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Abstract: Pedestrian gender classification is one of the key assignments of pedestrian study, and it
finds practical applications in content-based image retrieval, population statistics, human–computer
interaction, health care, multimedia retrieval systems, demographic collection, and visual surveillance.
In this research work, gender classification was carried out using a deep learning approach. A new
64-layer architecture named 4-BSMAB derived from deep AlexNet is proposed. The proposed model
was trained on CIFAR-100 dataset utilizing SoftMax classifier. Then, features were obtained from
applied datasets with this pre-trained model. The obtained feature set was optimized with ant
colony system (ACS) optimization technique. Various classifiers of SVM and KNN were used to
perform gender classification utilizing the optimized feature set. Comprehensive experimentation
was performed on gender classification datasets, and proposed model produced better results than
the existing methods. The suggested model attained highest accuracy, i.e., 85.4%, and 92% AUC
on MIT dataset, and best classification results, i.e., 93% accuracy and 96% AUC, on PKU-Reid
dataset. The outcomes of extensive experiments carried out on existing standard pedestrian datasets
demonstrate that the proposed framework outperformed existing pedestrian gender classification
methods, and acceptable results prove the proposed model as a robust model.

Keywords: support vector machine; gender classification; visual surveillance; 4-BSMAB; ACS; CNN

1. Introduction

In recent years, researchers’ interest in visual surveillance applications has been
growing due to the availability of low-cost optical and infrared cameras and advanced
computing machines. Digital cameras are widely used nowadays and deployed on roads,
in shopping malls, metro lines and train stations, airports, and residential areas. With
digital cameras, pedestrian images are captured under a specific field of view (FoV) in con-
trolled environments [1]. These days, object recognition from images and videos captured
by digital cameras is being preferred by people for automated tasks related to security
monitoring, public safety [2], pedestrian behavior analysis, etc. Different approaches for
video object detection based on deep learning were studied in [3]. Pattern classification
from images was also carried out in [4–6]. Usually, the movement of different types of
objects such as pedestrians takes place in images or video frames. Since pedestrians
move in public areas for different purposes such as shopping, to go to work, or to go to
school, they are a very important object of real life, and pedestrian-relevant tasks such as
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pedestrian face recognition [7], pedestrian tracking [8], pedestrian re-identification [9–11],
action recognition [12,13], and pedestrian gender classification (PGC) [14] are becoming
the focus of researchers. Since gender is a key attribute of a pedestrian and plays a role in
social communication and human classification (male or female), gender prediction can be
useful for various applications related to content-based image retrieval (CBIR), population
statistics, human–computer interaction (HCI), health care, multimedia retrieval systems,
demographic collection [15], and visual surveillance. Keeping in view the importance of
gender prediction in these application areas, pedestrian gender analysis is becoming an
imperative field of computer vision. In recent decades, considerable progress has been
made in performing the task of gender recognition. Some of the introduced automated
gender recognition methods use only low-level information and some others utilize high-
level information of images. Low-level information includes hand-crafted features such
as shape, color, and texture, while high-level information includes deep features of im-
ages [16–20]. These information types also usually use pedestrians’ voices, gait, skin color,
and facial expression for gender prediction [21]. However, these approaches have faced
issues related to different camera settings, pedestrians’ complex full-body appearances,
and variations in their poses. Moreover, environmental effects which include changes in
brightness, viewpoint disparities, blur, occlusion, and background cluttering, and images
having a low resolution have also affected results while classifying pedestrian gender.
Hence, designing a robust method which can effectively automate the process of gender
prediction is required. To address the above-mentioned issues of gender prediction, pre-
viously proposed methods follow a two-stage classification framework that first extracts
features and then carries out classification. Commonly, during the first stage, designing
a highly representative feature descriptor is considered for gender, and then a precise
binary classifier distinguishing male and female is obtained during the second stage. Nat-
urally, feature representation is required to be discriminative as well as robust. For this,
several methods have used facial characteristics using complete faces [22–25], and various
hand-crafted features have been developed utilizing facial images such as histograms of
gradients (HOGs) [26], iris codes [27], and local binary patterns (LBPs) [28], for gender
recognition. In automated surveillance systems, since poor visible pedestrian face images
are captured due to the distance between the camera and pedestrian faces, especially in
long-distance conditions, relevant methods produce low gender recognition rates and are
not effective for image-based pedestrian gender recognition. Similarly, the approaches
which also use face images do not work in scenarios where a camera is used to capture
images of pedestrians from their different sides such as back, left, or right side. The reason
behind this is that pedestrian images captured in multi-camera environments normally
have issues such as scene variations, viewing angle variation, occlusions, blur, and changes
in brightness, and due to these issues, it becomes difficult to extract the required face
information. Scene variations lead to changes in the background and illumination of an
image, while viewpoint variations cause changes in pedestrians’ full-body appearances
and postures. Among these issues, viewpoint variation is considered critical because of its
impact on diversification in pedestrian full-body appearances and postures, hence making
pedestrian gender recognition tasks more difficult. Deep neural network (DNN)-based
methods, especially convolutional neural network (CNN)-based classifiers, performed
more successfully than hand-crated features in various tasks related to computer vision, as
CNN learns and generates effective feature representations from input data under the di-
verse appearances of gender and various camera settings [29,30]. Some other methods have
tackled scene variation issues [31–34], viewpoint variation concerns [35–38], both scene
and viewpoint variation issues [39], and combinations of aforementioned problems [40,41]
for pedestrian gender recognition. However, these methods normally need large-scale
datasets for training when learning effective models. Even though both traditional and
deep CNN approaches have generated effective benchmark results while performing gen-
der prediction, they are still lacking in terms of challenging issues such as distinct feature
representations, an imbalanced distribution of data, lower accuracies, and a small sample
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space (SSS) for model learning. Regarding these scenarios, the objective of this research
work is to develop a new method for pedestrian gender recognition by tackling viewpoint
variation concerns for better performance.

In this work, the proposed solution for gender classification provides a robust catego-
rization of full-body view-based pedestrian images. The proposed method is related to
offline PGC which utilizes body clues in pedestrian image classification. Four different
views such as front, back, side, and mixed are considered for PGC. In this regard, a 64
layer-based CNN model is presented to obtain and learn features. The learned features
are then supplied to the optimization approach. The features obtained from this approach
are provided to different classifiers for PGC. Keeping in view the fact of non-availability
of large datasets of PGC for the training of proposed network, to overcome this issue,
a large dataset, i.e., CIFAR-100, was selected to train the proposed model, after which
feature sets of testing dataset were extracted from a fully connected layer of proposed
CNN-based model. Extensive experimentation was carried out using several variations
of optimized feature subsets. From the results obtained, it is observed that an overall
accuracy of 85.4% and 92% AUC is achieved on MIT dataset with Fine KNN variant of
KNN classifier, and best classification accuracy of 93% is attained on PKU-Reid dataset
with Cubic SVM classifier, and selection of a 1000-feature subset. The major contributions
are presented below:

• A new architecture based on 64 layers named 4-BSMAB is proposed to obtain features
from images. Due to the non-availability of larger datasets, the training of proposed
model is carried out on CIFAR-100 dataset, and then the trained model is utilized to
extract features from the testing datasets.

• The feature optimization approach (ACS) is applied to obtain features for dimension
reduction of extracted features.

• Various classifiers are tested for PGC, and then the most successful classifier is bench-
marked. The classification accuracy achieved with the proposed model shows that
the proposed framework is acceptable.

The remaining sections of this manuscript are organized as follows: The Introduc-
tion section describes the proposed domain, and next section explains literature review.
Section 3 describes the proposed framework. The fourth section provides the results and
discusses the details. At the end of this manuscript, this research work is finally concluded.

2. Related Work

In this section, a summary of relevant existing techniques used for gender classification
is presented. The following approaches have been proposed for view-based PGC in the
relevant literature.

2.1. Traditional/Hand-Crafted Feature-Based Approaches

In this section, a summary of methods that use hand-crafted features for gender clas-
sification is highlighted. These approaches use low-level information (features related to
shape, color, texture, etc.). For instance, Cao et al. [42] proposed an algorithm named part-
based gender recognition (PBGR) utilizing fixed frontal or back views of gender full-body
appearance to obtain edge map-based shape information, HOGs, and raw information.
They achieved 76.0%, 74.6%, and 75.0% accuracy on front views, back views, and non-fixed
views, respectively. Furthermore, Guo et al. [43] utilized front views, back views, and
mixed views to investigate biologically inspired features (BIF) from the human body to
handle pose variations with support vector machine (SVM). For manifold learning, unsu-
pervised principal component analysis (PCA), supervised orthogonal locality preserving
projections (OLPP), marginal Fisher analysis (MFA), and locality-sensitive discriminant
analysis (LSDA) were utilized. They achieved 79.5%, 84.0%, and 79.2% accuracy on frontal
view with BIF+LSDA, back view with BIF+LSDA, and mixed views with BIF+PCA, respec-
tively, on MIT dataset. Collins et al. [44] extracted features related to spatial pyramid HOGs
(PHOGs), local HSV (LHSV) color histograms, spatial pyramid bag of words, etc., and
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used mixed views from static full-body images to investigate image representations. They
obtained 72.2%, 76.0%, and 80.6% overall accuracy on uncropped MIT, cropped MIT, and
uncropped VIPeR dataset images, respectively. In addition to above, Geelen et al. [45] first
obtained hand-crafted features such as shape, color, and texture from full-body view-based
images. Then, a combination of these features was used to perform experiments on MIT
CBCL dataset and Datasets A and B for gender classification using SVM and random
forest (RF) kernel. They obtained 81.6%, 82.7%, and 80.9% overall accuracy on front views,
back views, and mixed views, respectively. They also achieved 79.0%, 79.3%, and 76.6%
mean accuracy on front views, back views, and mixed views on MIT dataset. With the
above gender classification techniques, although it has been observed that hand-crafted
features (low-level feature representations) provide significant resistance against illumi-
nation and pose issues, obtaining distinct features from pedestrian full-body views with
complex appearances is another challenging issue. Therefore, further investigation of
pedestrian full-body views is required to obtain more definite and optimum information
for gender classification.

2.2. Deep Learning-Based Approaches

To cope with the problems raised by the traditional hand-crafted feature-based gender
classification techniques discussed above such as pedestrians’ diverse appearances and
captured images having a low resolution, deep CNN models have been proposed and
are considered more appropriate [46,47]. The CNN architecture is popular because of its
significant advances in the accuracy obtained in different classification studies [48–50].
Currently, trained deep CNN models have been used in a few existing methods for gender
prediction. For instance, Ng et al. [16] utilized a CNN model comprising seven layers for
issues related to the domain of gender classification. The training of CNN model was
carried out on MIT pedestrian dataset for the prediction of gender classification. Overall
accuracies of 80.4% and 79.2% were obtained on both front and rear views with a view
classifier and without a view classifier, respectively. The proposed approach performed
successfully on homogeneous datasets of a small size. Antipov et al. [17] applied mini-
CNN and AlexNet-CNN to learn features and compare them with hand-crafted features
(HOG) to solve the issue of image feature selection. They found MAP values of 0.80
and 0.85 and AUC values of 0.88 and 0.91 on familiar datasets, while they found MAP
values of 0.75 and 0.79 and AUC values of 0.80 and 0.85 on unfamiliar datasets using
mini-CNN and AlexNet-CNN. The results showed that the learned features significantly
outperformed hand-crafted features for heterogeneous datasets. Ng et al. [18] utilized
grayscale, RGB, and YUV color spaces on pedestrians’ full-body images to represent the
image for gender prediction with a deep CNN network, which produced significant results
on MIT dataset containing pedestrians’ front and rear views. An average accuracy of 81.47%
was attained on frontal and rear views with the grayscale color space. Ng et al. [19] further
utilized labeled low-level training data and a CNN to introduce a strategy for training.
Filters were learned with k-means clustering (unsupervised learning), whereas supervised
learning performed pre-training on MIT dataset (front and back views). The training
strategy generally performed better than random weight initialization. Raza et al. [20]
used appearances from the complete and upper portion of body and deep CNN model
for the analysis of pedestrian gender. The existing mechanism for pedestrian parsing
was applied to parse both full-body as well as upper-half body-based pedestrian objects
in CNN model, after which the SoftMax classifier was applied. The authors achieved
82.1%, 81.3%, and 82.0% overall accuracy and 81.1%, 81.7%, and 80.7% mean accuracy
on front views, back views, and mixed views with full-body appearances. They also
obtained 83.3%, 82.3%, and 82.8% overall accuracy and 80.5%, 82.3%, and 81.4% mean
accuracy on front views, back views, and mixed views with upper-body appearances.
Furthermore, Raza et al. [51] also used a deep learning approach and a stacked sparse
autoencoder (SSAE) to classify gender. The deep neural network method parsed pedestrian
images to remove background, and a two-layer SSAE with SoftMax classifier predicted
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gender as male or female. The researchers achieved 82.9%, 81.8%, and 82.4% accuracy
on front views, back views, and mixed views, respectively, on MIT dataset. They also
attained a 91.5% AUC mean value on PETA dataset. Cai et al. [52] investigated and
obtained deep features and low-level (HOG) features simultaneously from images by
a deep CNN model named as deep-learned and hand-crafted features fusion network
(DHFFN) using PCA. After extracting features, fusion is applied to mix both features for
exploring their full merits. Experiments on numerous public datasets such as MIT, VIPeR,
GRID, PRID, and CHUK were performed, and DHFFN produced 0.95 MAP and 0.95 AUC
and was declared a better performer than the state-of-the-art gender prediction methods.
Cai et al. [40] further introduced HOG-assisted deep feature learning (HDFL), a novel
method that uses a deep CNN to cater common challenges such as viewpoint variations,
occlusion, and poor quality faced while predicting gender. HDFL efficiently extracted
deep-learned features as well as HOG features simultaneously from the pedestrian picture.
A feature fusion process is then applied to extract more discriminative features to provide
to SoftMax classifier for gender prediction. The proposed HDFL achieved 0.93 MAP and
0.94 AUC with local response normalization (LRN) and 0.94 MAP and 0.95 AUC with
LRN. In earlier gender classification studies, CNN architecture has been used only for
considering whole-body images, i.e., global information, but Ng. et al. [53] took global
as well as local information from full-body images and introduced a novel parts-based
framework that uses a combination of local and global information towards PGC. A local
and global CNN method was trained on both whole-body images as well as identified areas
of body for feature learning and classification. While comparing the accuracy extracted
by utilizing different regions of body such as upper, middle, and lower regions after
performing experiments on MIT and APiS datasets, the upper-half body region played a
more important role in gender classification as compared to the middle or lower half of body.
The authors achieved 84.4%, 88.9%, and 86.8% accuracy utilizing a combination of MIT
and APis datasets on frontal, non-frontal, and mixed views, respectively. Fayyaz et al. [41]
proposed a hybrid approach that produces a combination of low-level information and
deep features of pedestrian images and computes information effectively assisted bya
joint feature representation (JFR) scheme for better gender classification tasks. Extensive
experiments were performed by adopting different classifiers such as SVM, discriminant
classification, and k-nearest neighbor (KNN) to observe sufficient low-level (HOG and
LOMO features) and deep feature-based contributions for the design of a JFR, and in this
way, the proposed approach achieved 96% AUC and 89.3% accuracy on PETA dataset, and
86% AUC and 82% accuracy on MIT dataset. A study was also conducted by Cai et al. [39]
in which the cascading scene and viewpoint feature learning (CSVFL) method improved
pedestrian gender recognition. In CSVFL, two crucial challenges, namely, scene and
viewpoint variations in pedestrian gender recognition, were jointly considered. The authors
demonstrated that CSVFL was able to resist both variations (scene and viewpoint) at the
same time. The results generated by CSVFL were also compared with various recent
relevant tasks, and an excellent performance was observed. They obtained 84.4%, 85.9%,
and 85.2% accuracy utilizing MIT dataset on frontal, back, and mixed views, respectively.
They also achieved 81.9%, 84.7%, 72.1%, and 80.1% accuracy utilizing VIPeR dataset on
frontal, back, side, and mixed views. Further, 92.4%, 94.6%, 88.2%, and 92.7% accuracy was
obtained using PETA dataset on frontal, back, side, and mixed views, respectively.

It can be observed from the results of above-mentioned fine-tuned models that these
models are robust, but imbalanced distribution of data is also a challenge while obtaining
class-wise accuracy. The above discussion also reflects the fact that full-body view-based
pedestrian images are widely investigated for gender classification. All the existing tech-
niques equally applied large-scale and small-scale datasets in experimentation. It has been
observed that a fusion approach generates a compact representation of gender images for
classification. Moreover, a dataset having a small size is an issue for model learning in
deep learning-based approaches.
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3. Material and Methods

This section presents the proposed model 4-BSMAB and its major steps for PGC. These
steps include pre-training of proposed model, dataset balancing, process of feature extrac-
tion from 4-BSMAB model, ACS-based feature optimization, and, at the end, classification.
An overview of this model is presented in Figure 1. These steps are elaborated in the
upcoming section.

Figure 1. Proposed 4-BSMAB model for pedestrian gender classification.

3.1. 4-BSMAB

A new architecture, 4-BSMAB (4-branch subnets with modified AlexNet backbone),
based on CNN architecture is introduced in this work for PGC. This newly developed
model is derived from CNN network named AlexNet [54]. AlexNet contains 25 layers
including 5 convolutional layers, 3 fully connected layers, 3 pooling layers, 7 rectified linear
unit (ReLU) layers, 2 dropout layers, and SoftMax layers and is divided into 3 repeating
blocks named here as R1, R2, and R3. The new model contains 64 layers including input
and output layers. The architectural view of proposed model 4-BSMAB is presented in
Figure 2, and the details of layers are listed in Table 1.
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Table 1. Configurations of layers of proposed model 4-BSMAB.

Layer # Layer
Name Feature Maps Filter Depth Stride Padding

Pooling
Window

Size/Other
Values

1 Data 227× 227× 3

2 C_1 55× 55× 96 11× 11× 3× 96 [4 4] [0 0 0 0]

3 R1_1 55× 55× 96

4 C4_1 55× 55× 96 5× 5× 96× 96 [1 1] Same

5 C2 _1 55× 55× 48 1× 1× 96× 48 [1 1] Same

6 BN1_1 55× 55× 48

7 BN2 55× 55× 96

8 BN3_1 55× 55× 96

9 LR2_1 55× 55× 96 Scaling
value 0.01

10 C3_1 55× 55× 96 11× 11× 48× 96 [1 1] Same

11 LR1_1 55× 55× 96 Scaling
value 0.01

12 ADD1_1 55× 55× 96

13 R1_2 55× 55× 96

14 C4_2 55× 55× 96 5× 5× 96× 96 [1 1] Same

15 BN3_2 55× 55× 96

16 LR2_2 55× 55× 96 Scaling
value 0.01

17 C2_2 55× 55× 48 1× 1× 96× 48 [1 1] Same

18 BN1_2 55× 55× 48

19 C3_2 55× 55× 96 11× 11× 48× 96 [1 1] Same

20 LR1_2 55× 55× 96 Scaling
value 0.01

21 ADD1_2 55× 55× 96

22 norm1 55× 55× 96

23 P1 27× 27× 96 [2 2] [0 0 0 0]
Maximum

pooling
3× 3

24 BN4 27× 27× 96

25 GC1(c5) 27× 27× 256 Two groups of
5× 5× 48× 128 [1 1] [2 2 2 2]

26 R2 27× 27× 256

27 norm2 27× 27× 256

28 P2 13× 13× 256 [2 2] [0 0 0 0]
Maximum

pooling
3× 3

29 BN5 13× 13× 256

30 GC2(c6) 13× 13× 384 3× 3× 256× 384 [1 1] [1 1 1 1]

31 R3_1 13× 13× 384

32 BN7 13× 13× 384

33 C7_1 13× 13× 192 1× 1× 384× 192 [1 1] Same
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Table 1. Cont.

Layer # Layer
Name Feature Maps Filter Depth Stride Padding

Pooling
Window

Size/Other
Values

34 BN6_1 13× 13× 192

35 C8_1 13× 13× 384 5× 5× 192× 384 [1 1] Same

36 LR3_1 13× 13× 384 Scaling
value 0.01

37 C9_1 13× 13× 384 3× 3× 384× 384 [1 1] Same

38 BN8_1 13× 13× 384

39 LR4_1 13× 13× 384 Scaling
value 0.01

40 ADD2_1 13× 13× 384

41 R3_2 13× 13× 384

42 C7_2 13× 13× 384 1× 1× 384× 192 [1 1] Same

43 C9_2 13× 13× 384 3× 3× 384× 384 [1 1] Same

44 BN8_2 13× 13× 384

45 BN6_2 13× 13× 192

46 C8_2 13× 13× 384 5× 5× 192× 384 [1 1] Same

47 LR3_2 13× 13× 384 Scaling
value 0.01

48 LR4_2 13× 13× 384 Scaling
value 0.01

49 ADD2_2 13× 13× 384

50 GC3(c10) 13× 13× 384 Two groups of
3× 3× 192× 192 [1 1] [1 1 1 1]

51 R4 13× 13× 256

52 GC4(c11) 13× 13× 256 Two groups of
3× 3× 192× 128 [1 1] [1 1 1 1]

53 R5 13× 13× 256

54 P3 6× 6× 256 [2 2] [0 0 0 0]
Max

pooling
3× 3

55 BN9 6× 6× 256

56 Fc_1 1× 1× 2048

57 R6 1× 1× 2048

58 D1 1× 1× 2048 50%
Dropout

59 Fc_2 1× 1× 2048

60 R7 1× 1× 2048

61 D2 1× 1× 2048 50%
Dropout

62 Fc_3 1× 1× 100

63 prob 1× 1× 100

63 Class
output
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The existing network, i.e., AlexNet, was altered with the help of addition of layers,
and a new model, 4-BSMAB, is proposed. The batch normalization (BN) layer is included
at the end of blocks R1 and R2. Two branched sub-networks are also added along with
R blocks. BN1_1 is called first sub-network, and it has three branches. The first branch
has a BN tier. The second branch has C2, BN1, C3, and LR1 tiers. The last branch contains
layers such as C9, BN8, and LR4. Then, the fusion process is applied on three branches
with an addition (ADD) layer. The other sub-network (BN_2) has only two branches.
The difference between BN_2 and BN_1 is that BN_1 has only the group BN layer. Two
sub-networks such as BN_1 and BN_3 are incorporated at the end of ReLU layer in block
R1. Two activation functions are used, i.e., ReLU and Leaky ReLU, at ReLU layer. The
ReLU functions are simple and fast and help in speeding up the training phase, and this
way, neural networks are also improved. The ReLU functions are easy to compute and
do not suffer from vanishing gradients. These functions are implemented with a simple
procedure, and due to this characteristic, they are suitable to be used on GPUs.

Figure 2. Architectural view of proposed model 4-BSMAB.

GPUs are popular and can be improved while carrying out matrix operations. Leaky
ReLU functions stop ReLU problems from dying. This type of variation of ReLU produces
a small positive slope in the negative area; therefore, it produces possible back-propagation,
even for negative input values. Leaky ReLU does not provide steady predictions for
input values which are negative. Two sub-networks including BN6_1 and BN8_1 are
incorporated at the end of block R2.

The layer details of proposed 4-BSMAB are discussed in the upcoming section. The
convolution of input vector ‖ j−1 is carried out using a filter bank in C_1 layer. The
mathematical form of convolution operation represented by ∗ is described as

‖p′ ,j = Nj

(
∑p Hj,p′p ∗ ‖p,j−1 +Mp′ ,j

)
(1)

where pj represents various input channels, and p′ j represents the number of output
channels; the value represented by j indicates the number of layers [55]; H denotes the
filter of depth p′ j; and both symbolsM and N indicate nonlinear functions. Layers such
as group convolution (GC) are also added in 4-BSMAB model. A GC layer is a combination
of many convolutional layers. A GC layer enables the procedure of training around GPUs
which are in the form of clusters and have a low capacity related to memory. The filters are
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divided into many splits in a GC layer. A certain range of collection of 2D convolution is
carried out by all groups. The mathematical form of layers related to pooling is

‖ i,j,x,v = maxl=1...s, m=1...t‖p,j−1,(w+m)(x+n) (2)

where w, x represent the index of matrix of image Ip,j−1, and m, n denote the index of matrix
used for the selected pool window. Both norm(s) and BN(s) are utilized in this scheme.
BN [56] is a procedure to adjust neurons of the channel over the amount defined for a small
batch. Its purpose is to determine both the mean and variance in parts. With the help of a
determined mean, the separation of features is carried out with standard deviation. The
mean of batch B = I1, . . . , Iw is calculated as follows:

MeanB =
1
w

w

∑
z=1

Iz (3)

where w shows per batch feature maps. The variance is described per batch (small) and is
shown as

VarB =
1
w

w

∑
z=1

(Iz −MeanB)
2 (4)

The below expression is then used forfeature normalization.

ÎZ =
Iz −MeanB√

VarB +D
(5)

where D represents the consistency value, but it remains constant. The norm layer is used
for simplification. The norm layer involves scaling pixels with the maximum factor for
local prior layers and boosts the spatial-visual quality. The norm equation is

‖
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3.2. Pre-Training of Proposed Model and Feature Extraction

The proposed model 4-BSMAB extracts features from the pipeline deeply trained by
CNN. The training of proposed model is carried out on a dataset named CIFAR100 [61] hav-
ing 100 classes of images. In this repository, each class of images is divided into 500 images
for model learning and 100 images for model validation. For pre-training, learning images,
as well as validation images, are mixed such that each class contains 600 images. The resul-
tant dataset after mixing both types of images of each class is provided to the proposed
CNN model for training purposes. The finally trained network is then applied to extract
features on pedestrian attribute recognition datasets [41], and FC_1 layer is selected to
obtain features. A total of 2048 features are extracted from each image from this layer.
This produces a feature set having 418 × 2048, 470 × 2048, and 1728 × 2048 dimensions
for frontal views, back views, and mixed views, respectively, for MIT dataset. This also
produces a feature set with 590 × 2048, 331 × 2048, and 1264 × 2048 dimensions for frontal
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views, back views, and mixed views for VIPeR dataset, and feature set dimensions of
684 × 2048, 228 × 2048, and 1640 × 2048 for frontal views, back views, and mixed views
for PKU-Reid dataset. Some intermediate visualizations of features captured at various
stages of convolution performed by the proposed model 4-BSMAB are shown in Figure 3.

Figure 3. 4-BSMAB best activation visualizations of an image at various convolutional layers: (a)
original image; (b) C1_1; (c) C2_1; (d) C2_2; (e) C3_1; (f) C3_2; (g) C4_2; (h) C7_1.

3.3. Feature Selection Based on ACS Optimization

The entropy operation [62] is used to code the obtained features. Entropy
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where ൫ ᇱ⃦ଵ, … ,  ⃦ᇱ௡൯  show the features, (𝔣ଵ, … , 𝔣௡)  represent random variables, and 𝑃(𝔣ଵ, … , 𝔣௡) calculate the probability. ACS is a learning-based approach used for feature 
optimization. When it is combined with entropy-based feature selection, it becomes an 
embedded approach. The obtained entropy-coded scores are provided to ACS for feature 
optimization. The ACS is related to ants’ activities and their movements [63]. Ants move 
between places and diffuse material called “pheromones”. With time, the material 
strength decreases gradually. The ants follow the way while calculating the probability of 
pheromones. This helps ants to select the least expensive path. Therefore, ants’ movement 
between places is similar to the movement that takes place between vertices of a graph. A 
graph vertex indicates a feature, and edges from a vertex to another vertex show the se-
lection of features. The strategy repeats to find the best features. The approach stops when 
minimum number of vertices is traversed and a set criterion is satisfied. The linking ar-
rangement of vertices is similar to a mesh. An ant selects features on a probability basis at 
a given point at any specified time, and this is written as 
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where ё(𝕀ᇱଵ, … , 𝕀ᇱ௡) are entropy-based features, ℎ௝(𝒯) is the value of pheromones, Ɛ௝ 
shows the empirical value, 𝑤⃛  is the cost of pheromones, 𝒲  represents rational 
knowledge, and 𝔱 denotes the time limit. ℎ௝(Ϯ) and Ɛ ௝ are attached to the jth feature. It 
is important to mention here that this will be considered an incomplete response if fea-
tures are not studied up to this point. 

3.4. Dataset Balancing 
The MIT dataset contains a total of 888 images, out of which 600 are male images and 

288 are female images. The number of male and female images is equal in MIT dataset; 
therefore, this dataset is an imbalanced dataset, leading to the following two research 
problems: (1) class imbalance problem, which results in poor performance, and (2)  small 
sample space problem, which affects the training of model. Data balancing is selected to 
enhance the size of dataset and balancing of class-wise data. For this purpose, mirroring 
and horizontal flipping functions are applied. As a result, 264 male images and 576 female 

is usually
applied to score the features. Mathematically, entropy has the following form:
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P(f1, . . . , fn) calculate the probability. ACS is a learning-based approach used for feature
optimization. When it is combined with entropy-based feature selection, it becomes an
embedded approach. The obtained entropy-coded scores are provided to ACS for feature
optimization. The ACS is related to ants’ activities and their movements [63]. Ants
move between places and diffuse material called “pheromones”. With time, the material
strength decreases gradually. The ants follow the way while calculating the probability of
pheromones. This helps ants to select the least expensive path. Therefore, ants’ movement
between places is similar to the movement that takes place between vertices of a graph.
A graph vertex indicates a feature, and edges from a vertex to another vertex show the
selection of features. The strategy repeats to find the best features. The approach stops
when minimum number of vertices is traversed and a set criterion is satisfied. The linking
arrangement of vertices is similar to a mesh. An ant selects features on a probability basis
at a given point at any specified time, and this is written as
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embedded approach. The obtained entropy-coded scores are provided to ACS for feature 
optimization. The ACS is related to ants’ activities and their movements [63]. Ants move 
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a given point at any specified time, and this is written as 
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problems: (1) class imbalance problem, which results in poor performance, and (2) small
sample space problem, which affects the training of model. Data balancing is selected to
enhance the size of dataset and balancing of class-wise data. For this purpose, mirroring
and horizontal flipping functions are applied. As a result, 264 male images and 576 female
images are added to total 864 male and 864 female images. In this way, the size of MIT
dataset is increased and, hence, class-wise data are also balanced.

3.5. Classification

After the selection of features, these are provided to the selected classifiers of SVM [64]
and KNN [65] to perform classification. The SVM classifiers include linear variant [66]
(LSVM), quadratic variant (QSVM) [67], fine Gaussian variant (FGSVM) [68], medium
Gaussian variant (MGSVM), coarse Gaussian (CGSVM), and cubic variant (CSVM) [69].
The details of the kernels of these SVM classifiers can be found in [70–72]. The classifiers
chosen from KNN include coarse variant (CRKNN), fine variant (FKNN), and cosine
variant (COKNN) [73]. The details of these variants are available in [73–76]. The evaluation
of classifiers is conducted on various performance evaluation metrics. Keeping in view
the results obtained from experiments, it was observed that CSVM, QSVM, and FKNN
classifiers produced better results. FKNN produced highest accuracy with MIT dataset,
and CSVM was observed as best classifier in case of PKU-Reid dataset. The details of
experiments performed and results produced are presented in the Results section.

4. Results and Discussion

This research was aimed to introduce a novel CNN network based on deep learning
to classify pedestrian image datasets. A robust feature set was extracted with the proposed
4-BSMAB CNN-based network, and then various SVM and KNN classifiers were applied
to obtain feature sets for evaluating the performance of system. The analysis and outcomes
of proposed framework are presented in this section. In the first part, the details of experi-
mental setup along with the datasets used and evaluation protocols applied are provided,
and second part explains the experiments performed, which were carried out using a core
i5 machine with Windows 10 platform, 8GB memory, and GPU (NVIDIA GTX 1070) with
8GB RAM (inbuilt). The MATLAB2020a tool was selected for programming purposes.

4.1. Datasets

Challenging datasets including viewpoint invariant pedestrian recognition (VIPeR) [77],
pedestrian attribute (PETA) [78], cross-dataset [40], MIT [42], and Peking University re-
identification (PKU-Reid) [79] were selected to test the proposed approach. Table 2 shows
the details of these selected testing datasets. These datasets are also publicly available
on the internet for experimental and research work. Different tasks related to pedestrian
analysis such as person attribute analysis and PGC have been performed on these datasets.
The challenges that exist in these datasets include inter- and intraclass variations (IICV),
and environment recording settings (ERS). The IICV consist of speed and style of the
movement of pedestrians, and ERS include pose variations, illumination changes, view-
point changes, recording rates, camera settings, complex backgrounds, object deformation,
shadow, and occlusion. Table 3 shows view-based information of testing datasets on which
the evaluation of proposed model was carried out.
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Table 2. Statistics of testing datasets for PGC.

Sr.
No. Datasets Year # Im-

ages/Videos Views Size Applications

1 VIPeR 2008 1264 Side, Front,
Back 128 × 48

Pedestrian
re-identification and

tracking across
multi-camera network

2 MIT 2014 888 Front, Back 128 × 48 Pedestrian attribute
analysis

3 PKU-
Reid 2016 1824 Side, Front,

Back 128 × 48
Pedestrian attribute

analysis and
re-identification

Table 3. View-based sample in MIT, VIPER, PKU-Reid, and PETA datasets used for testing of
proposed model.

Type of Views for
Testing

MIT VIPeR PKU-Reid

Male Female Male Female Male Female

Front 305 113 339 251 420 264

Back 296 174 198 133 140 88

Mixed 864 864 721 543 1120 520

In MIT dataset, 305 male images and 113 female images were selected for front view-
based evaluation, 296 male images and 174 female images were selected for backview-based
evaluation, and 864 male and 864 female images were selected in case of mixed view-based
evaluation. The VIPeR dataset contains 339 male images and 251 female images for front
views, 198 male and 133 female images for back views, and 721 male images and 543 female
images for mixed views. In PKU-Reid dataset, front views include 420 male and 264 female
images, back views include 140 male and 88 female images, and mixed views include 1120
and 520 images of males and females, respectively. Figure 4 shows sample images of males
as well as females taken from these datasets.

Figure 4. Some images of males and females from MIT, VIPeR, and PKU-Reid datasets.

4.2. Performance Evaluation Protocols

The evaluation of PGC problems directly relates to different accuracies and AUC. In
this work, generally used performance evaluation metrics, i.e., accuracy (ACC), receiver
operating characteristic (ROC) curve, F-measure (FM), G-measure (GM), area under the
curve (AUC), true positive rate (TPR), and false positive rate (FPR), were selected for the
measurement of performance of different PGC methods. Table 4 shows these metrics with
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their mathematical representation. Five-fold-type cross-validation was adopted for training
and testing.

Table 4. Performance evaluation metrics.

Sr. No. Performance Measures Mathematical Representation

1 FPR FP
TN+FP

2 Sensitivity (SE), TPR, Recall TP
TP+FN

3 Specificity (SP), TNR TN
TN+FP

4 Precision (PR) TP
TP+FP

5 Accuracy (ACC) TP+TN
TP+TN+FP+FN

6 AUC
∫ −∞

∞ TPR(t)FPR′(t)dt

7 F-Measure (FM) 2 = Precision X Recall
Precision X Recall

8 G-Measure (GM)
√

TPR X TNR

4.3. Performance Evaluation of Proposed Framework

Experiments were performed with the proposed framework on MIT, VIPeR, and
PKU-Reid testing datasets to achieve best results. For this purpose, various experiments
were carried out with several variations of optimized feature subsets. A major analysis of
these experiments is presented in this section. Table 5 shows the summary of experiments
performed and accuracies produced by them with five feature subsets on front views, back
views, and mixed views of selected datasets.

Table 5. Optimized feature subsets with dimensions and best accuracy on MIT, VIPeR, and PKU-Reid datasets.

Optimized
Feature
Subset

No.

No. of
Features

Best ACC (%) Achieved on MIT
Dataset

Best ACC (%) Achieved on
VIPeR Dataset

Best ACC (%) Achieved on
PKU-Reid Dataset

Front
Views

Back
Views

Mixed
Views

Front
Views

Back
Views

Mixed
Views

Front
Views

Back
Views

Mixed
Views

1 100 74.9 72.8 81.3 65.9 70.0 64.1 79.1 86.8 81.8

2 250 74.6 73.4 84.6 67.0 66.5 68.4 85.7 88.6 88.0

3 500 74.7 73.0 84.7 65.1 69.5 68.3 83.8 89.9 89.8

4 750 74.9 73.8 85.1 69.3 72.5 69.5 84.2 90.4 91.2

5 1000 74.9 73.8 85.4 72.9 70.7 70.3 85.5 93.0 91.2

The fitness value graphs obtained by ACS on mixed views of MIT dataset are depicted
in Figure 5. The fitness was maintained after 49th iteration, with a value of 0.29, by using
1000-feature subset.

4.3.1. Performance Evaluation of MIT Dataset

In this section, the results generated by experiments performed using front views,
back views, and mixed view images of MIT testing dataset are mentioned. Five-fold-type
cross-validation was utilized on all feature matrices of MIT dataset obtained from frontal
views, back views, and mixed views of MIT dataset and provided to classifiers that are
variants of KNN and SVM for automatic labeling. The details of the evaluation of proposed
model with five different feature subsets on MIT testing dataset are presented below.

Evaluation of frontal views of MIT dataset: The best result achieved in terms of
accuracy was 74.9% by LSVM with 1000-feature subset, CSVM with 750-feature subset,
and QSVM with 1000-feature subset, while the second best result attained in terms of
accuracy was 74.7% by LSVM with 500-feature subset, as shown in Table 6. The training
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time and prediction speed of proposed model on front views of MIT dataset are presented
in Figure 6.

Figure 5. Fitness values of ACS-based optimization with (a) 100-feature, (b) 250-feature, (c) 500-feature, (d) 750-feature, and
(e) 1000-feature subsets.

Table 6. Front view-based experimental results on MIT dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics
100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 74.9 0.70 99.3 08.9 74.6 85.2 29.7
CSVM 3 74.9 0.71 91.8 29.2 77.8 84.2 51.8

MGSVM 3 74.0 0.70 100.0 03.5 74.7 84.8 18.8
QSVM 3 74.9 0.71 92.5 27.4 77.5 84.3 50.4
QSVM 3 74.9 0.71 92.5 27.4 77.5 84.3 50.4

FGSVM 3 73.7 0.52 100.0 02.7 73.5 84.7 16.3
CGSVM 3 73.2 0.69 100.0 00.9 73.1 84.5 09.4
FKNN 3 68.9 0.54 82.3 32.7 76.8 79.4 52.0

COKNN 3 73.2 0.59 96.1 11.5 73.6 84.0 33.2
COKNN 3 73.2 0.59 95.7 12.4 74.7 84.0 34.4
CRKNN 3 73.0 0.65 100.0 00.0 73.0 84.4 00.0
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Figure 6. Proposed model training time (s) and prediction speed (obs/s) on front views of MIT dataset utilizing 1000-
feature subset.

Evaluation of back views of MIT dataset: The best accuracy achieved on MIT dataset
was 73.8% by CSVM classifier with 1000-feature subset, and QSVM with 750-feature
subset, while the second best result obtained in terms of accuracy was 73.4% by QSVM
with 250-feature subset, as shown in Table 7. The training time and prediction speed of
proposed model on back views of MIT dataset are presented in Figure 7.

Table 7. Back view-based experimental results on MIT dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 73.0 0.77 91.2 42.0 72.8 81.0 61.9

CSVM 3 73.8 0.79 85.1 54.6 76.1 80.4 68.2

MGSVM 3 70.7 0.78 94.3 305 69.8 80.2 536

QSVM 3 73.8 0.79 83.8 56.9 76.8 80.1 69.0

FGSVM 3 63.0 0.53 100.0 00.0 63.0 77.3 00.0

CGSVM 3 65.8 0.77 99.7 08.1 64.8 78.6 28.3

FKNN 3 65.1 0.58 74.7 48.9 71.3 73.0 60.4

COKNN 3 68.3 0.66 84.5 40.8 70.8 77.0 58.7

CRKNN 3 63.4 0.70 100.0 01.2 63.3 77.5 10.7

Figure 7. Proposed model training time (s) and prediction speed (obs/s) on back views of MIT dataset utilizing 1000-
feature subset.
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Evaluation of mixed views of MIT dataset: The best result achieved in terms of
accuracy was 85.3% by FKNN with 1000-feature subset, while the second best result
attained in terms of accuracy was 85.1% by FKNN with 750-feature subset, as shown in
Table 8. The training time and prediction speed of proposed model on mixed views of MIT
dataset are presented in Figure 8.

Table 8. Mixed view-based experimental results on MIT dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 Acc Auc Se Sp PR FM GM

LSVM 3 76.9 0.84 77.0 76.8 77.0 76.9 76.9

CSVM 3 83.9 0.92 82.6 85.1 84.7 83.7 83.9

MGSVM 3 81.9 0.89 88.5 75.1 78.1 83.0 81.6

QSVM 3 81.7 0.89 81.3 82.1 81.9 81.6 81.7

FGSVM 3 67.3 0.66 95.1 39.4 61.1 74.4 61.2

CGSVM 3 75.5 0.80 76.7 74.2 74.8 75.8 75.5

FKNN 3 85.4 0.89 79.9 90.7 89.6 84.5 85.1

COKNN 3 73.7 0.81 77.3 70.0 72.1 74.6 73.6

CRKNN 3 67.8 0.74 75.9 59.6 65.3 70.2 67.3

Figure 8. Proposed model training time (s) and prediction speed (obs/s) on mixed views of MIT dataset utilizing 1000-
feature subset.

The best ROC outcomes on MIT dataset are presented in Figure 9.

Figure 9. ROC curves and AUC values showing best outcomes of (a) mixed views with CSVM, (b) back views with QSVM,
and (c) front views with QSVM of MIT dataset utilizing 1000-feature subset.
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4.3.2. Performance Evaluation of VIPeR Dataset

In this section, the results generated by experiments performed using front views,
back views, and mixed view images of VIPeR testing dataset are mentioned. Five-fold-type
cross-validation was utilized on all feature matrices of MIT dataset obtained from frontal
views, back views, and mixed views of VIPeR dataset and provided to classifiers that are
variants of KNN and SVM for automatic labeling. The details of the evaluation of proposed
model with five different feature subsets on VIPeR testing dataset are presented below.

Evaluation of frontal views of VIPeR dataset: The best result achieved in terms of
accuracy was 72.9% by QSVM with 1000-feature subset, while the second best result
obtained in terms of accuracy was 70.7% by CSVM with 1000-feature subset, as shown in
Table 9. The training time and prediction speed of proposed model on front views of VIPeR
dataset are presented in Figure 10.

Table 9. Front view-based experimental results on VIPeR dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 69.3 0.76 82.3 51.8 69.8 75.5 65.3

CSVM 3 70.7 0.75 78.8 59.8 72.6 75.5 68.6

MGSVM 3 67.0 0.76 81.7 47.0 67.6 74.0 62.0

QSVM 3 72.9 0.76 78.8 64.9 75.2 77.0 71.5

FGSVM 3 57.5 0.57 100.0 00.0 57.5 73.0 00.0

CGSVM 3 66.8 0.74 91.5 33.5 65.0 76.0 55.3

FKNN 3 60.3 0.61 69.6 47.8 64.3 66.9 57.7

COKNN 3 64.8 0.68 80.2 43.8 65.9 72.3 59.3

CRKNN 3 66.8 0.69 91.5 33.5 65.0 76.0 553

Figure 10. Proposed model training time (s) and prediction speed (obs/s) on front views of VIPeR dataset utilizing
1000-feature subset.

Evaluation of back views of VIPeR dataset: The best result achieved in terms of
accuracy was 72.5% by QSVM with 750-feature subset, while the second best result attained
in terms of accuracy was 70.7% by LSVM with 1000-feature subset, as shown in Table 10.
The training time and prediction speed of proposed model on back views of VIPeR dataset
are presented in Figure 11.
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Table 10. Back view-based experimental results on VIPeR dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 70.7 0.76 86.9 46.6 70.8 78.0 63.7

CSVM 3 70.0 0.78 80.3 54.1 72.3 76.1 65.9

MGSVM 3 68.9 0.76 92.9 33.1 67.4 78.1 55.5

QSVM 3 72.5 0.78 82.8 57.1 74.2 78.3 68.8

FGSVM 3 59.8 0.51 100.0 00.0 59.8 74.9 00.0

CGSVM 3 61.9 0.75 99.5 60.2 61.2 75.8 24.5

FKNN 3 58.3 0.75 68.2 43.6 64.3 66.2 54.5

FKNN 3 58.3 0.75 64.7 48.9 65.3 65.0 56.2

COKNN 3 65.0 0.65 79.3 43.6 67.7 73.0 58.8

CRKNN 3 61.3 0.71 99.5 04.5 60.8 75.5 21.2

Figure 11. Proposed model training time (s) and prediction speed (obs/s) on back views of VIPeR dataset utilizing
1000-feature subset.

Evaluation of mixed views of VIPeR dataset: The best accuracy achieved was 70.3% by
CSVM with 1000-feature subset, while the second best result obtained in terms of accuracy
was 69.5% by LSVM with 750-feature subset, as shown in Table 11. The training time and
prediction speed of proposed model on mixed views of VIPeR dataset are presented in
Figure 12. The best ROC outcomes on VIPeR dataset are presented in Figure 13.

Table 11. Mixed view-based experimental results on VIPeR dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 69.5 0.74 80.2 55.4 70.5 75.0 66.7
CSVM 3 70.3 0.74 78.0 60.2 72.2 75.0 68.5

MGSVM 3 68.3 0.75 84.5 46.8 67.8 75.2 62.9
QSVM 3 69.1 0.74 78.0 57.3 70.8 74.2 66.9

FGSVM 3 57.0 0.53 1.00 0.00 57.4 72.7 0.00
CGSVM 3 68.4 0.73 88.0 42.5 67.0 76.1 61.2
CGSVM 3 68.4 0.73 83.0 49.2 68.4 75.0 63.9
FKNN 3 58.4 0.56 66.9 47.2 62.7 64.7 56.1
FKNN 3 58.4 0.56 66.9 47.2 62.7 64.7 56.0

COKNN 3 63.2 0.66 72.9 50.5 66.1 69.3 60.7
CRKNN 3 60.4 0.69 98.5 09.8 59.2 74.0 31.0
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Figure 12. Proposed model training time (s) and prediction speed (obs/s) on mixed views of VIPeR dataset utilizing
1000-feature subset.

Figure 13. ROC curves and AUC values showing best outcomes of (a) mixed views with MGVM, (b) back views with
CSVM, and (c) front views with QSVM of IPeR dataset utilizing 1000-feature subset.

4.3.3. Performance Evaluation of PKU-Reid Dataset

This section describes the results generated by experiments performed using front
views, back views, and mixed view images of PKU-Reid testing dataset. Five-fold-type
cross-validation was utilized on all feature matrices of MIT dataset obtained from frontal
views, back views, and mixed views of PKU-Reid dataset and provided to classifiers
that are variants of KNN and SVM for automatic labeling. The details of the evaluation
of proposed model with five different feature subsets on PKU-Reid testing dataset are
presented below.

Evaluation of frontal views of PKU-Reid dataset: The best accuracy achieved was
85.7% by CSVM with 250-featuresubset, while the second best accuracy attained was 85.5%
by CSVM with 1000-feature subset, as shown in Table 12. The training time and prediction
speed of proposed model on front views of PKU-Reid dataset are presented in Figure 14.
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Table 12. Front view-based experimental results on PKU-Reid dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 82.9 0.91 91.2 69.7 82.7 86.8 79.7

CSVM 3 85.7 0.93 91.2 76.9 86.3 88.7 83.7

MGSVM 3 82.2 0.92 92.9 65.2 80.9 86.5 77.8

QSVM 3 84.2 0.92 89.5 75.8 85.5 87.4 82.4

FGSVM 3 61.4 0.65 100.0 00.0 61.4 76.1 00.0

CGSVM 3 82.3 0.89 94.8 62.5 80.1 86.8 77.0

FKNN 3 74.3 0.71 85.2 56.8 75.9 80.3 69.6

COKNN 3 78.1 0.84 89.3 60.2 78.1 83.3 73.3

CRKNN 3 66.1 0.84 99.5 12.9 64.5 78.3 35.8

CRKNN 3 66.1 0.84 98.8 14.0 64.6 78.2 37.2

Figure 14. Proposed model training time (s) and prediction speed (obs/s) on front views of PKU-Reid dataset utilizing
1000-feature subset.

Evaluation of back views of PKU-Reid dataset: The best accuracy achieved was 93.0%
by CSVM with 1000-feature subset, while the second best result obtained in terms of
accuracy was 92.5% by QSVM with 1000-feature subset, as shown in Table 13. The training
time and prediction speed of proposed model on back views of PKU-Reid dataset are
presented in Figure 15.

Table 13. Back view-based experimental results on PKU-Reid dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 90.4 0.96 97.1 79.6 88.3 92.5 87.9

CSVM 3 93.0 0.96 97.9 85.2 91.3 94.5 91.3

MGSVM 3 86.0 0.95 96.4 69.3 83.3 89.4 81.8

QSVM 3 92.5 0.96 97.1 85.2 91.3 94.1 91.0

FGSVM 3 61.4 0.59 100.0 00.0 61.4 76.1 00.0

CGSVM 3 87.7 0.94 99.3 69.3 83.7 90.9 83.0

FKNN 3 75.4 0.72 90.7 51.1 74.7 82.0 68.1

COKNN 3 80.7 0.89 92.1 62.5 79.6 85.4 75.9

CRKNN 3 61.4 0.85 100.0 00.0 61.4 76.1 00.0
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Figure 15. Proposed model training time (s) and prediction speed (obs/s) on back views of PKU-Reid dataset utilizing
1000-feature subset.

Evaluation of mixed views of PKU-Reid dataset: The best accuracy achieved was
91.2% by CSVM with 750- and 1000-feature subsets, while the second best result achieved
in terms of accuracy was 90.4% by QSVM with 1000-feature subset, as shown in Table 14.
The training time and prediction speed of proposed model on mixed views of PKU-Reid
dataset are presented in Figure 16.

Table 14. Mixed view-based experimental results on PKU-Reid dataset.

Classification
Methods

Optimized Feature Subsets Evaluation Metrics

100 250 500 750 1000 ACC AUC SE SP PR FM GM

LSVM 3 87.4 0.93 88.7 86.0 86.4 87.5 87.3

CSVM 3 91.2 0.96 91.4 91.0 91.0 91.2 91.2

CSVM 3 91.2 0.96 91.2 91.2 91.2 91.2 91.2

MGSVM 3 88.5 0.95 90.5 87.0 87.4 88.7 88.5

QSVM 3 90.4 0.95 91.1 89.8 89.9 90.5 90.4

FGSVM 3 56.7 0.59 97.9 15.5 53.7 69.4 39.0

FGSVM 3 56.7 0.59 97.9 15.5 53.7 69.4 39.0

CGSVM 3 87.1 0.91 89.1 85.1 85.7 87.3 87.1

FKNN 3 82.0 0.71 84.0 80.1 80.8 82.4 82.0

COKNN 3 81.8 0.87 89.7 73.9 77.4 83.1 81.4

CRKNN 3 79.1 0.87 86.5 71.7 75.4 80.6 78.8

Figure 16. Proposed model training time (s) and prediction speed (obs/s) on mixed views of PKU-Reid dataset utilizing
1000-feature subset.
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The best ROC outcomes on the PKU-Reid dataset are presentedin Figure 17.

Figure 17. ROC curves and AUC values showing best outcomes of (a) mixed views with CSVM, (b) back views with CSVM,
and (c) front views with CSVM of PKU-Reid dataset utilizing 1000-feature subset.

Regarding PKU-Reid dataset, it is pertinent to mention here that the relevant literature
has been studied thoroughly to find existing methods in which PKU-Reid dataset is used
and results are obtained for PGC purpose, but the literature lacks such methods; hence, a
comparison of the results produced by the proposed approach is not possible. Although
this dataset was introduced in 2016, researchers have not utilized it for PGC tasks.

4.4. Performance Comparison between Proposed Approach and Existing Studies

The proposed model was evaluated using frontal views, back views, and mixed
views of MIT, VIPeR, and PKU-Reid testing datasets, and details of the results obtained are
presented from Tables 5–14 in the previous section. A performance comparison between the
proposed and existing classical and state-of-the-art methods is shown in the upcoming text.
The results produced were compared with various methods such as CNN [16], HOG [45],
HOG -LBP-HSV [45], CNN-e [19], Full-Body (CNN) [20], HDFL [40], SSAE [51], and recent
best performers such as J-LDFR [41] and CSVFL [39] used in PGC for validation of the
proposed framework.

These methods were selected for comparison because they have produced results in
terms of accuracies on MIT dataset. Table 15 shows the comparison of accuracies achieved
by existing pedestrian recognition methods and the proposed approach on MIT dataset.
The highest accuracy, i.e., 85.4%, obtained by the proposed framework on MIT dataset was
generated by FKNN variant of KNN classifier. It can be observed from Table 15 that the
proposed approach shows better accuracy; hence, it outperformed all the existing PGC
methods. It accomplished 0.2% better ACC than the latest existing method, CSVFL [39],
and 3.3% and 2.9% improvements as compared to the recent best performers J-LDFR [41]
and SSAE [51], respectively. By comparing 74.3% accuracy produced by HDFL [40] method
with the proposed approach, it can be observed that the proposed method achieved 11.0%
higher accuracy. A comparison of the results obtained with the existing and proposed
methods in terms of accuracy is shown in Figure 18.
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Table 15. Performance comparison of results of proposed and existing PGC methods on MIT dataset.

Methods Year ACC (%) Using Mixed Views

CNN [16] 2013 80.4

HOG [45] 2015 78.9

LBP [45] 2015 76.1

HSV [45] 2015 71.3

LBP-HSV [45] 2015 77.6

HOG -HSV [45] 2015 80.9

HOG -LBP [45] 2015 79.8

HOG -LBP-HSV [45] 2015 80.1

CNN-e [19] 2017 81.5

Full-Body (CNN) [20] 2017 82.0

HDFL [40] 2018 74.3

SSAE [51] 2018 82.4

J-LDFR [41] 2021 82.0

CSVFL [39] 2021 85.2

Proposed 4-BSMAB Proposed 85.4

Figure 18. Comparison of accuracy obtained with proposed and existing approaches on MIT dataset.

To revalidate the worth of proposed method, the results obtained with the presented
approach utilizing AUC evaluation protocol were also compared with existing methods. As
per findings from relevant literature, J-LDFR [41] is the only technique that has computed
an AUC on mixed views of MIT dataset. Table 16 shows the comparison in terms of AUC,
and obtained results show that the proposed approach outperformed the existing method,
J-LDFR [41], with a 6.0% improvement.

Table 16. AUC performance comparison between proposed and existing PGC approach on MIT dataset.

Methods Year AUC (%) Using Mixed Views

J-LDFR [41] 2021 86.0

Proposed 4-BSMAB Proposed 92.0
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Figure 19 shows AUC obtained by the proposed method using various classifiers with
1000-feature subset on mixed views of MIT dataset, and it can be observed that CSVM
variant of SVM classifier produced highest AUC of 92.0% on mixed views of MIT dataset.

Figure 19. Comparison in terms of AUC with various classifiers on mixed views of MIT dataset using 1000-feature subset.

4.5. Discussion

In this manuscript, PGC problem was addressed, and for this purpose, pedestrian
attribute recognition datasets such as MIT, VIPeR, and PKU-Reid were tested. Extensive
experiments were performed to develop the proposed approach named as 4-BSMAB, having
64 layers for increased performance. First, CIFAR dataset of 100 classes was used for the
training of the proposed model, and then features were extracted from three datasets such as
MIT, VIPeR, and PKU-Reid using a pre-trained network. A feature optimization scheme based
on ACS was selected to optimize the obtained features. The classification was carried out by
performing experiments and selecting various optimal feature subsets, and the outcome of
proposed framework was noted with the help of performance evaluation metrics.

At the time of feature selection, different variations of features were defined, and
results were obtained applying these variations. The same classifiers were used in all
experiments performed. Keeping in view the results obtained with the same classifiers on
three different datasets, it was observed that the performance of most utilized classifiers
increased as the number of optimized features in feature subsets increased, but, at the same
time, the difference in accuracies provided by the classifiers became very small. On the
other hand, it was also found that the performance of some classifiers decreased after the
first iteration of 100 features and remained the same or increased at a very low rate between
second and fourth iterations with feature subsets of 250 to 750, but in the fifth iteration with
1000 features, the performance increased at a very low rate. It was also noted that FKNN,
CSVM, QSVM, and sometimes LSVM performed better than the other variants of KNN
and SVM, whereas CRKNN, FGSVM, and CGSVM variants showed poor performances in
most of the experiments, with a minimum accuracy of nearly 50.0%. The experiments also
showed that the performance of most classifiers is better when 500-, 750-, and 1000-feature
subsets are used. Overall, 1000-feature subset can be considered best feature subset. It
was also seen that the performance of all variants of KNN related to the training time and
prediction speed was found to be higher in comparison with SVM.

5. Conclusions

A novel CNN-based framework, 4-BSMAB, was assessed for feature extraction, and
ACS was used for the selection of optimized feature sets. The SoftMax classifier was
utilized to train 4-BSMAB model on the existing CIFAR-100 dataset, and features were
obtained from common pedestrian datasets. An optimized feature set obtained with ACS
optimization technique was provided to various classifiers of SVM and KNN for PGC.
Five-fold-type cross-validation was carried out to train and test the pedestrian datasets.
Extensive experimentation was carried out with various feature subsets, and the details
of only five experiments conducted on each dataset were mentioned. It was observed
from the experimentation results that the optimized feature subset with 100 features
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produced a lower accuracy of 81.3%, whereas 1000-featuresubset performed better and
achieved 85.4% accuracy with FKNN classifier, and 92% AUC with CSVM classifier, on
MIT dataset. A comparison of the results of proposed model and existing state-of-the-art
methods on MIT dataset was presented, and it was observed that the proposed method
outperformed existing gender classification approaches. It was also noted that CSVM
classifier performed better on PKU-Reid dataset and generated 93% accuracy and 96% AUC.
The experimentation results also show that most of the classifiers produced better results
with 1000-optimized feature subset and obtained second best results with an optimized
feature subset of 100 features. As per findings, results on PKU-Reid are not available in the
relevant literature, and a performance comparison in this regard is not possible. Although
the proposed framework produced satisfactory results, the accuracy can still be improved
further. In future work, other approaches such as LSTMs, manifold learning, and quantum
deep learning may be explored for better performance.
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