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Abstract: In this work, the creation of a dataset labeled in a pixel-wise manner for the uncommon
domain of stain detection on patterned laundry is described. The unique properties of images in
this dataset—stains are small and sometimes occur in large amounts—led to the creation of noisy
labels. Indeed, the training of a fully convolutional neural network for salient object detection with
this dataset revealed that the model predicts stains missed by human labelers. Thus, the reduction in
label noise by adding overlooked regions with the help of the model’s predictions is examined in two
different experiments. In the model-assisted labeling experiment, a simulation is ran where a human
selects correct regions from the predictions. In the self-training experiment, regions of high certainty
are automatically selected from the predictions. Re-training the model with the revised labels shows
that model-assisted labeling leads to an average improvement in performance by 8.52%. In contrast,
with self-training, the performance increase is generally lower (2.58% on average) and a decrease is
even possible since regions of high certainty are often false positives.

Keywords: self-training; model-assisted labeling; salient object detection; surface defect detection;
stain detection

1. Introduction

Currently, supervised deep learning methods are the state of the art in many computer
vision tasks such as salient object detection (SOD) [1-3] and semantic segmentation [4-6].
To achieve the best results, these methods require a huge amount of labeled data, whose
creation is often expensive. This is an issue if deep learning methods are applied to
uncommon tasks where labeled datasets are not readily and publicly available. Another
problem is that labels can be noisy or may contain errors. For example, SOD and semantic
segmentation require pixel-wise labeling, which can easily contain erroneous pixel labels at
object borders. Correct and consistent labels, however, are particularly important because
“the accuracy of a trained model heavily depends on the consistency of the labels provided
to it during training” [7]. There are several different approaches to work with scarce and
noisy labels which are outlined in the following paragraphs.

1.1. Weakly Supervised Learning

In weakly supervised learning, target outputs are learned from other, more cheaply
created labels. Therefore, it works around the scarcity of labels by making the labeling
process less time consuming or by using other available labels. For example, Khoreva et al.
apply weakly supervised learning to semantic segmentation by using bounding box la-
bels [8]. They use Multiscale Combinatorial Grouping [9] and a variation of GrabCut [10] to
compute pixel-wise labels for each bounding box. Afterwards, a DeepLab architecture [11]
is trained with the intersection of the pixel-wise labels computed by the two methods. Hsu
et al. also achieved semantic segmentation from bounding box labels [12]. In contrast to [8],
they assumed that bounding boxes are tight—each side of the bounding box touches the
object—to formulate a loss function. This allowed them to train a Mask Region-Based
Convolutional Neural Network (CNN) [13] in an end-to-end fashion. Lu et al. achieved

Mathematics 2021, 9, 2498. https:/ /doi.org/10.3390/math9192498

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8865-2895
https://doi.org/10.3390/math9192498
https://doi.org/10.3390/math9192498
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192498
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192498?type=check_update&version=4

Mathematics 2021, 9, 2498

20f16

semantic segmentation from image-level labels [14]. They performed a superpixel segmen-
tation and assigned each image-level label to all superpixels. Subsequently, the superpixel
labels were iteratively optimized by visual similarity, noise sparsity and by a machine
learning model that predicted their labels. Wang et al. used image-level labels for SOD [15].
They re-modeled a CNN for classification as a fully convolutional network to preserve
spacial information in a score map. The score map was upsampled through deconvolutions
to the original input dimensions for the SOD. They implemented an iterative learning
procedure which also includes self-training.

1.2. Considering Label Noise

To deal with erroneous labels, many methods incorporate errors as noisy labels into
the training. They can be categorized into two non-exclusionary groups: 1. Noise is
incorporated into the loss function to concurrently learn a noise model. 2. Before the
training, noisy labels are detected and either sorted out or their noise is reduced. An
example for the first category is shown by Bekker and Goldberger [16]. They present
an expectation maximization algorithm to deal with noisy labels in image classification.
In the expectation step, a neural network is trained with the current labels, while in the
maximization step a noise model, which is a confusion matrix stating that class 7 is mistaken
for j, is updated. Zhang et al. applied a similar algorithm to learn SOD from noisy labels
generated by unsupervised saliency detectors [17]. In [18], Han et al. describe an approach
to deal with noisy labels in a classification setting belonging to the second category. They
find prototypes for each class based on the features computed by a CNN. Afterwards,
labels are corrected through prototype matching. Luo et al. implement a noise reduction
method in an SOD setting [19]. They evaluate if a pixel-wise label is correct by comparing
the results of a classifier to the original image with an image where the labeled region is
filled by PatchMatch [20] and with an image where the labeled region is uniformly filled
with a color. Yi et al. apply noise reduction in a semi-supervised semantic segmentation
setting [21]. They train a CNN on a small, fully labeled dataset as well as the class activation
maps [22] of a classification network to propagate labels through a graph structure on
superpixels. This way, denoised labels are computed for unlabeled images.

1.3. Self-Training

A different approach, which can be used to deal with erroneous as well as scarce
labels, is self-training. In semi-supervised self-training, a model is trained on a small,
fully labeled dataset [23]. Subsequently, the predictions of the model on unlabeled data
are used as labels to train a new model. This method can also be used to adapt a model
to a different domain. Usually, this procedure includes methods to reduce noise in the
predictions of the model. For example, a kind of curriculum learning [24] can be used
in which the self-training starts with objects where the model is certain in its predictions
and then gradually continues to more uncertain, more difficult objects. Zou et al. use
self-training in a semantic segmentation setting for domain adaptation [25]. They note that
only considering objects predicted with high certainty leads to models entirely ignoring
objects that differ widely between domains. Thus, they propose class-balanced self-training,
in which certainty thresholds are applied for each object category separately. In addition,
they integrate spatial priors, such as roads appearing in the bottom center of images, to
select good predictions. In [26], class-balanced self-training is improved through smooth
labels. Bagherinezhad et al. apply self-training to classification [7]. They notice that one-hot
encoded labels are often noisy since multiple objects can be present in an image. This
becomes an even larger problem if heavily cropped images are used for training. As a
result, a completely different object than that labeled in the one-hot vector may be visible.
Therefore, they use self-training to reduce noise in an iterative training procedure; the
predictions of a previously trained model are used as smooth labels to train the next model.
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1.4. Hybrid Approaches

Naturally, it is possible and common to combine the approaches presented above.
In fact, most of the referenced sources do this, e.g., many of the methods incorporating
label noise use an expectation maximization approach that could also be classified as
self-training [16-18]. Furthermore, many self-training approaches try to reduce label
noise in some way [8,25], for example, through the integration of prior assumptions or
through the usage of weak labels. In addition, many weakly supervised methods also
apply self-training approaches to improve their results [14,15].

1.5. Our Approach

In this paper, we examine the reduction in label noise in the uncommon domain of
stain detection on images of patterned laundry. This task can be classified as a surface defect
detection task since we deal with images of flat laundry. We apply SOD methods to this
task for the following reasons: 1. Usually, stains are salient objects as they automatically
stand out to the eye. 2. The application of SOD methods is common in surface defect
detection [27-32]. The training of a fully convolutional network for SOD to a dataset
created by us revealed that human labelers missed stains. As a result, we revised the
labels with the help of the model’s predictions. This allows us to research how the model’s
predictions can be used to improve noisy labels. The contributions made in this paper are
as follows:

e Unique properties of the domain of stain detection on flat and patterned laundry are
pointed out.

®  The reduction in label noise with the help of predictions by a model is evaluated in
two experiments:

1. Model-assisted labeling (MAL) [33]: A human is simulated as selecting over-
looked stains from the predictions of the model. This approach provides a
baseline for autonomous approaches and shows that predictions can be used for
semi-automated labeling.

2. High Certainty: Regions predicted with high certainty are automatically incor-
porated into the labels. This approach conforms to dealing with noisy labels via
self-training.

This paper is structured as follows: In the next section, the dataset, its labeling and its
unique properties are pointed out. Afterwards, in Section 3, fine-tuning a model of SOD
for the detection of stains is described. Subsequently, Section 4 describes the self-training
experiments performed as well as how they are evaluated. Section 5 presents and discusses
the results of the experiments. Finally, a conclusion is drawn in Section 6.

2. A Dataset for Stain Detection

We are concerned with the detection of stains on patterned laundry that remain after
conventional washing in an industrial laundry shop. After the detection, laundry with
stains that did not wash out can be sorted out, and washable stains can be eliminated
through a localized washing procedure. Since, at least to our knowledge, no publicly
available dataset of stains on images of laundry exists, we created a dataset ourselves.
To this end, we borrowed laundry from a nearby industrial laundry shop. The laundry
mainly consisted of bedclothes with simple line patterns (double sheets, comforter covers,
pillowcases) as they are used by hotels and hospitals.

We took pictures of the laundry with a specialized image acquisition apparatus shown
in Figure 1. The apparatus consists of a conveyor belt, illumination and two line scan
cameras. The conveyor belt transports the laundry in a flat state. It is about two and a half
meters wide so that images of large pieces of laundry can be acquired. Above the conveyor
belt, there is a beam on which the illumination is mounted. It consists of two LED stripes
covering the whole width of the conveyor belt. They illuminate the laundry from above
with white light as well as UV radiation to improve the visibility of certain kinds of stains.
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Two line scan cameras are mounted within another beam further above and capture the
conveyor belt through a slot in the center of the beam holding the lighting. The acquisition
rate of the cameras is controlled by a sensor that measures the speed of the conveyor belt
and adapts the rate accordingly. Both cameras record lines with a width of 2048 pixels,
which results in one pixel corresponding to an area of about 0.25 mm?. Unfortunately, the
placement of the cameras inside the carrier led to a blind spot at the center of the conveyor
belt (this is visible as the black borders of all example images in Figure 2). This is illustrated
in Figure 1 by the dotted orange lines that show the field of view of each camera. This issue
could only be fixed after the dataset was recorded. As a result, we plan to record another
dataset in the future.

AV

Figure 1. A photo of the image acquisition apparatus. The cyan rectangles show the positions of the
line scan cameras. The dotted orange lines illustrate the field of view of each camera.

(@) (b) (0) (d)
Figure 2. A few example images from our dataset. From left to right: An image acquired by the
camera on the left (a). The corresponding image acquired by the camera on the right (b). An image of
the same piece of laundry shifted further to the left (c). An image of a small piece of laundry fitting
into the scope of a single camera (d).

Images were acquired by placing an item of laundry onto the conveyor belt and
then turning the apparatus on. The apparatus automatically recorded a pre-configured
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number of lines, which was adapted in such a way that the piece of laundry was completely
visible on the image. Thus, the acquired images have resolutions between 3048 x 2048
and 6548 x 2048 pixels. We acquired up to eight images for each piece of laundry: a single
acquisition creates two images—one by each camera (see Figure 2a,b). Due to the blind
spot in the center area, two acquisitions were conducted, shifting the piece of laundry to
the left or right in between (compare Figure 2a,c). Additionally, we acquired images of
the front and the back of each piece of laundry, doubling the number of images for each
piece. Small items of laundry, such as pillowcases, fit into the scope of a single camera
(see Figure 2d). Therefore, we only acquired the images of a single camera and we did not
adjust the piece of laundry. Altogether, we acquired 1035 images of 141 pieces of laundry.
Figure 2 displays a few examples.

Since we wanted to fine-tune a CNN for SOD for stain detection, we required a pixel-
wise labeling of the images. Thus, three non-experts, including one of the authors, were
tasked with creating the labels. Being non-experts should not be an issue with regard to
the label quality, since stains are usually salient, meaning that they stand out to the eye. To
perform the labeling, a custom tool was used in which stains could be marked by drawing
their contours with the mouse. In addition, the tool provided a zooming capability so
that small stains could be detected despite the huge size of the images. Originally, it was
planned that every image would be labeled twice by two different labelers in order to
compare the two labels as a way to prevent errors. However, this underestimated the effort
of labeling large images in a pixel-wise fashion. As a result, every image was only labeled
once. Moreover, a few difficulties arose during the labeling which differentiate this dataset
from other datasets for SOD.

Fan et al. ascertained that most datasets for SOD do not include non-salient images,
that salient objects are large and that there is a center-bias [34]. In contrast, the stains in our
dataset are often small compared to the size of the image. This is illustrated in Figure 3a in
which the stains are not clearly visible even when enlarged by a factor of four. The dataset
does not have a center bias and some pieces of laundry contain a huge number of stains. As
a result, we conducted a rough labeling (such as seen in the bottom of Figure 3b), instead
of an accurate labeling (displayed in the middle of Figure 3b), because an accurate labeling
of this many stains takes multiple hours for a single image. Furthermore, the borders of
stains are often blurred, which is illustrated in Figure 3c. This makes it difficult to create an
accurate pixel-wise label. Moreover, the folds on the laundry, created by being transported
in a folded state and through the movement of the conveyor, create shadows and dark
areas, which can be mistaken for stains.

Due to all of these properties, labeling the dataset is a difficult and time-consuming
task. Thus, it is not surprising that our initially created labels £; contained significant
amounts of noise. We noticed that a CNN trained on the dataset (as described in the
following section) detected stains that were missed during labeling. For this reason, the
same three labelers revised all labels. To support this process, the initial labels and the
predictions of the CNN were superimposed on the image. Regions from the predictions
could be directly adopted into the label. These revised labels £, contain 22,109 labeled
regions, compared to 10,467 in £,, with an average of about 21 per image. These two labels
L; and L, allow us to study how the predictions of a model can be used to reduce label
noise either via self-training or by supporting human labelers.
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(b) (0)

Figure 3. Illustrations of properties that differentiate the collected dataset from others. (a) illustrates
how large the images are in comparison to the stains/salient regions. (b) shows a piece of laundry
with a large amount of stains. From top to bottom: the image, a precise annotation, an rough
annotation. (c) shows examples of blurry stains.

3. Model Training

In this section, the general procedure of training a model for the created dataset is
described. This training led to the discovery that the model detects stains missed in the
initial labels. The training procedure as described here is embedded in the self-training
experiments elucidated in Section 4. To speed up the training and to improve results with
a medium-sized dataset without a great deal of variance in the data, a transfer learning
approach was chosen [35,36]. As a starting point, the Cascaded Partial Decoder (CPD) was
used [1]. As of the time of writing, it achieved state of the art results in SOD, and its source
code as well as pre-trained weights are publicly available. Compared to other models for
SOD, the CPD does not use all features of the backbone network to decode them into the
salience map. Instead, in one branch the features of deep layers are used in combination
with a holistic attention module to guide the attention of a second branch, also based on
the features of deep layers, which computes the final salience map.

The CPD was trained on images with a resolution of 352 x 352. As small stains are
not visible if complete images of the created dataset are resized to this resolution, and
to increase the size of the dataset, crops with the resolution 512 x 512 were extracted
and subsequently resized to a resolution of 352 x 352. For data augmentation purposes,
overlapping crops were extracted by moving a sliding window with a stride of 256 over
the image. This leads to well over 100,000 crops. However, most of these crops do not
contain any pixel belonging to a stain. In order to have a more balanced dataset, all
crops containing at least a single pixel belonging to a stain were selected. In addition,
the same amount of crops that do not contain a stain were selected at random from all
the other crops. Afterwards, the crops were split into training/validation/test data at a
ratio of 60/20/20. This split was not created by randomly sampling all crops because the
crops partly overlap. Moreover, as described in Section 2, the dataset contains several
images for a single piece of laundry. Thus, the same stain can be visible in more than one
image. To prevent memorization of specific stains, we split the crops based on the piece of
laundry shown in the image. Still, we made sure that the distribution of crops with and
without stains was balanced within each split. Overall, the training split contains about
19,000 cropped images while the validation and test splits contain about 6300 cropped
images each.
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To improve the training results, we experimented with several optimizers, learning
rates and decay rates. We settled on the Adam optimizer [37] and a learning rate of
10~* without decay. During training, the crops were resized to 352 x 352. The training
was performed on a GTX 1080 Ti with the highest possible batch size of 10 based on the
GPU memory. These parameters match the suggestions by the authors of the CPD [1].
For additional data augmentation, random horizontal and vertical flips were performed.
Altogether, the model was trained for 50 epochs. A single training run took 16 to 24 h.
Figure 4 shows a typical normalized loss curve and precision-recall (PR) curves computed
during different training epochs. Note that even though the validation loss starts to rise
after about 20 epochs, the PR curve can still improve. Therefore, training was not stopped if
the validation loss reached a plateau. The reasons for this are that the binary cross entropy
loss optimized in training only indirectly optimizes the PR curve and that post-processing
was performed, which is described in the following section.

10
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Figure 4. In (a), a typical normalized training loss is displayed and in (b) a PR curve computed on

the validation split at different training epochs is shown.

4. Experiments

The existence of initial, noisy labels £; and revised labels £, provides a unique
situation to research how model predictions can be used to reduce label noise. Particularly,
it is investigated how the model predictions can be used to add stains that have been
overlooked in £; and how this improves overall model performance. In this section, two
experiments are described: 1. In the MAL experiment, human interaction is simulated as
selecting valid predicted regions, which are not part of £;. 2. In the self-training experiment
predicted regions are automatically selected based on high certainty. In general, the
experiments proceed as follows:

1. A model is trained on the training split of the dataset with the initial labels £! and the
weights mg from the epoch yielding the best results on the validation split with the
revised labels LY are selected.

2. The predictions P of the model m on the training images are combined with the initial
Labels L! to create a model-revised labeling L], = f(L!, P). Different label revision
functions f(L!, P) are used for the MAL and the self-training experiment.

3. A new model is trained on the training split of the dataset with the model-revised la-
bels £fno and the weights m; from the epoch yielding the best results on the validation
split with the revised labels L7 are selected.

4.  The results of my and m; on the validation split with the revised labels £? are com-
pared to see if training with the model-revised labels Efno increased the overall perfor-
mance.

For clarity, Table 1 summarizes the different kinds of labels and their denotation, and
Figure 5 illustrates the procedure.
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Table 1. Summary of the different labels for clarity.

L;: Our initially created labels.

L, Our revised labels.

Loy, Model-revised labels created with the predictions of model m

through the label revision function f(L!, P).
Lt The training split of the labels.
LY The validation split of the labels.
Data Data
o Training §Validation @ Training EVaIidation
g : g !
E E
3 t o 2, B ¢ -
8 : — = > :
3 Ei 'Cr g L m L r
1) chp 3 ¢
v f( i )
Model m; —=2%— Predictions P Model m;

Figure 5. Illustration of the procedure of both experiments.

In the MAL experiment, the label revision function f (Ef, P) is as follows: First, a
threshold 4, is applied to the predictions P of the model to get binary predictions P,.
Subsequently, the model-revised labels £}, are created by taking £} and adding every
region from the binary prediction P, that does not intersect a region in £! but has an
intersection over union (IoU) higher than threshold Jj,; with a region from the revised
labels LL. This corresponds to a human selecting predicted regions if they match a stain
that was missed in the initial labels. Since selecting a valid region is faster and simpler than
outlining a region, this experiment simulates model-assisted labeling.

In the self-training experiment, the label revision function f (L, P) is as follows: Again,
a threshold 6,,per is applied to the predictions P of the model to obtain a binary prediction
Py,,,..- As each pixel value in P correlates to how certain the model is that this pixel
belongs to a stain, P, contains regions where the model is highly certain. Then, the
model-revised labels L}, are created by taking L! and adding every region in Py, ., that
does not intersect a region in £!. However, the regions from Py, ., are not directly added,
but corresponding regions from a second binary prediction P, , created with a threshold
O1ower With 615er < Supper, are used. The reason for this is that, in the researched setting,
it is preferable to detect more pixels of a stain than necessary rather than missing some.
Py, .., contains the same regions as Pbupw, but more extensive to ensure that the borders of
the stains are included.

Both experiments were repeated several times since the training of a model such as
the CPD involves a great deal of randomness. As a result, the results of a single run are not
reliable. We only performed five repetitions since a single training took up to 24 h. Hence,
a single run of an experiment including two trainings as well as evaluations took about two
days. For a fair comparison, we always selected the best weights of the models 179 and m1;
based on the evaluation of the validation split with the revised labels £?. In addition to the
results of the experiments, we also show the results of a training with the revised labels L.
They provide an upper boundary since, at least in the MAL experiment, the model-revised
labels cannot be better than the revised labels L. Furthermore, the effects of the choice of
the parameters 6, 6101, Supper and 614, are described.

What remains to be discussed is how the model performance is evaluated. Ordinarily,
in SOD, PR curves, Fﬁ and the mean absolute error (MAE) are reported [1,38,39]. However,
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these measures do not correlate well with the objective to detect all stains. Since PR curves,
Fg and MAE are evaluated in a pixel-wise fashion, their ratings mainly depend on the
detection of a few large stains while many small stains remain unnoticed [40]. Hence, we
report the application oriented measure region detection rate (RDR) [40]. It is similar to the
object detection measure used in the ICDAR competition [41]. The RDR establishes criteria
that define whether a predicted region is a false positive or valid detection and whether a
region is considered to be correctly detected. The criteria allow one-to-one, one-to-many,
many-to-one and also many-to-many matches. The final score is computed as follows:

C
n+aF

RDR =

)

where C is the number of correctly predicted regions, n is the total number of regions
and F is the number of false predictions. The factor « allows to weight the importance of
avoiding false predictions. For the evaluation of the RDR in the experiments, we chose
the same parameters as reported in [40] because we prefer detecting all stains in contrast
to attaining a few false positives. Like precision, recall and Fg, the RDR is computed for
binary predictions. Therefore, we compute the RDR for a variety of thresholds and draw
an RDR curve. As the final performance measure, we use the sum of the best RDR and the
area under curve (AUC) to weight a good performance at all thresholds with the overall
best performance.

Before computing the RDR for the models’ predictions, however, another post- pro-
cessing step was performed to deal with rough labels (Figures 3b and 6b). Otherwise,
accurate predictions for such regions receive a low score. Thus, all predicted regions, of
which 75% lie inside the same labeled region, are connected through their convex hull. An
example of this procedure is displayed in Figure 6 in which many small regions in the pre-
diction are connected to match a large region in the rough label. As another post-processing
step, it would also be possible to connect regions in the label if they match to the same
region in the prediction. The rationale would be that due to the rough labels the model is
trained to group certain stains together. We refrained from doing this, however, since we
want to promote models which produce accurate predictions rather than rough predictions.

(a) (b) (d)
Figure 6. An illustration of the connection of predicted regions. (a) shows an image of our dataset
and (b) shows a rough pixel-wise labeling. (c) is a prediction before the connection of regions and (d)
is the prediction afterwards.
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In Table 2, approaches from related work that apply self-training to deal with label
noise are summarized in order to compare these approaches with ours. Two of these
approaches [7,18] deal with image classification instead of salient object detection. Never-
theless, directly using the model’s predictions as labels [7] could be carried out. However,
we think that this method is not applicable because the accuracy of our model is much
lower, meaning that predictions are far less accurate. Thus, we try to reduce noise by
selecting regions of high certainty from the predictions based on the knowledge that stains
are missing in the labels. In [19] self-training is applied to salient object detection. They
utilize the fact that images contain different classes of objects by clustering images and
subsequently use common color features of the clusters to improve predictions. In our
case, there is only a single class of objects (stains) which makes clustering less effective.
Furthermore, ref. [19] do not deal with multiple salient objects per image.

Table 2. Comparison of different approaches to self-training for label noise reduction.

Bagherinezhad etal. [7]  The predictions of the model are directly used as labels.

Han et al. [18] Linearly interpolate between the original noisy label and a
corrected label. The corrected label is computed from the
model’s predictions and a kind of prototype matching.

Luo etal. [19] The predictions of the model are refined through saliency-
guided co-segmentation. Images are clustered based on
salience, color and positional features and then, an interac-
tive segmentation algorithm similar to GrabCut is applied,
in which foreground and background models are comple-
mented by models for the whole cluster.

Ours—Self-Training Regions from the predictions made by the model are se-
lected if the model predicts them with a high certainty.

5. Results and Discussion

In this section, the results of both experiments are presented and discussed. The
presentation begins with the choice of parameters in the MAL experiment and continues
with the choice of parameters in the self-training experiment. Subsequently, the overall
results of the experiments are discussed.

The effect of the choice of different parameters on the label revision for both experi-
ments are illustrated in Figure 7. The top row shows the effect of different thresholds in
the MAL experiment, and the bottom row shows the effect of different thresholds in the
self-training experiment. In all of the illustrations, the true positive rate (TPR) of pixels
added in the revision is drawn as a blue curve and the count of regions added to the labels
is drawn as an orange curve. In Figure 7a d},; is altered while §,, = 100 is kept constant.
On the contrary, in Figure 7b J,, is altered while d;,;; = 0.5 is kept constant. In Figure 7c
O1ower 18 altered with 6,pper = 175, and in Figure 7d 4y, = 100 is constant while 6ypper
is altered.

The illustration of different choices for dy,,0 in Figure 7a shows the expected outcome.
Increasing Jj,y; increases the TPR and decreases the amount of regions added to the labels.
Our choice of 51,1 = 0.5 guarantees that most of the pixels added to the labels are true
positives since the TPR is higher than 80%. On the contrary, the effect of the choice of 6, as
illustrated in Figure 7b shows unexpected results. Mostly, the curves follow the expectations
that the higher 4, the fewer regions are added and the higher the TPR. However, at low
thresholds the amount of added regions increases, and at §,, ~ 220 there is a sudden drop in
the TPR. The reasons for the former are either that large correct predictions conforming to
rough labels are fragmented, which results in more predicted regions being added, or that
predicted regions, which were previously too large, shrink to an acceptable size. The reason
for the latter is that at §,, ~ 220 some correctly predicted regions are no longer predicted
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while some false predictions remain. Our choice of 6, = 100 is a trade-off between a large
amount of added regions and a high TPR.

The effects of the choice of ;g and dypper, illustrated in Figure 7c,d, also show some
unexpected results. Interestingly, the higher J;y,,.,, the more regions are added to the labels
and the TPR decreases. This means that correct and rough predictions are fragmented
through high thresholds while erroneous predictions remain. Thus, the amount of true
positive pixels in the prediction decreases while the amount of false positive pixels stays
the same. The same effect can be observed by the fact that the TPR decreases as 6,pper
increases. Therefore, the plots suggest choosing low values for both 64 and dupper-
Higher values, however, should promote more fine-grained predictions that do not repeat
the rough labeling. Hence, we chose 6}y, = 100 and 6;,pper = 175.
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Figure 7. Illustrations of the effect of different parameters for the label revision function. In each plot,
the blue curve shows the TPR of pixels added to the labels and the orange curve shows how many
regions were added. The top row shows the parameters of the MAL experiment and the bottom row
shows the parameters of the self-training experiment. (a) illustrates the effect of the choice of dy,;,
(b) of 6, (c) of 51pyer and (d) of ypper-

Altogether, the illustrations of the effects of different parameter choices already indi-
cate that the MAL experiment is more promising than the self-training experiment. The
reason for this is that no matter the choice of parameters, the regions added in the self-
training experiment show a distinctly lower TPR. Therefore, the model trained with the
model-revised labels has to deal with more false positives. In this context, however, it is
noteworthy to mention that the number of regions added during the label revision is much
higher in the self-training experiment. This likely means that a similar amount of correct
regions is added compared to the MAL experiment, but a greater number of false positives
is added as well, since the model seems to be overconfident in its mistakes. This can be an
effect of training with entropy minimization [26].

The main results of both experiments are visualized in Figure 8 and Table 3. Table 3
contains the scores of the models mg and m; for each run in each experiment. In Figure §,



Mathematics 2021, 9, 2498

12 of 16

the average RDR curves of both experiments are illustrated. On the left (Figure 8a), the
curves for the MAL experiment are displayed, and on the right (Figure 8b), the curves of
the self-training experiment are presented. Both figures include the results of the baseline
model trained on L!. The variance of each RDR curve is indicated by the shaded area with
the same color as the curve.

The results confirm the assumption that the MAL experiment achieves better results
than the self-training experiment. Figure 8a shows a visible improvement of the revised
model towards the baseline while in Figure 8b an improvement is only visible if the shaded
area is considered. The numbers in Table 3 further underline this observation. In the MAL
experiment the score improves in every trial. In the self-training experiment, the score only
decreases in a single trial but the improvements are generally lower compared to the MAL
experiment. Thus, it can be stated that adding regions of high certainty for self-training is
applicable but the improvements are generally low so that the additional computational
effort has to be considered. In contrast, if a human assists the model by only selecting good
predictions, a considerable improvement can be achieved.

Model-Assisted Labeling Self Training

0.5 - 0.5 B
Initial Initial

—— Revised-HIL —— Revised-HIL
—— Baseline —— Baseline

=)
ES
o
>

o

w

e

w
L

e
[N]

Region Detection Rate
e
N
h

Region Detection Rate

o
=
e
b

0.0 T T T T T 0.0 T T T T T
50 100 150 200 250 50 100 150 200 250
Threshold Threshold

(a) (b)
Figure 8. Illustration of the main results of both experiments. (a) shows the average RDR curves for
the MAL experiment and (b) displays the average RDR curves for the self-training experiment. The
variance of the average RDR curves is visualized as a shaded area around the curve.

Table 3. The final scores (sum of the best RDR and the AUC) for each run of each experiment. For
each run, the higher score is highlighted in green.

a
Model-Assisted Labeling

Run my mq Difference
1 0.612 0.657 0.045
2 0.621 0.633 0.012
3 0.579 0.680 0.101
4 0.621 0.661 0.040
5 0.660 0.711 0.051
b
Self-Training
Run my mq Difference
1 0.590 0.635 0.045
2 0.619 0.640 0.021
3 0.635 0.615 -0.020
4 0.610 0.625 0.015
5 0.619 0.635 0.026
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6. Conclusions

In this paper, we described the difficulties in detecting stains on images of laundry as
well as methods for reducing label noise in this setting. The creation of a custom dataset
for this problem has been described. Challenges, posed by images of this dataset, were
discussed: 1. Due to large numbers of small stains, the labeling is sometimes roughly
grouping stains together. 2. Stains are often small compared to the overall image size.
The first challenge complicates the evaluation of model performance on this dataset, since
precise predictions receive a bad rating. As a result, we applied a post-processing step to
the predictions of the model by connecting all regions conforming to a rough group in the
labels through their convex hull.

The second challenge arose from the fact that stains were missed in our initially created
labels. This was revealed by fine-tuning a model for SOD to this dataset, which correctly
predicted stains overlooked in the labels. As a result, the labels were revised and label
revision with the assistance of the model was researched in two different experiments. The
first experiment shows that the predictions of the model can be successfully used to assist
a human labeler in improving labels by suggesting stains. In the second experiment, we
researched whether the label revision can be performed automatically through self-training.
The results of this experiment show that a high certainty approach to select predicted
regions works, but the improvements are usually small, and that in rare instances the
performance can deteriorate.

Overall, our MAL method improved model performance by 8.52% on average, and
our self-training method improved performance by 2.58% on average. Advantages of our
methodology are that it can be easily implemented and improves performance. In the
case of MAL, the increase in performance is higher compared to self-training. However,
performing MAL requires greater effort than self-training, since a human has to select good
predictions. A disadvantage of our approach is that the computational effort increases
because the model has to be trained twice. Furthermore, our approach cannot be used to
generally revise labels since it only allows adding regions which were previously over-
looked. It could also be improved by removing erroneous regions and by refining roughly
labeled regions. The refinement of rough labels would be especially useful, since they
complicate the evaluation.

Thus, in future work, we would like to address the following questions:

e Isit possible to refine rough regions and to remove erroneous regions in addition to
adding overlooked regions?

e Isitpossible to apply MAL during the initial labeling by training a model with limited
data and then using it to make suggestions, as was carried out by Hasty [42]?

*  Can self-training be successfully applied by either using a different approach to select-
ing predicted regions or by filtering false positives from highly certain predictions?
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Abbreviations

The following abbreviations are used in this manuscript:

AUC  area under curve

CPD  Cascaded Partial Decoder

IoU intersection over union

MAE mean absolute error

MAL model-assisted labeling

PR precision-recall

RDR  region detection rate

SOD  salient object detection

TPR  true positive rate

CNN Convolutional Neural Network

References

1.  Wu, Z;Su, L; Huang, Q. Cascaded Partial Decoder for Fast and Accurate Salient Object Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019; pp. 3907-3916.

2. Qin, X,; Zhang, Z.; Huang, C.; Gao, C.; Dehghan, M.; Jagersand, M. BASNet: Boundary-Aware Salient Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019;
pp. 7479-7489.

3.  Qin, X;; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R,; Jagersand, M. U2-Net: Going deeper with nested U-structure for
salient object detection. Pattern Recog. 2020, 106, 107404. [CrossRef]

4. Zoph, B,; Ghiasi, G.; Lin, TY,; Cui, Y,; Liu, H.; Cubuk, E.D.; Le, Q. Rethinking Pre-training and Self-training. arXiv 2020,
arXiv:2006.06882.

5. Tao, A,; Sapra, K,; Catanzaro, B. Hierarchical Multi-Scale Attention for Semantic Segmentation. arXiv 2020, arXiv:2005.10821.

6. Huang, Y.; Jia, W.; He, X; Liu, L,; Li, Y.,; Tao, D. Channelized Axial Attention for Semantic Segmentation. arXiv 2021,
arXiv:2101.07434.

7. Bagherinezhad, H.; Horton, M.; Rastegari, M.; Farhadi, A. Label Refinery: Improving ImageNet Classification through Label
Progression. arXiv 2018, arXiv:1805.02641.

8.  Khoreva, A.; Benenson, R.; Hosang, J.; Hein, M.; Schiele, B. Simple Does It: Weakly Supervised Instance and Semantic
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26
July 2017; pp. 876-885.

9. Pont-Tuset, J.; Arbeldez, P; Barron, ].T.; Marques, F; Malik, J. Multiscale Combinatorial Grouping for Image Segmentation and
Object Proposal Generation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 128-140. [CrossRef] [PubMed]

10. Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”: Interactive Foreground Extraction Using Iterated Graph Cuts; ACM SIGGRAPH
2004 Papers; ACM: New York, NY, USA, 2004; pp. 309-314. [CrossRef]

11. Chen, L.C,; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834-848.
[CrossRef] [PubMed]

12.  Hsu, C.C,; Hsu, KJ,; Tsai, C.C,; Lin, Y.Y.; Chuang, Y.Y. Weakly Supervised Instance Segmentation using the Bounding Box
Tightness Prior. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc,
Ed., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 6586—6597.

13.  He, K; Gkioxari, G.; Dollar, P,; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer

Vision, Venice, Italy, 22-27 October 2017; pp. 2961-2969.


http://doi.org/10.1016/j.patcog.2020.107404
http://dx.doi.org/10.1109/TPAMI.2016.2537320
http://www.ncbi.nlm.nih.gov/pubmed/26955014
http://dx.doi.org/10.1145/1186562.1015720
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

Mathematics 2021, 9, 2498 15 of 16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

Lu, Z; Fu, Z,; Xiang, T.; Han, P; Wang, L.; Gao, X. Learning from Weak and Noisy Labels for Semantic Segmentation. IEEE Trans.
Pattern Anal. Mac. Intell. 2017, 39, 486-500. [CrossRef] [PubMed]

Wang, L.; Lu, H.; Wang, Y.; Feng, M.; Wang, D.; Yin, B.; Ruan, X. Learning to Detect Salient Objects With Image-Level Supervision.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017;
pp. 136-145.

Bekker, A.].; Goldberger, ]. Training deep neural-networks based on unreliable labels. In Proceedings of the 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20-25 March 2016; pp. 2682-2686.
[CrossRef]

Zhang, J.; Zhang, T.; Daf, Y.; Harandi, M.; Hartley, R. Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling
Perspective. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18-22 June 2018; pp. 9029-9038. [CrossRef]

Han, J.; Luo, P; Wang, X. Deep Self-Learning From Noisy Labels. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Korea, 27-28 October 2019; pp. 5138-5147.

Luo, A.; Li, X;; Yang, E; Jiao, Z.; Cheng, H. Webly-supervised learning for salient object detection. Pattern Recog. 2020, 103, 107308,
[CrossRef]

Barnes, C.; Shechtman, E.; Finkelstein, A.; Goldman, D.B. PatchMatch: A Randomized Correspondence Algorithm for Structural Image
Editing; ACM SIGGRAPH 2009 Papers; Association for Computing Machinery: New York, NY, USA, 2009; pp. 1-11. [CrossRef]
Yi, R.; Huang, Y,; Guan, Q.; Pu, M.; Zhang, R. Learning from Pixel-Level Label Noise: A New Perspective for Semi-Supervised
Semantic Segmentation. arXiv 2021, arXiv:2103.14242.

Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 2921-2929.
Rosenberg, C.; Hebert, M.; Schneiderman, H. Semi-Supervised Self-Training of Object Detection Models. In Proceedings of the
2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05), Washington, DC, USA, 5-7 January
2005; Volume 1, pp. 29-36. [CrossRef]

Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, Association for Computing Machinery, Montreal, QC, Canad, 14-18 June 2009; pp. 41-48.
[CrossRef]

Zou, Y,; Yu, Z.; Kumar, B.V.K.V.;; Wang, ]. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced
Self-Training. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018;
pp- 289-305.

Zou, Y,; Yu, Z; Liu, X.; Kumar, B.VK.V,; Wang, ]. Confidence Regularized Self-Training. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27-28 October 2019; pp. 5982-5991.

Huang, Y.; Qiu, C.; Guo, Y.; Wang, X.; Yuan, K. Surface Defect Saliency of Magnetic Tile. In Proceedings of the 2018 IEEE 14th
International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20-24 August 2018; pp. 612-617.
[CrossRef]

Bai, X.; Fang, Y.; Lin, W.; Wang, L.; Ju, B.F. Saliency-Based Defect Detection in Industrial Images by Using Phase Spectrum. IEEE
Trans. Ind. Inf. 2014, 10, 2135-2145. [CrossRef]

Song, K.; Yan, Y. Micro Surface Defect Detection Method for Silicon Steel Strip Based on Saliency Convex Active Contour Model.
Math. Probl. Eng. 2013, 2013, 429094, [CrossRef]

Gharsallah, M.B.; Braiek, E.B. Weld Inspection Based on Radiography Image Segmentation with Level Set Active Contour Guided
Off-Center Saliency Map. Adv. Mater. Sci. Eng. 2015, 2015, 871602, [CrossRef]

Song, K.C.; Hu, S.P; Yan, Y.H.; Li, J. Surface Defect Detection Method Using Saliency Linear Scanning Morphology for Silicon
Steel Strip under Oil Pollution Interference. ISIJ Int. 2014, 54, 2598-2607. [CrossRef]

Bonnin-Pascual, E; Ortiz, A. A probabilistic approach for defect detection based on saliency mechanisms. In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16-19 September 2014. [CrossRef]

About Model-Assisted Labeling (MAL). Available online: https:/ /docs.labelbox.com/en/core-concepts/model-assisted-labeling
(accessed on 26 May 2021).

Fan, D.P; Cheng, M.M,; Liu, ].].; Gao, S.H.; Hou, Q.; Borji, A. Salient Objects in Clutter: Bringing Salient Object Detection to the
Foreground. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018;
pp. 186-202.

Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In Proceedings of the ICML Workshop on
Unsupervised and Transfer Learning, Bellevue, WA, USA, 27 June 2012, pp. 17-36.

Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 27th
International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 3320-3328.
Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Chen, S.; Tan, X.; Wang, B.; Hu, X. Reverse Attention for Salient Object Detection. In Proceedings of the European Conference on
Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 234-250.

Hou, Q.; Cheng, M.; Hu, X.; Borji, A.; Tu, Z.; Torr, PH.S. Deeply Supervised Salient Object Detection with Short Connections.
IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 815-828. [CrossRef] [PubMed]


http://dx.doi.org/10.1109/TPAMI.2016.2552172
http://www.ncbi.nlm.nih.gov/pubmed/28113885
http://dx.doi.org/10.1109/ICASSP.2016.7472164
http://dx.doi.org/10.1109/CVPR.2018.00941
http://dx.doi.org/10.1016/j.patcog.2020.107308
http://dx.doi.org/10.1145/1576246.1531330
http://dx.doi.org/10.1109/ACVMOT.2005.107
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1109/COASE.2018.8560423
http://dx.doi.org/10.1109/TII.2014.2359416
http://dx.doi.org/10.1155/2013/429094
http://dx.doi.org/10.1155/2015/871602
http://dx.doi.org/10.2355/isijinternational.54.2598
http://dx.doi.org/10.1109/ETFA.2014.7005257
https://docs.labelbox.com/en/core-concepts/model-assisted-labeling
http://dx.doi.org/10.1109/TPAMI.2018.2815688
http://www.ncbi.nlm.nih.gov/pubmed/29993862

Mathematics 2021, 9, 2498 16 of 16

40. Huxohl, T.; Kummert, F. Region Detection Rate: An Applied Measure for Surface Defect Localization. In Proceedings of the 2021
IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (IEEE ICSIPA, Kuching, Malaysia, 18-19
November 2021.

41. Wolf, C,; Jolion, ].M. Object count/area graphs for the evaluation of object detection and segmentation algorithms. Int. J.
Document Anal. Recog. IIDAR 2006, 8, 280-296. [CrossRef]

42. Al-Powered Annotation. Available online: https:/ /hasty.ai/annotation/ (accessed on 27 July 2021).


http://dx.doi.org/10.1007/s10032-006-0014-0
https://hasty.ai/annotation/

	Introduction
	Weakly Supervised Learning
	Considering Label Noise
	Self-Training
	Hybrid Approaches
	Our Approach

	A Dataset for Stain Detection
	Model Training
	Experiments
	Results and Discussion
	Conclusions
	References

