table 3. Results of Example (1).

Method N M CH TS E1 E2 E3

MM 32 33 40 35 33 28
CPU 0.1089 0.1102 0.1590 0.1423 0.1124 0.0936

Table 4. Results of Example (2).

Method N M CH TS E1 E2 E3

MM 24 24 30 28 27 20
CPU 0.6092 0.6105 0.6701 0.6421 0.6122 0.5436

Table 5. Results of Example (3).

Method N M CH TS E1 E2 E3

MM 36 33 40 35 30 28
CPU 0.9082 1.1301 1.1625 1.1421 1.0122 0.8336

Example 4. To evaluate the efficiency of the proposed method, we consider several real and complex
random matrices with different dimensions. For each of sizes n × n and n × (n + 20), n =
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{200, 400, 600, 800, 1000}, we perform 5 random tests and compare average values of matrix
multiplications. The results are presented in Figures 4 and 5.

(a) (b)

Figure 4. The average MM for computing the Moore–Penrose inverse of real matrices (a) (n× n) and
(b) (n× n + 20) by the methods {TS, NM, CH, E1, E2, E3}.

(a) (b)

Figure 5. The average MM for computing the Moore–Penrose inverse of complex matrices (a) (n× n)
and (b) (n× n + 20) by the methods.

Example 5 ([43]). Consider tri-diagonal matrices, where the diagonals are as follows:

(1, 2) = 1, (1, 1) = 0, (2, 1) = −1. (83)

The dimension of the matrices is an odd number, and the matrices are singular with ind(A) =
1. The results for computing the Drazin inverse matrices for n = 109, 299, 499 are presented in
Table 6 and Figure 6.

(a) (b)

Figure 6. Representation of the (a) matrix and (b) Drazin inverse matrix for Example (5) with n = 299,
respectively.
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Table 6. Results of Example (5).

n Method N M CH TS E1 E2 E3

MM 42 39 50 42 39 32
109 CPU 1.2149 1.8952 1.3025 1.2235 1.1988 1.0102

MM 50 48 60 49 42 40

299 CPU 3.1258 3.1181 4.102 3.1021 2.7022 2.5789

MM 54 54 65 56 42 40
499 CPU 6.9082 7.012 8.1541 7.1421 5.81228 5.3552

7. Application

The proposed method can be used to compute the approximate inverse (i.e., the itera-
tive algorithm (22)) when dealing with large sparse matrices arising from the discretization
of linear partial differential equations (PDE) or FDE. Therefore, we consider the following
PDE and FDE discussed previously in [44,45], using the iterative method (22). The com-
putational performance of the suggested iterative method confirms the applicability and
validity of the proposed strategy.

Example 6 ([46]). Consider the fractional elliptic Poisson equation

∂γξ(x, y)
∂xγ

+
∂γξ(x, y)

∂yγ
= g(x, y),

ξ(0, y) = φ1(y), ξ(1, y) = φ2(y),
ξ(x, 0) = ψ1(x), ξ(x, 1) = ψ2(x),

(84)

where 0 ≤ x, y ≤ 1, and two cases:
(a) g(x, y) = Γ(γ + 1)(xγ + yγ), for 0 < γ ≤ 2 and

φ1(y) = ψ1(x) = 0, φ2(y) = yγ, ψ2(x) = xγ, (85)

(b) g(x, y) = sin(πx) cos(πy), for γ = 2, and

φ1(y) = φ2(y) = ψ1(x) = ψ2(x) = 0, (86)

where the fractional derivative ∂γξ(x,y)
∂yγ of order γ is formulated in the Caputo sense. For solving

Equation (84), we use the centre finite difference for
∂γξ(x, y)

∂xγ
and

∂γξ(x, y)
∂yγ

. Therefore, for case

(a) we have

∂γξ(x, y)
∂xγ

∣∣∣
(xi ,yj)

≈
γ!(ξi+1,j − ξi−1,j)

2hγ
,

∂γξ(x, y)
∂yγ

∣∣∣
(xi ,yj)

≈
γ!(ξi,j+1 − ξi,j−1)

2kγ
. (87)

For case (b), we have

∂2ξ(x, y)
∂x2

∣∣∣
(xi ,yj)

≈
ξi−1,j − 2ξi,j + ξi+1,j

h2 ,
∂2ξ(x, y)

∂y2

∣∣∣
(xi ,yj)

≈
ξi,j−1 − 2ξi,j + ξi,j+1

k2 . (88)

Furthermore, the values h = 1
p and k = 1

q are adopted for the step size along the space x and y
coordinates, respectively.

The results of Example 6 are presented in Tables 7 and 8 and Figures 7 and 8.
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Table 7. Results of Example (6) case (a).

γ, p Method N M CH TS E1 E2 E3

1.2, 12 MM 30 33 40 35 30 28
CPU 9.0082 10.1201 11.2511 10.1421 9.9122 7.1336

1.8, 17 MM 34 36 45 35 36 28
CPU 11.0082 13.2589 19.9812 12.1421 11.0422 9.8336

Table 8. Results of Example (6) case (b).

Method N M CH TS E1 E2 E3

MM 42 42 55 42 39 32
CPU 19.9082 20.1589 31.2589 22.1421 16.0122 14.8336

(a) (b)

Figure 7. Representation of the (a) matrix and (b) inverse matrix for Example (6) case (a) when
p = q = 17 and γ = 1.8.

1 100 200 300 400

1

100

200

300

400

1 100 200 300 400

1

100

200

300

400

(a)

1 100 200 300 400

1

100

200

300

400

1 100 200 300 400

1

100

200

300

400

(b)

Figure 8. Representation of the (a) matrix and (b) inverse matrix for Example (6) (b) when p = q = 20.
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Example 7 ([47]). Consider the fractional sub-diffusion equation

∂γξ(x, t)
∂tγ

+
∂2ξ(x, t)

∂x2 = f (x, t),

ξ(0, t) = ξ(1, t) = 0, 0 < t ≤ 1, 0 < γ ≤ 1,

ξ(x, 0) = 0, 0 < x < 1,

(89)

where the fractional derivative ∂γξ(x,t)
∂tγ of order γ is formulated in the Caputo sense. According

to [47], we use the finite difference for approximating the derivatives
∂γξ(x, t)

∂tγ
and

∂2ξ(x, t)
∂x2 ,

so that
∂γξ(x, t)

∂tγ

∣∣∣
(xi ,tj)

≈
γ!(ξi,j+1 − ξi,j)

kγ
, (90)

and

γ!(ξ j+1
i − ξ

j
i )

kγ
= θ

ξ
j+1
i+1 − 2ξ

j+1
i + ξ

j+1
i−1

h2 + (1− θ)
ξ

j
i+1 − 2ξ

j
i + ξ

j
i−1

h2 + θ f j+1
i + (1− θ) f j

i , (91)

where ξ
j
i = ξ(xi, tj) and f j

i = f (xi, tj). k = 1
p and h = 1

q are the step sizes along time t and space
x, respectively. In this example, we examine two cases:

(a) f (x, t) =
2

Γ(3− γ)
t2−γ sin(2πx) + 4π2t2 sin(2πx),

(b) f (x, t) =
3
4

Γ( 1
2 )tx

4(x − 1) − 4x2(5x − 3)
3
2 with non-smooth solution at t = 0

for γ = 0.5.

The results of Example 7 are presented in Tables 9 and 10 and Figures 9 and 10.

1 100 200 300 400

1

100

200

300

400

1 100 200 300 400

1

100

200

300

400

(a)

1 100 200 300 400

1

100

200

300

400

1 100 200 300 400

1

100

200

300

400

(b)

Figure 9. Representation of the (a) matrix and (b) inverse matrix for Example (7) case (a), when
p = q = 20, respectively.
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1
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200

225

1 50 100 150 200 225

1

50
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200

225

(a)

1 50 100 150 200 225

1

50

100

150

200

225

1 50 100 150 200 225

1

50

100

150

200

225

(b)

Figure 10. Representation of the (a) matrix and (b) inverse matrix for Example (7) case (b), when
p = q = 15, respectively.

Table 9. Results of Example (7) (a) for γ = θ = 0.2.

Method N M CH TS E1 E2 E3

MM 50 51 65 49 45 40
CPU 16.9082 17.1562 28.1256 16.1421 14.2122 13.0336

Table 10. Results of Example (7) case (b) for γ = 0.5 and θ = 0.3.

Method N M CH TS E1 E2 E3

MM 100 75 95 91 75 68
CPU 21.9182 17.1158 20.1589 19.1821 17.2122 16.0036

As we know, the fractional-order derivatives in the partial differential equations are
non-local. This means that the discretized matrix of approximating the spatial fractional-
order derivatives should be dense and often Toeplitz-like [48–51]. In Examples 6 and 7,
we adopted a very simple numerical approximation to the fractional operators, and the
discretized matrices are sparse. In the follow-up, we give an example using a more
elaborated approximation that leads to the dense matrix. The obtained results imply an
elegant superiority of our proposed iterative scheme.

Example 8. Consider the Riesz fractional diffusion equation [50]

∂ξ(x, t)
∂t

= κγ
∂γξ(x, t)

∂|x|γ + f (x, t), (x, t) ∈ (0, 1)× (0, 1], κγ > 0

ξ(x, 0) = 15(1 +
γ

4
)x3(1− x)3, x ∈ [0, 1],

ξ(0, t) = ξ(1, t) = 0, t ∈ [0, 1].

(92)
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The Riesz fractional derivative
∂γξ(x, t)

∂|x|γ is defined by [52]

∂γξ(x, t)
∂|x|γ = − 1

2 cos(
πγ

2
)

.
1

Γ(2− γ)
.

∂2

∂x2

∫ b
a

ξ(ζ, t)
|x− ζ|γ−1 dζ

= − 1

2 cos(
πγ

2
)

(
a
Dγ

x ξ(x, t) +x Dγ
b ξ(x, t)

)
, γ ∈ (1, 2),

(93)

in which aDγ
x and xDγ

b are (11) and (12) for m = 2.
According to [50], the first-order time derivative at the point t = tj is approximated by the

second-order backward difference formula:

∂ξ(x, t)
∂t

∣∣∣
(xi ,tj)

=


ξ

j+1
i − ξ

j
i

k
, j = 1,

ξ
j
i − 4ξ

j−1
i + 3ξ

j−2
i

2k
, j ≥ 2,

(94)

and also for any function ξ(x) ∈ L1(R), we have

∆γ
h ξ(x) = − 1

hγ

(x−a)
h

∑
l=−[ b−x

h ]

ω
(γ)
l ξ(x− lh), x ∈ R, (95)

where the γ-dependent weight coefficient is defined as

ω
γ
l =

(−1)lΓ(1 + γ)

Γ(1 + γ
2 − l)Γ(1 + γ

2 + l)
, l ∈ Z. (96)

Then, for a fixed h, the fractional centred difference operator in (95) holds:

∂γξ(x)
∂|x|γ = ∆γ

h ξ(x) +O(h2), (97)

where κγ∆γ
h ξ

j
i can be written into the matrix-vector product form Aξ j as

A = −κγTx = −
κγ

hγ



ω
(γ)
0 ω

(γ)
−1 ω

(γ)
−2 · · · ω

(γ)
3−N ω

(γ)
2−N

ω
(γ)
1 ω

(γ)
0 ω

(γ)
−1 · · · ω

(γ)
4−N ω

(γ)
3−N

ω
(γ)
2 ω

(γ)
1 ω

(γ)
0 · · · ω

(γ)
5−N ω

(γ)
4−N

...
...

...
. . .

...
...

ω
(γ)
N−3 ω

(γ)
N−4 ω

(γ)
N−5 · · · ω

(γ)
0 ω

(γ)
−1

ω
(γ)
N−2 ω

(γ)
N−3 ω

(γ)
N−4 · · · ω

(γ)
1 ω

(γ)
0


. (98)

In [53], it was proven that Tx is a symmetric positive definite Toeplitz matrix. The matrix-
vector for solving the model problem (92) can be formulated as follows:

ξ1 − ξ0

k
−Aξ1 = f 1,

3ξ j − 4ξ j−1 + ξ j−2

2k
−Auj = f j, 1 ≤ j ≤ Nt.

(99)

The results of Example 8 are presented in Table 11 and Figure 11.
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Table 11. Results of Example (8).

γ, p, q Method N M CH TS E1 E2 E3

1.3, 10,10 MM 30 30 40 35 30 28
CPU 0.0030 0.0031 0.0043 0.0037 0.0032 0.0027

1.5, 20, 20 MM 34 33 45 35 30 28
CPU 0.0047 0.0045 0.0063 0.0049 0.0042 0.0036

1.8, 40, 40 MM 38 39 40 42 33 32
CPU 0.0214 0.0221 0.0235 0.0251 0.0201 0.0185

(a) (b)

Figure 11. Representation of the (a) matrix and (b) inverse matrix for Example (8) when p = q = 40,
respectively.

Finally, as seen from Tables 3–11 and Figures 4 and 5, we can find that the proposed
method is faster than other numerical methods in terms of the number of matrix-matrix
products and the elapsed CPU time.

8. Concluding Remarks

The inverse matrix calculation poses computational challenges in the solution of many
problems due to its high computational cost. Therefore, avoiding a direct calculation
and using efficient iterative methods are key aspects in mathematical modelling. In this
paper, we presented a novel iterative method for solving nonlinear equations. The algo-
rithm has good performance in terms of computational efficiency in the calculation of the
Moore–Penrose and Drazin inverses. The key performance aspects of the method can be
outlined as:

• Exhibits adequate results for specific real and complex matrices;
• Provides optimal results for real and complex square and rectangular random matrices

of different dimensions;
• Shows a good feasibility for different dimensions when computing the Drazin inverse;
• The solution of the fractional elliptic Poisson equation shows superior results to

other schemes;
• Yields good results for the solution of the fractional sub-diffusion equation for smooth

and non-smooth solutions.

In synthesis, the results show that the theoretical findings are in accordance with
numerical experiments, and we verified that the proposed algorithm is superior to others
available in the literature. Finally, we point out that this new strategy has its own limitations
and should be generalized and verified for more complicated linear and nonlinear problems.
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In other words, the present paper is only an introduction to the topic, and there remains
much work to do.
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