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Abstract: For multidimensional dependent cases with incomplete probability information of random
variables, global sensitivity analysis (GSA) theory is not yet mature. The joint probability density
function (PDF) of multidimensional variables is usually unknown, meaning that the samples of
multivariate variables cannot be easily obtained. Vine copula can decompose the joint PDF of
multidimensional variables into the continuous product of marginal PDF and several bivariate
copula functions. Based on Vine copula, multidimensional dependent problems can be transformed
into two-dimensional dependent problems. A novel Vine copula-based approach for analyzing
variance-based sensitivity measures is proposed, which can estimate the main and total sensitivity
indices of dependent input variables. Five considered test cases and engineering examples show that
the proposed methods are accurate and applicable.

Keywords: Vine copula; global sensitivity analysis; multivariate correlation analysis; Nataf model;
probability density function

1. Introduction

Variance-based global sensitivity analysis (GSA) is very commonly used in the area
of structural safety [1–3]. It can calculate the contribution of each input variable or group
variables to the variance of the output response, thus allowing for selection of the important
variables that have great influence on the output, while the randomness of unimportant
variables can be ignored. Several methods exist to perform variance-based GSA of model
outputs when the inputs are independent [2–6], but it is still a challenge for the dependent
cases.

For dependent input variables, there are some techniques proposed to solve Sobol’
indices. Xu and Gertner [7] divided the contribution of inputs into two components: the
independent and dependent contributions, and proposed a regression-based method for
estimating different contributions of the inputs. Similarly, Li et al. [8] introduced a unified
framework including covariance in the decomposition of the model output variance, which
can distinguish the structural and correlative contribution of a nominal input. Kala [9]
performed GSA based on entropy, and proposed a novel method from differential entropy
to alternative measures. Kucherenko et al. [10] applied a Gaussian copula method to
variance-based global sensitivity analysis, and introduced a more general approach. On
this basis, Song et al. [11] proposed using an adaptive copula method to solve Sobol’
indices, which can describe different types of correlations. The above methods are mainly
aimed at the case of bivariate correlation. Yet, considering that many input variables are
multidimensional and interrelated in engineering problems, it is necessary to propose an
effective method with which to measure multidimensional correlation.
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Over the past few years, the Nataf model proposed by Kiureghian et al. [12] has
been widely used in structural safety engineering with multidimensional correlated vari-
ables. Lebrun and Dutfoy [13] proved that the Nataf model is essentially equivalent to
multivariate Gaussian copula. Besides, Eryilmaz [14] studied multivariate Archimedean
copula and applied multivariate Clayton and Gumbel copulas to the reliability analysis of
weighted-k-out-of-n systems with dependent components. Daul et al. [15] discussed the
grouped t-copula with an application to credit risk. Cossette et al. [16] reviewed the Farlie-
Gumbel-Morgenstern (FGM) copula and expanded it to multidimensional situations. The
above copula methods require that the correlations between different variables conform to
the same copula function. However, many of the multidimensional variables in practical
engineering have different correlations. For example, in the variable-amplitude load fatigue
problem, the fatigue life under different stress levels has different correlations [17]. In
flood frequency analysis, the flood peak value, total amount and duration are complexly
correlated [18]. For such problems, the above multivariate copula models are subject to
errors [19], and the correlations should be measured by different copula functions.

In this paper, we introduce Vine copula [20–22] to the variance-based global sensitivity
analysis of complex multidimensional correlation problems. Vine copula can decompose
the joint PDF of multidimensional variables into some bivariate copula functions of original
variables and conditional variables [20], so as to measure different correlations among the
multivariate variables with different copula functions. After the decomposition, the Akaike
Information Criterion (AIC) method [23] or one of other methods [24,25] is required to
select the optimal bivariate copula function, which can separately measure the correlation
among the input variables. For engineering problems with multidimensional correlated
variables, the Vine copula method can use optimal copula to separately measure the
correlation of different variables. Thus, the complex dependence structure of variables can
be fitted to the maximum extent, and the most accurate possible solution of Si and Stot

i can
be obtained. Due to the excellent properties of Vine copula, it has been applied in structural
safety and reliability. Torre et al. [26] formalized the framework needed to build Vine
copula models of multivariate inputs and combine them with virtually any uncertainty
quantification method. Nazih et al. [27] studied the specific problem of structural reliability
as an application of Vine copula. Sarazin et al. [28] used Vine copula to perform reliability-
oriented sensitivity analysis in the presence of data-driven epistemic uncertainty. Inspired
by the above works, we applied Vine copula to perform variance-based sensitivity analysis.

This paper is organized as follows: Section 2 presents a detailed introduction of Vine
copula, including its basic theory and classification. The process of solving variance-based
global sensitivity analysis based on Vine copula is introduced in Section 3. Section 4
analyzes some numerical and engineering tests. Conclusions are summarized in Section 5.

2. Vine Copula

Vine copula is an efficient mathematical tool to decompose the multidimensional joint
PDF into the continuous product of several two-dimensional copula functions and marginal
PDF [20]. Consider a set of n-dimensional correlated variables X = (X1, X2, · · · , Xn), the
joint PDF f (x1, x2, · · · , xn) of that can be decomposed as follows:

fX(x1, x2, · · · xn) = fX1(x1) fX2|X1
(x2) fX3|X1,X2

(x3) · · · fXn |X1,X2,···Xn−1
(xn) (1)

where fXi (xi), i = 1, 2, · · · , n is the marginal PDF of the input variable Xi and fXj |X1,X2,···

Xj−1(xj), j = 2, 3, · · · , n is the conditional PDF of Xj under X1, X2, · · · , Xj−1 constraint.
For the multidimensional independent cases, fXj |X1,X2,··· ,Xj−1

(xj) = fXj(xj), i.e., the joint
PDF of the variables is equal to the product of marginal PDFs.
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For the case of two-dimensional variables, the joint PDF is fX(x1, x2) = fX1(x1) fX2|X1
(x2)

and the conditional PDF and be expressed as:

fX2|X1
(x2) = fX(x1,x2)

fX1 (x1)

=
c12(FX1 (x1),FX2 (x2)) fX1 (x1) fX2 (x2)

fX1 (x1)

= c12
(

FX1(x1), FX2(x2)
)

fX2(x2)

(2)

where c12(·) is copula density function of input variables X1 and X2, while FXi (xi) is the
marginal CDF of Xi.

For the case of high-dimensional variables, the decomposition of Equation (1) is
not unique. Bedford and Cooke [20,21] proposed Vine copula to describe the different
decomposition methods and introduced a regular Vine (R-Vine) structure, in which C-Vine
and D-Vine are two common structures. C-Vine can be well used to describe correlations
among variables when a particular variable is known to be a key variable that governs
interactions in the dataset (e.g., X1 is the key variable of C-Vine in Figure 1), while D-Vine
is suitable for describing correlated variables of the same status. An n-dimensional Vine
copula model consists of n− 1 trees Tj (j = 1, 2, · · · , n− 1

)
, which has n− j + 1 nodes and

n− j sides. Each node represents an unconditional or conditional variable, and each side
represents a two-dimensional copula density function. The nodes in tree Tj are made up
of the sides in tree Tj−1 and related only to the sides that have a common node in tree
Tj−1. According to the logical structure of C-Vine and D-Vine models, the joint PDF of
n-dimensional variables can, respectively, be expressed as Equations (3) and (4):

fX(x1, x2, · · · xn) =
n

∏
k=1

fXk (xk)
n−1

∏
j=1

n−j

∏
i=1

cj,j+i|1,··· ,j−1

(
FXj |X1,··· ,Xj−1

(xj), FXj+i |X1,··· ,Xj−1
(xj+i)

)
(3)

fX(x1, x2, · · · xn) =
n

∏
k=1

fXk (xk)
n−1

∏
j=1

n−j

∏
i=1

ci,i+j|i+1,··· ,i+j−1

(
FXi |Xi+1,··· ,Xi+j−1

(xi), FXi+j |Xi+1,··· ,Xi+j−1
(xj+i)

)
(4)

Figure 1. C-Vine model of four-dimensional variables.

Figures 1 and 2 show the structural diagrams of C-Vine and D-Vine with four dimen-
sional variables; the corresponding decomposition of the joint PDF in Figures 1 and 2 can
be expressed separately as follows. It can be seen that the notation of D-Vine resembles
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independence graphs more than that of C-Vine. Therefore, we mainly adopted C-Vine in
order to emphasize the influence of dependence on sensitivity indices.

fX(x1, x2, x3, x4) = fX1(x1) fX2(x2) fX3(x3) fX4(x4)
·c12
(

FX1(x1), FX2(x2)
)
· c13

(
FX1(x1), FX3(x3)

)
· c14

(
FX1(x1), FX4(x4)

)
·c23|1

(
FX2|X1

(x2), FX3|X1
(x3)

)
· c24|1

(
FX2|X1

(x2), FX4|X1
(x4)

)
·c34|12

(
FX3|X1X2

(x3), FX4|X1X2
(x4)

) (5)

fX(x1, x2, x3, x4) = fX1(x1) fX2(x2) fX3(x3) fX4(x4)
·c12
(

FX1(x1), FX2(x2)
)
· c23

(
FX2(x2), FX3(x3)

)
· c34

(
FX3(x3), FX4(x4)

)
·c13|2

(
FX1|X2

(x1), FX3|X2
(x3)

)
· c24|3

(
FX2|X3

(x2), FX4|X3
(x4)

)
c14|23

(
FX1|X2X3

(x1), FX4|X2X3
(x4)

) (6)

Figure 2. D-Vine model of four-dimensional variables.

The above decomposition process involves conditional distribution FXj |X1,··· ,Xj−1
(xj)

and FXi |Xi+1,··· ,Xi+j−1
(xi). For the convenience of expression, we introduce the function

h(·) to express the binary conditional distribution, while h−1 denotes the inverse function
of h(·).

h(ui, uj) = FXi |Xj
(xi) =

∂C(ui, uj
∣∣α)

∂uj
(7)

where ui = FXi (xi) and uj = FXj(xj) are the marginal cumulative distribution functions
(CDF) of Xi and Xj, C(ui, uj) denotes copula function and α denotes the parameter of
copula function, which can be estimated by the AIC method [23] or other methods [24,25].
Table 1 lists the h(·) and h−1(·) functions of some common copula functions [29].

According to the decomposition process in Equation (3) or (4), the multidimensional
joint PDF can be transformed into the product of marginal PDF and several binary copula
functions. Thus, we can use the conventional binary copula functions for variance-based
global sensitivity analysis with multidimensional correlated input variables.

Table 1. The functions h and h−1 of some frequently-used copula functions.

Copula C(u1,u2|α) h h−1

Gaussian Φ
(

Φ−1(u1), Φ−1(u2)
∣∣∣α) Φ

(
Φ−1(u1)−αΦ−1(u2)√

1−α2

)
Φ
(

Φ−1(u1)
√

1− α2 + αΦ−1(u2)
)

Clayton
(
u−α

1 + u−α
2 − 1

)−1/α u−α−1
2

(
u−α

1 + u−α
2 − 1

)−1−1/α
((

u1uα+1
2

)− α
α+1 − u−α

2 + 1
)−1/α

Gumbel e−((− ln u1)
α+(− ln u2)

α)
1/α

C(u1, u2

∣∣∣α) 1
u2
(− log u2)

α−1((− log u1)
α + (− log u2)

α)1/α−1 -

Frank − 1
α

(
1 + (e−αu1−1)(e−αu2−1)

e−α−1

)
e−αu2

e−α−1
e−αu1−1

+e−αu2−1
− log

(
1− 1−e−α

(u−1
1 −1)e−αu2+1

)
/α



Mathematics 2021, 9, 2489 5 of 20

3. Variance-Based GSA Based on Vine Copula

Considering a model function Y = g(X) defined in Rn with an input vector
X = (X1, X2, · · · , Xn), Sobol [1] and Saltelli [2] put forward the variance-based global
sensitivity indices based on ANalysis Of VAriance (ANOVA) decomposition:

Si =
Di
D

=
Var(E(Y|Xi))

Var(Y)
(8)

Stot
i =

Dtot
i

D
=

E(Var(Y|X∼i))

Var(Y)
(9)

where D denotes the variance of model output Y, while Di and Dtot
i are the conditional

variances of Y under Xi constraint. The full expressions for Si and Stot
i are given by the

following formulas:

Si =
1
D

∫
R

fXi (xi)dxi

 ∫
Rn−1

g(X) fX∼i |Xi
(x∼i)dx∼i

2

− g2
0

 (10)

Stot
i =

1
D

 ∫
Rn−1

fX∼i |Xi
(x∼i)dx∼i

∫
R

g2(X) fXi (xi)dxi − g2
0

 (11)

where g0 =
∫

Rn
g(X) fX(x)dx denotes the expectation of model output Y, and where the

variance is given by D =
∫

Rn
g2(X) fX(x)dx− g2

0. Kucherenko et al. [10] derived the for-

mula of variance-based global sensitivity indices under correlated variables based on the
conditional variance theory:

Si =
1
D

∫
Rn

g(X) f (x)dx

 ∫
Rn−1

g(X′1, · · · , Xi · · ·X′n) fX′∼i |Xi
(x′∼i)dx′∼i −

∫
Rn

g(X′) f (x′)dx′

 (12)

Stot
i =

1
2D

∫
Rn

[
g(X)− g(X1, · · · , X′ i · · ·Xn)

]2
f (x) fX′ i |X∼i

(x′ i)dxdx′ i (13)

where X and X
′

are unconditional sample matrices generated according to the joint PDF
of input variables, while (X′1, · · · , X′ i−1, X′ i+1, · · · , X′n) and X′ i are conditional samples
generated by conditional PDFs fX′∼i |Xi

(x′∼i) and fX′ i |X∼i
(x′ i), respectively. Tarantola and

Mara [30] indicated that Si measures the amount of variance of Xi due to Xi and its
dependence with X∼i but does not include the interactions of them, while Stot

i accounts for
the contributions of Xi and its dependence with X∼i by ignoring the correlations among
variables. Therefore, the dependence among variables may lead to Si > Stot

i (dependent
effects larger than interacted effects). By comparing the values of the two indices, we can
get the independent contributions, dependent contributions and interacted contributions
of the variables, so as to perform factor ranking/fixing, variance cutting, etc.

According to Equations (12) and (13), Song et al. [11] introduced two copula-based
methods for solving Si and Stot

i under the case of two-dimensional correlated variables.
The first method uses the copula function to approximate the real joint distribution, while
the other approach uses the copula function to decompose the joint PDF into the product
of the marginal PDF and copula PDF. Song et al. [11] also concluded that the second
method is less computationally efficient than the first method, so we mainly discuss the
first copula-based method in this paper. For the sake of description, we denote the two
methods based on Vine copula as VC1 and VC2. In this section, we extend VC1 to the case
of multidimensional correlation, where there is a need to decompose the joint PDF of the
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input variables into the product of several two-dimensional copula functions and marginal
PDF using the Vine copula function (details of VC2 are presented in Appendix A).

The basic idea of VC1 is to use the copula function to approximate the real joint
distribution, and generate unconditional and conditional samples according to the selected
optimal copula function. This method can rewrite (12) and (13) as follows:

Si =

1
N

N
∑

j=1
g(X(j))

(
g(X′

(j)
1 , · · · , X(j)

i · · ·X′
(j)
n )− g(X

′ (j)
)

)
D

(14)

Stot
i =

1
N

N
∑

j=1

(
g(X(j))− g(X(j)

1 , · · · , X′
(j)
i · · ·X

(j)
n )
)2

2D
(15)

where N is the number of samples. After the decomposition of the joint PDF with the
Vine copula function, each optimal two-dimensional copula function and its parameters
needs to be inferred by using the known samples. According to the selected optimal copula
function, we generate samples according to the following ideas and steps [20,31].

Assuming that (x1, x2, · · · xn) is a group of samples of input variables X, according to
Rosenblatt model [32], the marginal and conditional distribution of (x1, x2, · · · xn) can be
expressed as follows:

r1 = FX1(x1)
r2 = FX2|X1

(x2)

· · ·
rn = FXn |X1,··· ,Xn−1

(xn)

(16)

where (r1, r2, · · · rn) are independent and uniformly distributed between 0 and 1. Corre-
spondingly, we can get the inverse transform of Equation (16).

x1 = F−1
X1

(r1)

x2 = F−1
X2|X1

(r2)

· · ·
xn = F−1

Xn |X1,··· ,Xn−1
(rn)

(17)

Assuming that (u1, u2, · · · un) are the marginal CDF values of the input variables, i.e.,
u1 = FX1(x1), u2 = FX2(x2), · · · , un = FXn(xn), the sampling procedure is as follows:

1. Generate two independent vectors, (r1, r2, · · · rn) and (r′1, r′2, · · · r′n), uniformly dis-
tributed between 0 and 1;

2. Let u1 = r1, and obtain x1 = F−1
X1

(u1);

3. Let r2 = FX2|X1
(x2) =

∂C12(FX1 (x1),FX2 (x2))
∂FX1 (x1)

= h(u2, u1), and obtain u2 = h−1(r2, u1),

x2 = F−1
X2

(u2);

4. Let r3 = FX3|X1,X2
(x3) =

∂C13|2
(

FX3 |X2
(x3),FX1 |X2

(x1)
)

∂FX1 |X2
(x1)

= h(h(u3, u2), h(u1, u2)), and ob-

tain u3 = h−1(h−1(r3, h(u1, u2)), u2
)
, x3 = F−1

X3
(u3);

5. Take the iteration repeatedly, and get a group of unconditional samples (x1, x2, · · · xn).

Considering the above sampling method involves a conditional copula function, the gen-
eration of conditional samples is similar to the above procedure. There is just a need to con-
struct independent uniform variables as (r′1, r′2, · · · , ri, · · · , r′n) and (r1, r2, · · · , r′ i, · · · , rn),
and thus the specific steps are omitted. The above procedure can be briefly summarized as
in the following figure. After getting the unconditional and conditional samples, Si and Stot

i
can be computed according to Equations (14) and (15). The solution process is concluded
as Figure 3.
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Figure 3. The solution process of VC1.

4. Test Cases

In this section, the developed approach is illustrated by five different models with
multidimensional correlated input variables.

The first test with lognormal distributed variables’ numerical solutions is computed
and compared with the reference results. We also compare the solutions obtained by the
two copula-based methods and discuss the effect of different Vine copulas on the results.
Test 2 compares the results obtained by the developed approach and traditional Nataf
model by analyzing a four-dimensional dependent model. The third case’s variables are
uniformly distributed and the influence of Kendall τ on the results is analyzed. The last
two tests are engineering cases with complex model functions and correlations, in which
Test 5 combines the proposed method and the finite element models.

4.1. Test 1. Example with Complete Probability Information

Consider a model function

g(X) = X1X2 − X2
3 (18)

where the input variables are normally distributed variables with µ = (1, 1.4, 1.6),
σ = (0.3, 0.2, 0.1). The linear correlation coefficients are ρ12 = 0.3, ρ13 = 0.5, ρ23 = 0.8, so

that the covariance matrix is Cov =

 0.09 0.018 0.015
0.018 0.04 0.016
0.015 0.016 0.01

. According to the theory of

multivariate normal distribution [10], a sufficient number of samples XN can be generated
to accurately estimate the mean and variance of the output response.

Further, we assume the input variables to have lognormal distribution with parameters
µ and σ. By exponent transformation of the above normally distributed samples XN , we
can obtain the lognormal distributed samples XL with unknown correlations, which are
used for copula parameter estimation, and the optimal copula functions can be selected
by the AIC method. The results are shown in Table 2, and the AIC values of the optimal
copula are marked in bold.

Table 2. The results of parameter estimation and AIC method.

Copula α12 α13 α23 α12|3 α13|2 α23|1

Gaussian 0.2999 0.5000 0.8000 −0.1925 0.4543 0.7868
Clayton 0.3298 0.6592 1.7598 0.0001 0.5717 1.6681
Gumbel 1.1995 1.4269 2.2462 1.0001 1.3649 2.1767
Frank 1.7998 3.2955 7.5508 0.0025 2.9129 7.2215

Copula AIC12
(×104)

AIC13
(×104)

AIC23
(×105)

AIC12|3
(×103)

AIC13|2
(×104)

AIC23|1
(×105)

Gaussian −2.4711 −7.5399 −2.6779 −9.8929 −6.0581 −2.5297
Clayton −1.7792 −5.5229 −2.0079 0.0099 −4.4245 −1.8934
Gumbel −2.0010 −6.5179 −2.4497 0.0174 −5.1750 −2.3091
Frank −2.2542 −6.8754 −2.4359 0.0419 −5.5241 −2.3014
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Table 2 shows that the optimal bivariate copula functions among all variables are
Gaussian copula, so we use bivariate Gaussian copula to construct Vine copula. The results
obtained by the two methods based on the Vine copula function are listed in Table 3,
while the reference solutions obtained by exponential transformation and the approximate
solutions based on the Nataf model are also listed in Table 3.

Table 3. Values of g0, D, Si and Stot
i .

g0 D S1 S2 S3 Stot
1 Stot

2 Stot
3

Reference −13.0510 13.1197 0.3177 0.0271 0.1286 0.8123 0.1778 0.5647
Nataf

(N = 216) −13.0511 13.1298 0.3173 0.0277 0.1286 0.8114 0.1779 0.5640

VC1
(N = 216) −13.0511 13.1304 0.3173 0.0279 0.1279 0.8122 0.1784 0.5641

VC2
(N = 223) −13.0477 13.1498 0.3170 0.0134 0.0956 0.8058 0.1757 0.5612

Table 3 shows that the two Vine copula methods obtain almost the same results as
reference solutions, which illustrates the feasibility and accuracy of the developed methods.
For this case, Vine copula consists only of Gaussian copula functions, which means Vine
copula is essentially the same as the Nataf model (multivariate Gaussian copula) for this
model. Therefore, the results obtained by Vine copula methods and Nataf methods are
very close.

Furthermore, we notice that the results obtained by VC2 need more sample points
than VC1 but have less accuracy. The convergence curve of the results obtained by the two
methods with the number of samples is shown in Figure 4. We can see that the convergence
of VC1 is better than that of VC2, which is consistent with the previous conclusion of Song
et al. [11]. This may be because VC2 needs to calculate the copula density function when
calculating Sobol’ indices, which may lead to numerical errors and cause abrupt changes
in the results. Therefore, we only discuss VC1 in the following tests.

The above method uses C-Vine to construct the joint PDF of input variables (X1 as
the key variable), i.e., the two-dimensional variables required for sampling are (X1, X2),
(X1, X3) and (X2|X1, X3|X1) . We change the key variable and use a different C-Vine
structure to describe the joint distribution of variables. The values of g0 and D obtained by
C-Vine copulas with different key variables are listed in Table 4. It can be seen that almost
the same results can be obtained by different C-Vine copulas, which means C-Vine copulas
based on different key variables have little effect on the mean and variance of the output
response for this model.

Table 4. Values of g0 and D obtained by different C-Vine copulas (N = 216).

Key Variable Vine Structure g0 D

X1 (X1, X2), (X1, X3), (X2|X1, X3|X1) −13.0511 13.1304
X2 (X1, X2), (X2, X3), (X1|X2, X3|X2) −13.0509 13.1611
X3 (X1, X3), (X2, X3), (X1|X3, X2|X3) −13.0512 13.1345
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Figure 4. Convergence plots of the methods for Si and Stot
i .

4.2. Test 2. Portfolio Model

Consider the Portfolio model [10]:

g(X) = X1X2 − X2
3 (19)

The input variables are normally distributed with µ = (0, 0, 2.5, 4) and σ = (4, 2, 2, 3).
There are several known samples (N = 500) in Figure 5, which shows all the variables are
correlated.
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Figure 5. Sample distribution of input variables (N = 500).

According to Equation (5), the four-dimensional input variables are decomposed as six
two-dimensional variables: (X1, X2), (X1, X3), (X1, X4), (X2|X1, X3|X1) , (X2|X1, X4|X1)
and (X3|X1X2, X4|X1X2) . The AIC values of each alternative bivariate copula function are
listed in Table 5, which were calculated by using the above 500 samples. We mark the AIC
values of the optimal copula in bold and display the corresponding parameters in Table 5.

Table 5. Values of parameter estimation and AIC method (N = 500).

Gaussian Clayton Gumbel Frank Copula α

X1, X2 −1033.3 −1364.7 −864.4 −855.9 8.0377
X1, X3 −324.6 −456.3 −229.5 −300.6 1.9490
X1, X4 −347.5 −264.8 −310.7 −294.0 0.7100

X2, X3|X1 −224.7 −173.1 −193.0 −212.4 0.6038
X2, X4|X1 −22.1 −15.0 −14.0 −24.0 1.3584

X3, X4|X1X2 −160.2 −117.7 −134.2 −162.2 3.6438
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It can be seen that the optimal copula functions of two-dimensional variables are
Clayton copula, Gaussian copula and Frank copula. Thus, there will be unknown errors
if using the traditional Nataf method to measure the correlation. Table 6 gives the values
obtained by the Nataf method and VC1.

Table 6. Values of g0, D, Si and Stot
i (N = 215).

g0 S1 S2 S3 S4

Nataf 9.7296 0.8338 0.8687 0.5843 0.5188
VC1 9.6056 0.7619 0.7702 0.3610 0.5877

D Stot
1 Stot

2 Stot
3 Stot

4
Nataf 581.1910 0.0294 0.0142 0.0285 0.0221
VC1 452.2249 0.0584 0.0311 0.0280 0.0279

The results obtained by the traditional Nataf method and the proposed Vine copula
method are different, as well as the importance orders of input variables. According
to the values of Si, the Nataf method gives the importance order of input variables as
X2 > X1 > X3 > X4, while X2 > X1 > X4 > X3 is obtained if using the Vine copula
method. Considering that an accurate importance order of variables is vital in practical
problems, if we only use the conventional Nataf method for this problem, inaccurate results
may be obtained, thus affecting the structural safety of a design.

Figure 6 shows the distribution of the samples (X1, X2) of the two methods. It can be
seen that the samples generated by the Nataf method have symmetry but no tail correlation,
while the Vine copula samples show a significantly lower tail correlation, which perfectly
matches the distribution of variables X1 and X2 in Figure 5. This model illustrates that
the tail correlation of variables has great impacts on Sobol’ indices. Since the traditional
Nataf method cannot capture the tail correlation between variables, the estimated results
of the Nataf method will have unknown errors if there is obvious tail correlation between
the variables, which is also the reason for the large gap between the results of the Nataf
method and the Vine copula method for this model.

Figure 6. Sample distribution generated by two methods ((X1, X2), N = 215).

Furthermore, it can be seen that Stot
i < Si for this model, which means the correlations

among input variables have greater effects than interactions on the variance of the output.
Therefore, we should focus on the main indices Si in practical engineering when analyzing
correlations, especially for non-normally dependent and nonlinear problems.

4.3. Test 3. Ishigami Function

Consider the Ishigami function [10]:

g(X) = X1X2 − X2
3 (20)
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with input variables being uniformly distributed: −π ≤ Xi ≤ π, i = 1, 2, 3. This function
is widely used as a benchmark for sensitivity analysis since it has strong non-linearity and
non-monotonicity.

We also analyzed this model in [11] and considered that only the variables X1 and X3
are dependent. In this paper, we assume that the three input variables are all correlated,
and the distribution of 500 samples of input variables is shown in Figure 7. It can be seen
that there is upper tail correlation between X1 and X2, and lower tail correlation between
X1 and X3.

Figure 7. Sample distribution of input variables (N = 500).

By using the above samples, the optimal copula functions and their parameters among
the two-dimensional variables are selected by the AIC method, and the results are listed in
Table 7 (where the AIC values of the optimal copula functions are in bold).

Table 7. Values of parameter estimation and AIC method (N = 500).

Gaussian Clayton Gumbel Frank Copula α

X1, X2 −307.42 −194.53 −318.29 −294.48 1.9063
X1, X3 −255.70 −367.33 −185.25 −273.38 1.8789
X2, X3 −91.34 −95.63 −61.17 −90.73 0.6513

X2, X3|X1 2.00 1.77 2.00 1.99 0.0192
X1, X3|X2 −154.66 −204.43 −104.82 −155.01 1.1335
X1, X2|X3 −169.16 −88.75 −189.89 −162.15 1.5972

The optimal copula functions between two-dimensional variables are mainly Clayton
copula and Gumbel copula, the parameters of which are listed in Table 7. Table 8 gives
the values obtained by the Nataf method and the proposed method. It is shown that the
importance orders of variables obtained by the two methods are the same (X2 > X1 > X3),
but the specific values of Si and Stot

i are different. This is because the Vine copula method
proposed in this paper takes into account the tail correlation between variables, which
cannot be measured by the Nataf method.

Table 8. Values of g0, D, Si and Stot
i (N = 214).

g0 D S1 S2 S3 Stot
1 Stot

2 Stot
3

Nataf 3.5000 12.4260 0.3125 0.5714 0.2289 0.2468 0.4760 0.2129
VC1 3.5189 12.3998 0.3450 0.6018 0.2468 0.2400 0.4655 0.1887

We also analyze the influence of degree of correlation of input variables on the im-
portance analysis results. It is assumed that the Kendall τ between the decomposed
two-dimensional variables is the same, and the optimal copula functions in the previous
step are used. The proposed Vine copula method and Nataf method are used for analysis,
and the independent situation of the three variables is considered at the same time. The
curve of the calculated results changing with Kendall τ is shown in Figure 8.
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Figure 8. Values of S1 obtained by two methods versus τ.

It can be seen that the results obtained by the two methods show the same trend with
Kendall τ and are significantly different from the results in the independent case. This
shows that the correlation between variables has a great impact on the Sobol’ indices. If
the variables are simply assumed as independent variables for processing, this may cause
a large error in the importance analysis and affect the safety of designs in engineering.
Besides, the results obtained by the two methods are relatively close in the case of small
and large Kendall τ, while the results are significantly different when 0.5 < τ < 0.8. This
indicates that the Vine copula method with better correlation measurement should be
selected for analysis within the correlation range 0.5 < τ < 0.8.

4.4. Test 4. Fatigue and Creep of Materials

Fatigue and the creep of materials are two common failure modes at high temperatures.
Based on experimental data using the linear damage accumulation rule, Mao et al. [33]
proposed a probabilistic model for reliability analysis of the creep and fatigue of materials
as follows:

g(X) = X1X2 − X2
3 (21)

where Dc and D f denote the creep damage and fatigue damage, respectively, and θ1 and
θ2 are the parameters obtained from the experimental results. Two instances of damage
can be expressed as Dc =

nc
Nc

and D f =
n f
N f

, where Nc and N f correspond to the creep life
and fatigue life, respectively, while nc and n f are the number of the creep and fatigue load
cycles.

Assuming that the creep and fatigue lifetimes of a material follow log-normal distribu-
tion, θ1 and θ2 are normally distributed. The assumed values of the distribution parameters
are shown in Table 9.

Table 9. Values and distribution parameters of input variables.

Input Variables Mean µ Coefficient of Variation (COV) Distribution

Nc 5490 0.20 Log-normal
N f 17,100 0.20 Log-normal
nc 549 0.20 Log-normal
n f 6000 0.20 Log-normal
θ1 0.42 0.20 Normal
θ2 6.0 0.20 Normal

The input variables Nc, N f , nc and n f are dependent according to the theory of
material mechanics. There are several experimental data, the distributions of which are
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shown in Figure 9. The sample values of Dc and D f can be calculated by using these data.
Figure 10 shows the curve of creep-fatigue failure.

Figure 9. Sample distribution of input variables (N = 500).
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Figure 10. Creep-fatigue failure function.

Figure 10 shows that the relationship between creep damage and fatigue damage
is nonlinear, i.e., the ultimate damage to the material is a nonlinear function of fatigue
damage and creep damage, which means creep damage and fatigue damage affect each
other. The contribution of each input variable to the limit state equation is analyzed. The
samples in Figure 9 are statistically inferred to determine the optimal copula function and
correlation parameters between the two-dimensional variables by the AIC method. The
results are listed in Table 10.

Table 10. Values of parameter estimation and AIC method (N = 500).

Gaussian Clayton Gumbel Frank Copula α

Nc, N f −386.7 2.0 2.0 −368.1 −0.7364
Nc, nc −48.8 2.0 2.0 −52.3 −2.1534
Nc, n f −331.7 −239.8 −292.5 −334.8 6.0953

N f , nc

∣∣∣Nc −354.6 −249.8 −336.4 −351.0 0.7132

N f , n f

∣∣∣Nc −0.1 2.0 2.0 −1.8 −0.5304

nc, n f

∣∣∣Nc N f −1376.1 2.0 2.0 −1412.1 −27.3777

Figure 11 gives the results of variance-based global sensitivity indices with the Nataf
method and Vine copula method. It can be seen that the results obtained by the two
methods are relatively similar, and the same importance order of variables is obtained.
According to the values of Si in Figure 11a, the fatigue life N f and the fatigue load cycle
n f have greater influences on the limit state function than Nc and nc, which is consistent
with the AIC values in Table 10. This means the effects of input variables can be predicted
preliminarily after the correlation estimation by the AIC method. For the parameters in the
experiment, the influence of θ1 is greater than θ2. We can conclude that the fatigue life and
fatigue load cycle of materials most affect the creep-fatigue failure of the structure.

In addition, the importance measurement results obtained by the two methods are
different since the Vine copula method uses the optimal copula (Gaussian copula and Frank
copula, respectively) to measure the correlation between variables, while the traditional
Nataf method only uses a single Gaussian copula to compute.
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Figure 11. The values of Sobol’ indices; (a) Si, (b) Stot
i .

4.5. Test 5. Three-Bay Five-Story Linear Elastic Frame Structure

Consider a three-bay five-story linear elastic frame structure [34,35], as shown in
Figure 12, which is characterized by 21 random variables: 3 applied loads, 2 Young’s moduli,
8 moments of inertia and 8 cross-sectional areas. The properties of the frame structures and
the distribution types and parameters of random variables are given in Tables 11 and 12,
respectively. Statistical dependence among the basic variables is considered. All loads are
correlated with linear correlation coefficient ρ = 0.5, while the cross-sectional area and the
moment of inertia of each element type are correlated with ρ = 0.95. All cross-sectional
properties are correlated as

g(X) = X1X2 − X2
3 (22)

We consider the horizontal displacement at node 1 as output function:

g(X) = X1X2 − X2
3 (23)

where uX denotes the actual horizontal displacement as an implicit function of all basic
variables.

According to engineering qualitative analysis, input variables P1, P2, P3, E4, A18, A19
and A20 contribute more than 95% to the output variance. Thus, we mainly analyze the
importance orders of these seven input variables. In the following, the frame structure is
modeled and analyzed by ANSYS with element type BEAM188. Several samples (N = 215)
are generated using the Nataf model with the linear correlation coefficients. According
to these samples, Gaussian copula is selected as the optimal bivariate copula of the Vine
structure through the AIC method, and the corresponding parameters are computed as
well (given in Appendix B). The values of Sobol’ indices given by the Nataf method and
Vine copula method are listed in Table 13.

Figure 12. Three-bay five-story linear elastic frame structure.
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Table 11. Properties of the frame structures.

Element Young’s Modulus Moment of Inertia Cross Section Area

B1 E4 I10 A18
B2 E4 I11 A19
B3 E4 I12 A20
B4 E4 I13 A21
C1 E5 I6 A14
C2 E5 I7 A15
C3 E5 I8 A16
C4 E5 I9 A17

Table 12. Statistical properties of random variables.

Variables Distribution Mean SD Variables Distribution Mean SD

P1 Rayleigh 30 9 I12 Normal 2.69 0.52
P2 Rayleigh 20 8 I13 Normal 3.00 0.60
P3 Rayleigh 16 6.40 A14 Normal 3.36 0.48
E4 Normal 454,000 40,000 A15 Normal 4.00 0.64
E5 Normal 497,000 40,000 A16 Normal 5.44 0.80
I6 Normal 0.94 0.10 A17 Normal 6.00 0.96
I7 Normal 1.33 0.12 A18 Normal 2.72 0.80
I8 Normal 2.47 0.24 A19 Normal 3.13 0.88
I9 Normal 3.00 0.28 A20 Normal 4.01 1.04
I10 Normal 1.25 0.24 A21 Normal 4.50 1.16
I11 Normal 1.63 0.32

SD: Standard deviation.

Table 13. Values of g0, D, Si and Stot
i (N = 215).

g0 SP1 SP2 SP3 SE4 SA18 SA19 SA20

Nataf 0.1149 0.4395 0.1473 0.1247 0.0112 0.0306 0.0751 0.2789
VC1 0.1148 0.4344 0.1523 0.1322 0.0116 0.0416 0.0819 0.2796

D Stot
P1

Stot
P2

Stot
P3

Stot
E4

Stot
A18

Stot
A19

Stot
A20

Nataf 0.0071 0.3132 0.0053 0.0005 0.0006 0.0005 0.0120 0.0617
VC1 0.0071 0.3137 0.0052 0.0005 0.0015 0.0004 0.0115 0.0638

It can be seen that two methods can get the same importance ranking of input variables.
According to the main indices, the load P1 has the largest contribution to the uncertainty
of the output of the frame structure, and the importance of P2 is larger than P3, which
is consistent with the conclusion of the engineering qualitative analysis. In all interface
properties, the cross-section area A20 of element B3 contributes the most to the uncertainty
of the output. Besides, the total effects of input variables are generally smaller than the
main effects, which indicates that the correlations among variables have greater effects on
the output than the interacted effects. Therefore, the correlations among variables must be
considered in importance analysis in engineering.

Comparing the results of the two methods, we can see that the values of the mean
and variance of the output as well as Sobol’ indices are almost the same. This is because
the optimal bivariate copula functions of Vine structure are all Gaussian copula functions,
which means the Vine copula method is essentially equivalent to the Nataf method under
these circumstances.

5. Conclusions

Two novel Vine copula approaches (VC1 and VC2) for estimating variance-based
global sensitivity indices for models with multidimensional correlated input variables are
presented. VC1 generates dependent unconditional and conditional samples according
to copula instead of the real joint CDF, while VC2 solves the indices respectively by
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decomposing the joint PDF into independent and dependent parts. The approaches
provide a new method for variance-based GSA of multidimensional cases with different
correlations. By introducing Vine copula, the complex multidimensional related cases are
transformed into two-dimensional related problems, and the optimal copula functions
are used to measure different correlations separately. In the general case of arbitrary
distributions with unknown multidimensional correlations, the proposed methods have
a wider application than the traditional correlation analysis methods, such as the multi-
Gaussian copula method (Nataf model) or multi-Archimedean copula method. VC1 is
mainly used in five different test functions for testing and comparison. The results show
the feasibility and accuracy of the proposed methods compared with the Nataf model.
Through the calculation of the AIC method, the number of decomposed items of the joint
PDF can be reduced preliminarily, which can help to improve the computational efficiency
of reliability and sensitivity analyses based on the joint PDF for the further work.
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Appendix A

The basic idea of VC2 is based on the properties of copula [29] that copula can divide
the joint PDF f (x) into two parts: the independent part and the dependent part.

f (x) =
∂dC(u1, u2, · · · , ud)

∂u1∂u2 · · · ∂ud

d

∏
i=1

f (xi) = c(u1, u2, · · · , ud)
d

∏
i=1

f (xi) (A1)

where c(u1, u2, · · · , ud) is copula density function and f (xi) is the marginal PDF of xi. The

independent part can be measured by the product of marginal PDF
d

∏
i=1

f (xi), while the

dependent part can be described by copula density function c(u1, u2, · · · , ud). Therefore, we
generate independent samples according to marginal PDF, and calculate the independent
and dependent parts respectively. Equations (12) and (13) can be formulated as

Si =

1
N

N
∑

j=1
g(X(j))c(u(j))

(
g(X′

(j)
1 , · · · , X(j)

i · · ·X′
(j)
n )c(u′(j)

1 , · · · , u(j)
i · · · u

′(j)
n )− g(X′(j)

)c(u′(j))
)

D
(A2)

Stot
i =

1
N

N
∑

j=1

(
g(X(j))− g(X(j)

1 , · · · , X′
(j)
i · · ·X

(j)
n )
)2

c(u(j))
c(u(j)

1 ,··· ,u′(j)
i ···u

(j)
n )

c(u(j)
1 ,··· ,u(j)

i−1u(j)
i+1···u

(j)
n )

2D
(A3)

Unlike Equations (14) and (15), the variable samples in Equations (A2) and (A3) are
independent samples generated according to marginal PDF. We can see that Equations (A2)
and (A3) consist in weighting the different terms of the sum in the MC estimator formula
with the copula density function values at the corresponding data point. The basic idea
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of this method is analogous to the one on which importance sampling (IS) estimators [36]
are based to reduce the variance of MC estimators (the weighting by the copula density
function can be seen as a likelihood ratio). The detailed procedure is as follows:

i. generate independent samples (X1, X2, · · · , Xn) and (X′1, X′2, · · · , X′n) according
to the marginal PDFs;

ii. construct conditional samples (X′1, · · · , Xi, · · · , X′n) and (X1, · · · , X′ i, · · · , Xn);
iii. compute the values of marginal CDF using the above samples and get (u1, u2, · · · , un),

(u′1, u′2, · · · , u′n), (u′1, · · · , ui, · · · , u′n) and (u1, · · · , u′ i, · · · , un);
iv. compute the values of output function and copula density function, and get Si and

Stot
i according to Equations (19) and (20).

Appendix B

Table A1. Parameters of the Optimal Bivariate Copula Functions, test 5.

Variables Copula α

P1P2, P1P3 0.5000
P2P3|P1 0.3332

E4E5 0.9000
I6 I7−13, I6 I15−21 0.1300

I6 A14 0.9500
I7 I8−13|I6 , I7 A16−21|I6 0.1148

I7 A14|I6 0.0207
I7 A15|I6 0.9491

I8 I9−13|I6 I7 , I8 A17−21|I6 I7 0.1030
I8 A14−15|I6 I7 0.0184

I8 A16|I6 I7 0.9484
I9 I10−13|I6 I7 I8 , I9 A18−21|I6 I7 I8 0.0933

I9 A14−16|I6 I7 I8 0.0166
I9 A17|I6 I7 I8 0.9478

I10 I11−13|I6 I7 I8 I9 , I10 A19−21|I6 I7 I8 I9 0.0853
I10 A14−17|I6 I7 I8 I9 0.0152

I10 A18|I6 I7 I8 I9 0.9474
I11 I12−13|I6 I7 I8 I9 I10 , I11 A20−21|I6 I7 I8 I9 I10 0.0785

I11 A14−18|I6 I7 I8 I9 I10 0.0139
I11 A19|I6 I7 I8 I9 I10 0.9470

I12 I13|I6 I7 I8 I9 I10 I11 , I12 A21|I6 I7 I8 I9 I10 I11 0.0728
I12 A14−19|I6 I7 I8 I9 I10 I11 0.0129

I12 A20|I6 I7 I8 I9 I10 I11 0.9467
I13 A14−20|I6 I7 I8 I9 I10 I11 I12 0.0120

I13 A21|I6 I7 I8 I9 I10 I11 I12 0.9464
Other conditional variables 0.0020

References
1. Sobol, I.M.; Kucherenko, S. Global sensitivity indices for nonlinear mathematical models. Review. Wilmott 2005, 1, 56–61.

[CrossRef]
2. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output:

Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [CrossRef]
3. Kala, Z. Sensitivity analysis in probabilistic structural design: A comparison of selected techniques. Sustainability 2020, 12, 4788.

[CrossRef]
4. Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.

2001, 55, 271–280. [CrossRef]
5. Li, G.; Rosenthal, C.; Rabitz, H. High Dimensional Model Representations. J. Phys. Chem. A 2001, 105, 7765–7777. [CrossRef]
6. Kala, Z. Global sensitivity analysis of reliability of structural bridge system. Eng. Struct. 2019, 194, 36–45. [CrossRef]
7. Xu, C.; Gertner, G.Z. Uncertainty and sensitivity analysis for models with correlated parameters. Reliab. Eng. Syst. Saf. 2008, 93,

1563–1573. [CrossRef]
8. Li, G.; Rabitz, H.; Yelvington, P.E.; Oluwole, O.O.; Bacon, F.; Kolb, C.E.; Schoendorf, J. Global Sensitivity Analysis for Systems

with Independent and/or Correlated Inputs. J. Phys. Chem. A 2010, 114, 6022–6032. [CrossRef]

http://doi.org/10.1002/wilm.42820050114
http://doi.org/10.1016/j.cpc.2009.09.018
http://doi.org/10.3390/su12114788
http://doi.org/10.1016/S0378-4754(00)00270-6
http://doi.org/10.1021/jp010450t
http://doi.org/10.1016/j.engstruct.2019.05.045
http://doi.org/10.1016/j.ress.2007.06.003
http://doi.org/10.1021/jp9096919


Mathematics 2021, 9, 2489 20 of 20

9. Kala, Z. Global sensitivity analysis based on entropy: From differential entropy to alternative measures. Entropy 2021, 23, 778.
[CrossRef]

10. Kucherenko, S.; Tarantola, S.; Annoni, P. Estimation of global sensitivity indices for models with dependent variables. Comput.
Phys. Commun. 2012, 183, 937–946. [CrossRef]

11. Song, S.; Bai, Z.; Wei, H.; Xiao, Y.; Kucherenko, S. Variance-based importance measure analysis based on copula under incomplete
probability information. Probabilistic Eng. Mech. 2021, submitted for publication.

12. Der Kiureghian, A.; Liu, P. Structural Reliability under Incomplete Probability Information. J. Eng. Mech. 1986, 112, 85–104.
[CrossRef]

13. Lebrun, R.; Dutfoy, A. An innovating analysis of the Nataf transformation from the viewpoint of copula. Probabilistic Eng. Mech.
2009, 24, 312–320. [CrossRef]

14. Eryilmaz, S. Multivariate copula based dynamic reliability modeling with application to weighted-k-out-of-n systems of
dependent components. Struct. Saf. 2014, 51, 23–28. [CrossRef]

15. Daul, S.; De Giorgi, E.G.; Lindskog, F.; McNeil, A. The Grouped t-Copula with an Application to Credit Risk. Soc. Sci. Electron.
Publ. 2009, 16, 11. [CrossRef]

16. Cossette, H.; Côté, M.P.; Marceau, E.; Moutanabbir, K. Multivariate distribution defined with Farlie-Gumbel-Morgenstern copula
and mixed Erlang marginals: Aggregation and capital allocation. Insur. Math. Econ. 2013, 52, 560–572. [CrossRef]

17. Gao, K.; Liu, G. Novel nonlinear time-varying fatigue reliability analysis based on the probability density evolution method. Int.
J. Fatigue 2021, 149, 106257. [CrossRef]

18. Fischer, S.; Schumann, A.H. Multivariate flood frequency analysis in large river basins considering tributary impacts and flood
types. Water Resour. Res. 2021, 57, e2020WR029029. [CrossRef]

19. Jiang, C.; Zhang, W.; Han, X.; Ni, B.Y.; Song, L.J. A Vine-Copula-Based Reliability Analysis Method for Structures with
Multidimensional Correlation. J. Mech. Des. 2015, 137, 061405. [CrossRef]

20. Bedford, T.; Cooke, R.M. Probability density decomposition for conditionally dependent random variables modeled by vines.
Ann. Math. Artif. Intell. 2001, 32, 245–268. [CrossRef]

21. Bedford, T.; Cooke, R.M. Vines: A new graphical model for dependent random variables. Ann. Stat. 2002, 30, 1031–1068.
[CrossRef]

22. Kurowicka, D.; Joe, H. Dependence Modelling: Vine Copula Handbook; World Scientific: Singapore, 2011.
23. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
24. Genest, C.; Verret, F. Locally most powerful rank tests of independence for copulas model. J. Nonparametric Stat. 2005, 17, 521–535.

[CrossRef]
25. Huard, D.; Evin, G.; Favre, A. Bayesian copula selection. Comput. Stat. Data Anal. 2006, 51, 809–822. [CrossRef]
26. Torre, E.; Marelli, S.; Embrechts, P.; Sudret, B. A general framework for data-driven uncertainty quantification under complex

input dependencies using vine copulas. Probabilistic Eng. Mech. 2019, 55, 1–16. [CrossRef]
27. Benoumechiara, N.; Bousquet, N.; Michel, B.; Saint-Pierre, P. Detecting and modeling critical dependence structures between

random inputs of computer models. Depend. Modeling 2020, 8, 263–297. [CrossRef]
28. Sarazin, G.; Morio, J.; Lagnoux, A.; Balesdent, M.; Brevault, L. Reliability-oriented sensitivity analysis in presence of data-driven

epistemic uncertainty. Reliab. Eng. Syst. Saf. 2021, 215, 107733. [CrossRef]
29. Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006.
30. Tarantola, S.; Mara, T.A. Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude

Sensitivity Test. Int. J. Uncertain. Quantif. 2017, 7, 511–523. [CrossRef]
31. Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198.

[CrossRef]
32. Rosenblatt, M. Remarks on a Multivariate Transformation. Ann. Math. Stat. 1952, 23, 470–472. [CrossRef]
33. Mao, H.; Mahadevan, S. Reliability analysis of creep–fatigue failure. Int. J. Fatigue 2000, 22, 789–797. [CrossRef]
34. Guan, X.L.; Melchers, R.E. Effect of response surface parameter variation on structural reliability estimates. Struct. Saf. 2001, 23,

429–444. [CrossRef]
35. Kaymaz, I. Application of kriging method to structural reliability problems. Struct. Saf. 2005, 27, 133–151. [CrossRef]
36. Au, S.K.; Beck, J.L. Importance sampling in high dimensions. Struct. Saf. 2002, 25, 139–163. [CrossRef]

http://doi.org/10.3390/e23060778
http://doi.org/10.1016/j.cpc.2011.12.020
http://doi.org/10.1061/(ASCE)0733-9399(1986)112:1(85)
http://doi.org/10.1016/j.probengmech.2008.08.001
http://doi.org/10.1016/j.strusafe.2014.05.004
http://doi.org/10.2139/ssrn.1358956
http://doi.org/10.1016/j.insmatheco.2013.03.006
http://doi.org/10.1016/j.ijfatigue.2021.106257
http://doi.org/10.1029/2020WR029029
http://doi.org/10.1115/1.4030179
http://doi.org/10.1023/A:1016725902970
http://doi.org/10.1214/aos/1031689016
http://doi.org/10.1109/TAC.1974.1100705
http://doi.org/10.1080/10485250500038926
http://doi.org/10.1016/j.csda.2005.08.010
http://doi.org/10.1016/j.probengmech.2018.08.001
http://doi.org/10.1515/demo-2020-0016
http://doi.org/10.1016/j.ress.2021.107733
http://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020291
http://doi.org/10.1016/j.insmatheco.2007.02.001
http://doi.org/10.1214/aoms/1177729394
http://doi.org/10.1016/S0142-1123(00)00046-3
http://doi.org/10.1016/S0167-4730(02)00013-9
http://doi.org/10.1016/j.strusafe.2004.09.001
http://doi.org/10.1016/S0167-4730(02)00047-4

	Introduction 
	Vine Copula 
	Variance-Based GSA Based on Vine Copula 
	Test Cases 
	Test 1. Example with Complete Probability Information 
	Test 2. Portfolio Model 
	Test 3. Ishigami Function 
	Test 4. Fatigue and Creep of Materials 
	Test 5. Three-Bay Five-Story Linear Elastic Frame Structure 

	Conclusions 
	
	
	References

