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Abstract: This study analyzes the spillover effects of volatility in the Russian stock market. The paper
applies the Diebold–Yilmaz connectedness methodology to characterize volatility spillovers between
Russian assets. The spectral representation of the forecast variance decomposition proposed by
Baruník and Kr̆ehlik is used to describe the connectivity in short-term (up to 5 days), medium-term
(6–20 days) and long-term (more than 20 days) time frequencies. Additionally, two new augmented
models are developed and applied to evaluate conditional spillover effects in different sectors of the
Russian economy for the period from January 2012 to June 2021. It is shown that spillover effects
increase significantly during political and economic crises and decrease during periods of relative
stability. The rising of the overall level of spillovers in the Russian stock market coincides in time
with the political crisis of 2014, the intensification of anti-Russian sanctions in 2018 and the fall in oil
prices and the start of the pandemic in 2020. With the consideration of the augmented models it can
be argued that a significant part of the long-term spillover effects on the Russian stock market may
be caused by the influence of external economic and political factors. However, volatility spillovers
generated by internal Russian idiosyncratic shocks are short-term. Thus, the proposed approach
provides new information on the impact of external factors on volatility spillovers in the Russian
stock market.

Keywords: stock markets; spillovers; conditional volatility spillovers; risk modelling; volatility
models; graph; time series analysis; market networks

1. Introduction

The purpose of this paper is to develop new models to analyze volatility spillover
across the Russian financial market using an empirical technique for the time and frequency
domains.

Over the past 10 years, many studies have investigated volatility spillover, including the
interdependence relationships between global and regional markets [1,2], different segments
of commodity markets [3–8], such as crude oil and the stock markets [9–12], bonds [13], banks
and financial institutions [14], foreign exchange markets and cryptocurrency [15–20].

Such studies are aimed at assessing the relationship between the risk of investment
in different asset classes, as well as the relationship between firms. The study of volatility
is an important aspect of the estimation and modeling of risks, and the connectedness
of volatilities can be used in the study of mechanisms and patterns of risk spreading,
market, credit and systemic risks management, including fragility, contagion and system
risk decomposition.

Recently, a variety of applicable approaches to defining and measuring interconnect-
edness and interdependence of financial time series have been proposed. For example,
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the measures based on pairwise correlations or linear Gaussian models have been widely
used [21]. Many authors employ pairwise correlations [22,23], GARCH model [24], vector
autoregression [25,26], CoVaR [27] and the marginal expected shortfall approach [28]. A
large number of works have been devoted to the study of the cumulative effects of the
interconnectedness of various market segments based on the analysis of the dynamics of
volatility connectedness [2,25,29,30].

In this paper we use the approaches suggested by Diebold and Yilmaz [25] as well as
by Baruník and Kr̆ehlik [30]. This methods are based on the use of a vector autoregression
model for multivariate time series of volatility of a selected subset of assets. The use of
the generalized forecast error variance decomposition makes it possible to construct a
number of measures of both total and directional volatility spillovers, as well as to carry
out decomposition for given time frequencies. Diebold and Yilmaz [29] took the nature of
spillovers in a broader context, providing a rigorous framework for measuring spillovers
of returns and volatility in financial markets and applying it to determine the effects of
volatility propagation. The methodology was applied to measure the effects of connectivity
in their follow-up work [31], in which they assessed systemic risk in the US financial sector.

As a characteristic of the connectivity of the system at various levels, from pairwise to
system-wide, they proposed to use forecast error variance decomposition for the vector
autoregression model. The variance decomposition shows how much of the future uncer-
tainty of asset i is due to shocks in asset j. Variance decomposition is closely related to
systemic risk measures such as the marginal expected shortfall [28,32] and CoVaR [27,33]
and to various aspects of graph theory.

Representation of a complex system in the form of a graph is a convenient method for
its analysis. The constructed graph can be used in various applications including portfolio
selection [23], systemic risk analysis [34], stability analysis [35], detection of stock price
manipulation [36]. Many studies apply and develop the market graph approach to analyze
various structural properties and attributes of financial networks, such as maximum
clique, maximum independent sets, degree distribution [37–39], clustering [40,41], graph
dynamics [42]. The works [35,43] study the financial network’s structural properties and
their topological stability, robustness against random vertex failures and fragilities to
intentional attacks.

The analysis of network properties is also useful for portfolio investment and risk man-
agement, as well as for simplification of the portfolio selection process via targeting a group
of stocks or cryptocurrencies belonging to certain regions of the stock market network, and
the development of network-based algorithms for analyzing systemic risk [23,31,44–46].

Frequency-dependent connectivity measures are usually estimated based on the well-
known Generalized Forecast Error Variance Decomposition (GFEVD) [25]. Identifying
the interconnectedness in an economic system requires an understanding of its elements
connectedness, that appears as responses to economics shocks, for different time-frequency
(long, medium and short term). The Diebold and Yilmaz’s approach involves the de-
composition of the forecast error over a sufficiently long forecasting period. Baruník and
Kr̆ehlik [30] proposed a technique for decomposing the forecast variance on selected time-
frame. This allows you to highlight the long-term, medium-term, and short-term impacts
of a shock, which can conveniently be summed to a total aggregate effect, if needed. For
this purpose, the authors defined the spectral representation of generalized forecast error
variance decomposition [30].

Many authors touch upon the problem of the influence of macro variables on volatility
and volatility jumps [47,48]. For example, the article [49] discusses the dependency of the
density of graphs, built on a moving window, on the values of the macro variables.

Diebold’s approach and its extension [25,29,31] were applied to the US financial
system, which is the most important part of the global market. In this case it can be assumed
that shocks are mainly generated and propagated within the system itself. Presumably, in
the case of the Russian stock market, a significant part of the shocks comes from the outside,
and they affect companies in different sectors with various strength. If external shocks are
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not taken into account, then there is a possibility of exaggerating the volatility spillover
values within the market. Therefore, we suggest considering augmented VAR models and
compare the values of connectivity measures for standard VAR(p) and augmented models.
The volatilities of commodity and stock markets were used as exogenous variables.

This approach also allows one to identify the starting moments of turbulence periods
in the Russian financial market and to estimate their duration. According to the results
of a retrospective analysis, two turbulence periods are well manifested, corresponding to
the political crisis of 2014 and the combination of the oil shock and the beginning of the
COVID epidemic in early 2020.

The number of studies examining the reaction of financial markets to news related to
the development of the COVID-19 pandemic is rapidly increasing [17,50–54].

Our approach allows us to determine what part of the volatility spillovers was caused
by the influence of external factors during the crisis. Moreover, we can decompose the total
and net spillovers by the selected time frequencies using the proposed approach.

In addition, the cumulative spillover effects of volatility in the commodity and banking
sectors on other industries are examined. As one might expect, volatility spillovers from
the oil and metallurgical sectors outnumber backward impact from technology or service
companies.

In this paper, the proposed tools are applied to describe the relationships between
major Russian assets in dynamics before, after and during the financial crises of 2014
and 2020.

The work is organized as follows. Section 2 contains the methodology of spillover
measurement. The methods for calculating spillover effects based on generalized fore-
cast error variance decomposition are described. Two new ways to calculate conditional
volatility spillovers are introduced. Section 3 describes the data used to measure the con-
nectedness of companies in the RTS Index (RTS—“Russia Trading System”—is a free-float
capitalization-weighted index of 50 Russian stocks traded on the Moscow Exchange, calcu-
lated in US dollars). In Section 4, a static analysis is carried out which describes the average
or unconditional connectivity, while the dynamic conditional connectivity is analyzed
using the moving window approach.

2. Methodology
2.1. Spillover Measurement

The methods proposed in this paper are based on the connectedness measurement
framework developed by Diebold and Yilmaz [25,29,31]. This approach measures con-
nectedness from three perspectives: total connectedness, total directional connectedness,
and pairwise directional connectedness. To construct connectivity measures, the approach
uses the decomposition matrices of the forecast variance for a vector autoregression (VAR)
model of order p with N variables (VAR(p)):

xt = α +
p

∑
i=1

Φixt−i + εt, t = 1, 2, . . . , T, (1)

α denotes a N × 1 intercept vector, xt = (x1,t, . . . , xN,t)
′ are dependent variables, Φi is the

matrix of coefficients, εt ∼ (0, Σ) is a vector of independently and identically distributed
random variables (white noise with (possibly non-diagonal) covariance matrix).

This model assumes that the variables depend on their own lags of the order of p,
as well as on the lags of the order p of each of the other variables in the system. Thus,
the matrices of coefficients Φi contain comprehensive information about the relationships
between variables. It is convenient to work with a polynomial matrix of dimension
N×N : Φ(L) = |IN −Φ1L− . . .−ΦpLP|. Then the model can be rewritten as Φ(L)xt = εt.
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Assuming that the roots |Φ(z)| lie outside the unit circle, the VAR process has the following
vector moving average representation MA(∞):

xt = ϕ +
∞

∑
i=0

Aiεt−i = A(L)εt, t = 1, 2, . . . , T,

where the matrices Ai N× N are calculated recursively from the relation Φ(L) = [A(L)]−1:

Ai = Φ1 Ai−1 + Φ2 Ai−2 + . . . + Φp Ai−p, (2)

where A0 is the identity matrix of dimension N× N and Ai = 0 for i < 0, ϕ = (I−Φ1)
−1α.

The approach of Koop et al. (1996) and Pesaran and Shin (1998) allows one to find the
variance decomposition invariant to the order of variables in the model (GFEVD, general-
ized forecast error variance decomposition) [55,56]. Note that Pesaran and Shin’s approach
for calculating GFEVD can be applyed to different linear and nonlinear multivariate models:
VECM, GARCH, TVP-VAR, among many others [16,57–61].

It is possible to denote the expansion of the variance of the forecast error H-step-ahead
by θ

g
ij(H) for H = 1, 2, . . . , ∞.
Then

θ
g
ij(H) =

σ−1
jj ∑H−1

h=0 (e′i AhΣej)
2

∑H−1
h=0 (e′i AhΣA′hei)

, (3)

where Σ is the variance matrix for the error vector ε, σjj is the standard deviation of the
error for the j-th equation, and ei is the vector, the i-th of which is equal to one, the rest
are zeros.

Following Diebold and Yilmaz, one can measure the connectedness of the system’s
variables as follows. Since the sum of the elements in each row of the variance decom-
position matrix is not equal to 1: ∑N

j=1 θ
g
ij(H) 6= 1, then to calculate the pairwise spillover

indices we should normalize the elements of the decomposition variance matrix:

θ̃
g
ij(H) =

θ
g
ij(H)

∑N
j=1 θ

g
ij(H)

. (4)

The overall spillover index is calculated as follows:

Sg
i·(H) =

∑N
i,j=1(i 6=j) θ̃

g
ij(H)

∑N
j=1 θ̃

g
ij(H)

· 100 =
∑N

j=1(i 6=j) θ̃
g
ij(H)

N
· 100. (5)

The generalized VAR approach allows one to estimate directional measures of volatil-
ity spillovers. The directional volatility spillover received by the i asset from all other j
assets is calculated using the normalized elements of the generalized variance decomposi-
tion matrix:

Sg
i·(H) =

∑N
i,j=1(i 6=j) θ̃

g
ij(H)

∑N
j=1 θ̃

g
ij(H)

· 100 =
∑N

j=1(i 6=j) θ̃
g
ij(H)

N
· 100. (6)

The directional volatility spillover transmitted by the asset i to all other assets j is
calculated in a similar way:

Sg
·i(H) =

∑N
i,j=1(i 6=j) θ̃

g
ji(H)

∑N
j=1 θ̃

g
ji(H)

· 100 =
∑N

j=1(i 6=j) θ̃
g
ji(H)

N
· 100. (7)

Finally, the net spillovers from the asset i to all other assets of j can be calculated as:

Sg
i (H) = Sg

·i(H)− Sg
i·(H). (8)
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2.2. Time and Frequency Domains of Volatility Spillovers

Baruník and Kr̆ehlik used the Fourier transform to generalize the Diebold–Yilmaz
approach. They proposed a methodology for decomposition of the spillover effect into
different frequency bands [30].

Let us define the function of the frequency response function: A(eiω) = ∑h e−iωh Ah,
which is derived from the Fourier transform for the coefficients Ah, for i =

√
−1.

Frequency connectivity measures based on spectral decomposition of variance are
defined as follows:

θ
g
ij(∞) =

1
2π

∫ π

−π
Γi(ω)( f (ω))i,jdω,

where Γi(ω) is the weight function with respect to the frequency fraction of the variance of
the variable j :

Γi(ω) =
(A(e−iω)ΣA′(e+iω))i,i

1
2π

∫ π
−π(A(e−iλ)ΣA′(e+iλ))j,jdλ

,

which represents the power of the i-th variable at a given frequency.
Decomposition of the variance into components corresponding to given time intervals

is determined as follows:

θ
g
ij(d) =

1
2π

∫
d

Γi(ω)( f (ω))i,jdω, (9)

where d = (a, b) : a, b ∈ (−π, π), a < b.
This allows one to find the values of the coefficients Sg

·i(d), Sg
i·(d), Sg

i (d), Sg(d) for the
selected range frequencies d.

2.3. Conditional Spillover Effects

Previous studies have shown the existence of significant cross-country volatility
spillovers [62–65]. In particular paper, ref. [2] has demonstrated that volatility spillovers
between the USA and the BRICS countries increase during periods of crises. Moreover,
the USA, Brazil, and China are net transmitters, while Russia, India, and South Africa are
net receivers of volatility in their respective stock markets. For the net receiver countries,
volatility spillovers within their domestic markets are largely due to external influences.
Costola and Lorusso identify the booms and busts in the correspondence of political and
war episodes that are related to spillover effects in the Russian economy. Their findings
show that the Russian Oil and Gas and Metals and Mining sectors are net shock contributors
of crude oil and have the highest spillovers to other Russian sectors [66]. Therefore, the
Russian stock market should not be viewed as an isolated segment of the global stock
market.

It is fair to assume that the movement of prices on world commodity markets and
the dynamics of indices of the largest foreign stock markets contain sufficient information
about shocks external to the Russian economy. In addition, the impact of foreign markets
on the prices of Russian assets far outweighs the reverse impact due to differences in the
size of the economy. If these assumptions are correct, then supplementing the econometric
model with the appropriate exogenous variables should eliminate the impact of foreign
shocks and estimate the conditional spillover effects.

We consider two ways of including foreign shocks for assessing spillover effects.
The first approach of assessing conditional spillover effects is based on a two-step

procedure (TS). In the first step, the price volatility of commodities is used as control
variables. At the second step, conditional directional spillover effects are calculated using
the Equations (3)–(9).

1. First-stage regressions:
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xk,t = z′tβ
0
k + η0

k,t,
xk,t−1 = z′tβ

1
k + η1

k,t,
· · · · · · · · · · · · · · · · · · · ·
xk,t−p = z′tβ

p
k + η

p
k,t,

where xkt and zt = (z1,t, . . . , zM,t)
′ are the values of the k th initial and exogenous variables

for t = 1, 2, . . . , T, βk is a vector of coefficients, ηkt is an error term.
Let ei

kt is residuals that we obtain of first stage:

e0
k,t = xk,t − z′tb

0
k , t = 1, 2, . . . , T

e1
k,t = xk,t−1 − z′tb

1
k , t = 2, . . . , T

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ep

k,t = xk,t−p − z′tb
p
k , t = p, . . . , T

where bi
k is OLS coefficient.

2. Second-stage regressions

e0
t = α +

p

∑
i=1

Φiei
t+i + εt, t = 1, . . . , T − p

where ei
t = (ei

1,t, . . . , ei
N,t)
′.

When using the rolling window approach, the coefficients b0, . . . , bp are estimated
once for the full sample. The matrices Φ are evaluated for each of the windows.

Conditional spillovers are found by Equations (2)–(9).
The second approach is based on the augmented VAR model (VARX). A vector auto-

regressive model with exogenous variables VARXN,M(p, s) can be expressed as

xt = α +
p

∑
i=1

Φixt−i +
s

∑
j=1

Ψjzt−j + εt, t = 1, 2, . . . , T, (10)

where xt = (x1,t, . . . , xN,t)
′ are dependent variables, zt = (z1,t, . . . , zM,t)

′ are exogenous
variables, Φi and Ψj are coefficient matrices, εt ∼ (0, Σ) is a vector of independently
and identically distributed random variables (white noise with (possibly non-diagonal)
covariance matrix).

VARX model representation,

xt = ϕ +
∞

∑
i=0

Aiεt−i +
s

∑
j=1

Ψj

∞

∑
i=0

Aizt−j−i = ϕ + A(L)εt +
s

∑
j=1

Ψj A(L)zt−j, t = 1, 2, . . . , T,

allows us to express the variance of the forecast through the lags of the vector of errors and
exogenous variables.

Appendix A contains estimates of conditional volatility spillover for some data gener-
ation processes.

If the number of variables is large enough, then the number of estimated parameters
grows rapidly depending on the number of lags, and the parameter estimates becomes
unstable. In this case, regularization methods can be used for estimation. We use the
Least Absolute Shrinkage and Selection Operator (LASSO) for the feature selection and
regularization of data models [67].

To reduce the parameter space of the VARX, the VARX-L framework applies structured
convex penalties to the least squares VARX problem, resulting in the objective

min
α,Φ,Ψ

T

∑
t=1
‖xt − α−

p

∑
i=1

Φixt−i −
s

∑
j=1

Ψjzt−j‖2
2 +

p

∑
i=1
‖Φi‖1 +

s

∑
j=1
‖Ψj‖1,
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in which ‖A‖2 denotes L2-norm, ‖A‖1 denotes the L1 norm.
Currently, there is already a sufficient number of works devoted to the problems of

using sparse VAR models [68–70]. The penalty parameter estimated by sequential cross-
validation using algorithms implemented in the BiGVAR package https://cran.r-project.
org/web/packages/BigVAR, accessed on 1 July 2021.

3. Data and Preliminary Analysis

We investigate the problem of how volatility spillovers in the Russian stock market
depend on different time frequencies. After a preliminary analysis of historical data,
27 large companies included in the RTS Index were selected.

Currently, the RTS index includes the most liquid stocks of the largest Russian issuers.
However, some companies included in the RTS Index (for example, CBOM, DSKY, FIVE,
LNTA, MOEX, POLY, RNFT, RUAL, SFIN) were not included in our dataset due to a short
trading history (about 2–3 years), which is not enough to build an appropriate model. Price
data for all companies for the period from 1 January 2012 to 1 June 2021 (2400 trading
days) were downloaded from https://finam.ru, accessed on 1 September 2021. 5 min high
frequency data were used. In total, the dataset included over 7,000,000 records. Information
on the names, tickers of assets and their sector affiliations given in Table 1.

Table 1. Companies with tickers classified by industry.

Sector Ticker Name

ALRS Alrosa
CHMF Severstal
GMKN Nornickel

Basic Materials MAGN Magnitogorsk Iron and Steel Works
NLMK NLMK Group
PHOR Company PhosAgro
PLZL Polyus

AFKS AFK Sistema
Communications Services MTSS MTS

RTKM Rostelecom

Consumer Defensive MGNT Magnit
and Consumer Cyclical MVID M. Video

GAZP Gazprom
LKOH Lukoil
NVTK Novatek

Energy (Oil & Gas ) ROSN Rosneft
SNGS Surgutneftegas
TATN Tatneft

TRNFP Transneft

Financial Services SBER Sberbank of Russia
VTBR VTB Bank

Industrials (Airlines) AFLT Aeroflot

Real Estate LSRG LSR Group
PIKK PIK Group

FEES FGC UES
Utilities HYDR RusHydro

IRAO Inter RAO

Daily volatilities were calculated using 5-min high frequency data.
Let Pit be price of asset i at time t, pt = log(Pt). Let rit = pi,t−1 − pi,t be its logprice.

https://cran.r-project.org/web/packages/BigVAR
https://cran.r-project.org/web/packages/BigVAR
https://finam.ru
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Several methods have been proposed for calculating the realized volatility and the
realized variance for the whole day for the optimal combination of price volatility in the
trading period and overnight. It is well known that the information received during the
non-trading period (e.g., overnight) may have a significant impact on volatility [71–76].
Hansen and Lunde [71] were the first to propose the method for calculating the whole
day variance, as a solution to the problem of optimizing the weights of the square of the
profitability of the trading time and night time. Further, Ahoniemi and Lann [74] confirmed
the effectiveness of this method using empirical data.

The realized volatility can be calculated in different ways, depending on the data used
and the assumptions about price movements during the trading session. Most often, for
the computation of volatility, the authors restrict the analysis to daily logarithmic realized
volatility, which is computed using 5-min high frequency returns during the trading hours.
For the Moscow Exchange in different years, the durations of the trading period were
different. Currently, the main trading session runs from 10:00 to 18:50, an additional session
from 19:00 to 23:50 Moscow time.

Let [a, b] be the trading session interval. To calculate the realized volatility for a trading
session, the following formula is usually used:

RVt = RV[a,b]
t =

m

∑
j=1

(ptj − ptj−1)
2,

where m is the number of 5-min intervals.
In this case, price movements that occur between the periods of current closing and

opening of the next trading session are not taken into account. Let r1t = pt − pt−1 be the
overnight return. The value of r2

1t is usually used as a characteristic of volatility in the
period between trading sessions.

Figure 1 shows an example of realized and overnight volatility charts for SBER.
Some days overnight price changes significantly exceeded the fluctuations during the
trading session. Considering only realized volatility in this case would lead to a significant
underestimation of the overall price change per day.

0.000

0.005

0.010

0.015

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

overnight

session

Figure 1. Realized and overnight volatility for SBER.

For the selected companies, the overnight volatilities are about 1/3 of the intraday
volatility, in average. These values roughly correspond to the results of the works [71,74].
Variance for the whole day estimate is based on a combination of realized volatility for
the active part of the trades RV2, t and the square of the overnight yield. Consider a linear
combination of r1,t and RVt:

RVt(w) = w1r2
1,t + w2RV[a,b]

t ,

where w = (w1, w2)
′.

The Appendix C shows the values of the weights estimates obtained for the daily
volatility. For more than half of the assets, the weights w1, w2 turned out to be approxi-
mately equal to each other. To avoid the overcomplicating the estimation process, we took
w1 = w2 = 1. As a result, we used an estimate of the realized variance for the whole day
without adjustment.
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Exogenous variables based on a time series of prices of world commodity markets
and US stock indexes (Brent oil futures—ICE BRENT CRUDE OIL PRICES, Gold COMEX,
US wheat futures—ZW, LME COPPER, LME NICKEL, SP5000) were constructed. Besides
that, 5-min data from https://finam.ru (accessed on 1 July 2021) were used. For time series
of commodity markets prices, information is available for the entire 24 h period without
interruptions, which allows us to find realized volatility without additional adjustments.

4. Empirical Results
4.1. Spillover Results

Second-order vector autoregression is considered the main model. The method of
structured penalized regression (LASSO) is used for its estimation. The forecasting horizon
is chosen to be equal to 100 trading days (H = 100), the frequency decomposition is carried
out for three intervals of H: from 0 to 5 (short-term), from 6 to 20 (medium-term), and from
21 days to 100 trading days (long-term).

A full sample pairwise spillover matrix for VAR model is presented in Table 2. The
ij-th entry corresponds to the ij-th directional connectivity, that is, the contribution to the
variance of the 100-day volatility forecast error for i due to shocks from j.

The column (FROM) displays the average receiving directional connectivity, that
is, the average of the off-diagonal elements of each row. The (TO) row provides to the
average transferring directional connectivity, that is, the average value of off-diagonal
elements of columns. The bottom line (NET = TO − FROM) shows the difference between
the transferring and receiving spillover. The bottom-right element (in bold) is the total
connectivity (sum over the FROM line or, equivalently, the sum over the TO column).

The lines TO (0; 5], TO (6; 20], TO (20; 100], NET (0; 5], NET (6; 20], NET (21; 100])
represent decomposition of the incoming volatility spillovers by the selected frequencies.

The largest elements of the table are located on the main diagonal (intrinsic connec-
tions). The measure of overall connectivity is 83%. Note that there are blocks of high
pairwise directional connectivity, as in the case of Oil & Gas companies (ROSN, NVTK,
LKOH, GAZP, TATN). In addition to this, the spread of the FROM degree distribution
is noticeably smaller than that of the TO degree distribution. Companies of Energy and
Financial Services sectors are characterized by positive NET ratios. This suggests that
the uncertainty arising in these sectors of the economy is more of an influence on the
fluctuations in asset prices of companies from other industries than the opposite effect of
other sectors.

Using the TS and VARX approaches allows us to analyze the influence of exogenous
variables on each of the original time series. In the case of the TS method, standard
procedures based on the values of the adjusted R2 or information criteria can be used to
assess the statistical significance of the model and select an informative subset of predictors.

Figure 2 shows the values of the adjusted R2 for the regression models for the full
time range. The largest values of the R2 coefficients were obtained for the volatility of
shares of large exporters of oil, non-ferrous metals, as well as banks. This is consistent with
the hypothesis that the volatility of the stock prices of exporters and financial companies
depends on information from foreign markets. For companies focused on the domestic
market (Consumer Cyclical, Real Estate, Communications Services), the share of risk that
can be explained by external economic factors is noticeably less.

The volatility of oil prices was an important factor for the Energy companies, while
for the Basic Materials Companies, the metals market volatility turned out to be signifi-
cant. However, oil price volatility was not an important predictor for financial services
companies. The volatility of the US stock markets and the gold market was more important.

https://finam.ru
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Table 2. Full-sample connectedness table.

AFKS AFLT ALRS CHMF FEES GAZP GMKN HYDR IRAO LKOH LSRG MAGN MGNT MTSS MVID NLMK NVTK PHOR PIKK PLZL ROSN RTKM SBER SNGS TATN TRNFP VTBR FROM

AFKS 21.01 2.63 1.93 1.96 3.03 3.29 2.57 4.00 2.60 4.00 2.06 2.79 3.46 7.55 1.97 3.14 4.06 2.51 1.87 1.36 3.54 2.85 3.96 3.54 3.03 1.86 3.44 2.93
AFLT 1.18 15.02 2.50 2.96 4.23 3.50 3.30 4.18 2.85 4.80 2.16 3.64 3.60 2.22 1.91 4.24 5.23 1.90 1.52 1.11 4.47 3.93 5.09 3.69 4.44 1.94 4.40 3.15
ALRS 1.09 3.31 15.93 3.07 3.88 3.25 3.34 3.70 3.96 4.38 2.79 3.64 3.37 2.20 1.96 4.00 4.46 2.17 2.09 1.70 3.94 3.62 4.09 3.58 4.09 2.55 3.85 3.11
CHMF 0.86 3.41 2.60 13.9 5.33 3.46 3.40 4.11 3.29 3.84 2.89 5.25 3.34 2.28 1.73 5.77 4.18 2.08 1.74 1.58 3.52 3.54 4.54 3.32 3.60 2.01 4.43 3.19
FEES 0.94 3.67 2.34 3.50 14.98 3.33 2.98 5.73 5.26 3.76 2.67 4.60 3.56 2.25 1.85 4.53 4.13 2.41 1.81 0.90 3.40 3.93 4.12 3.66 3.33 2.33 4.04 3.15

GAZP 1.15 2.89 2.07 2.76 3.45 13.35 3.39 3.59 2.71 6.34 1.59 2.95 3.77 2.40 1.16 4.04 6.09 1.47 1.11 0.86 5.86 3.66 6.02 5.03 5.21 2.28 4.79 3.21
GMKN 1.18 3.23 2.81 3.10 3.39 4.12 11.95 3.90 2.93 5.81 1.51 3.25 3.78 2.40 1.71 4.30 5.63 1.75 1.35 1.31 5.07 3.36 5.32 4.80 5.36 2.41 4.27 3.26
HYDR 1.36 3.45 2.64 3.11 5.54 3.54 3.28 13.08 3.66 4.76 2.15 3.63 3.43 3.02 1.61 4.42 4.93 1.80 1.65 1.07 4.18 3.64 4.66 4.07 4.27 2.62 4.44 3.22
IRAO 1.65 2.78 2.57 2.65 5.80 3.15 3.05 4.48 17.05 4.21 1.81 4.07 3.41 2.49 1.95 3.81 4.23 2.18 2.23 1.23 3.16 3.65 4.20 3.30 3.48 3.40 4.00 3.07
LKOH 1.16 3.16 2.36 2.48 3.00 5.01 3.75 3.84 2.99 10.88 1.49 3.00 3.80 2.32 1.01 3.80 6.86 1.30 1.22 1.18 6.62 3.35 5.56 5.68 6.54 3.08 4.52 3.30
LSRG 1.24 2.84 2.47 3.07 3.89 3.11 2.21 3.51 2.88 3.67 19.93 3.26 3.64 2.06 2.97 4.10 4.31 3.26 2.80 1.72 3.53 3.58 3.72 3.59 3.63 1.49 3.55 2.97

MAGN 1.19 3.31 2.58 4.27 5.20 3.30 3.10 4.03 3.76 4.11 2.36 14.22 3.64 2.36 1.63 5.74 3.88 2.00 1.57 2.08 3.50 3.59 4.80 3.25 3.63 2.46 4.45 3.18
MGNT 1.38 3.02 2.31 2.73 3.66 4.00 3.39 3.58 3.16 4.98 2.35 3.64 14.94 2.39 2.21 4.47 5.30 2.07 1.52 0.97 4.24 3.27 4.65 4.42 4.40 2.46 4.49 3.15
MTSS 4.79 2.61 2.03 2.66 3.16 3.60 2.94 4.44 2.56 4.27 1.51 3.05 3.38 19.21 1.90 3.58 4.69 2.30 1.97 1.12 3.53 3.07 4.60 3.57 3.31 2.22 3.91 2.99
MVID 1.14 2.42 1.87 2.40 3.25 2.44 1.89 2.61 2.61 2.76 4.39 3.25 3.72 2.08 30.61 3.54 3.74 3.09 1.63 1.30 2.71 3.07 3.08 2.82 3.07 1.25 3.25 2.57
NLMK 1.00 3.47 2.56 4.52 4.84 3.75 3.50 4.26 3.16 4.35 2.50 5.29 3.88 2.30 1.65 12.09 4.78 2.13 1.43 1.48 3.95 3.51 5.05 3.73 4.02 2.15 4.63 3.26
NVTK 1.17 3.39 2.34 2.71 3.33 4.55 3.53 3.94 3.01 6.36 2.01 3.07 3.96 2.52 1.77 4.17 10.75 1.69 1.42 1.17 5.82 3.59 5.27 5.14 5.95 2.86 4.53 3.31
PHOR 1.09 2.73 2.26 2.61 4.01 2.65 2.44 3.00 3.26 2.97 4.59 3.18 3.40 2.62 4.08 4.03 3.65 23.74 2.60 1.63 2.51 3.72 3.58 2.79 2.43 1.44 2.97 2.82
PIKK 0.84 2.61 2.41 2.68 3.52 2.40 2.25 3.31 3.63 3.12 3.83 2.85 3.03 2.28 2.05 3.02 3.60 3.08 27.89 2.02 2.90 3.41 2.87 2.93 3.09 1.69 2.69 2.67
PLZL 0.87 2.30 2.64 2.98 2.51 2.30 2.87 2.17 2.46 3.01 2.17 3.98 2.40 1.92 1.63 3.39 2.98 2.40 2.21 36.28 2.40 2.37 3.09 2.19 2.27 1.09 3.12 2.36
ROSN 1.13 3.24 2.44 2.52 2.97 5.10 3.78 3.72 2.51 7.40 1.60 2.83 3.62 2.13 1.11 3.81 6.82 1.19 1.22 0.99 11.44 3.21 5.60 5.42 6.77 2.78 4.65 3.28
RTKM 0.98 3.60 2.56 2.95 4.13 3.96 3.10 4.00 3.24 4.60 2.64 3.60 3.44 2.31 1.99 4.09 4.70 2.36 1.87 1.07 3.98 15.64 4.70 3.84 4.28 2.15 4.20 3.12
SBER 1.23 3.63 2.26 3.04 3.37 5.00 4.07 3.93 3.24 5.83 1.58 3.68 3.66 2.66 1.37 4.55 5.75 1.68 1.17 1.26 5.29 3.53 11.49 4.01 4.54 2.55 5.61 3.28
SNGS 1.15 2.66 2.03 2.45 3.33 4.73 3.38 3.84 2.51 6.62 1.94 2.73 4.08 2.29 1.55 3.83 6.40 1.50 1.31 0.93 5.70 3.27 4.57 14.28 5.62 2.98 4.32 3.17
TATN 1.05 3.11 2.67 2.67 3.10 4.56 3.56 3.76 2.79 6.72 1.80 3.12 3.79 2.10 1.43 3.94 6.50 1.28 1.37 1.09 6.26 3.48 4.91 5.17 12.25 3.10 4.43 3.25

TRNFP 1.14 2.43 2.66 2.57 3.86 3.34 2.92 4.08 3.78 5.36 1.48 3.78 3.55 2.45 1.40 3.68 5.24 2.05 1.59 1.44 4.30 3.16 4.53 4.40 4.83 16.08 3.89 3.11
VTBR 1.32 3.44 2.36 3.23 3.73 4.33 3.28 4.12 3.70 5.12 2.09 3.77 3.88 2.53 1.69 4.52 5.21 1.66 1.32 1.37 4.73 3.55 6.02 4.30 4.51 2.39 11.83 3.27

TO 1.23 2.94 2.31 2.80 3.68 3.55 3.01 3.70 3.06 4.56 2.22 3.40 3.43 2.45 1.75 3.95 4.72 1.97 1.61 1.26 4.04 3.29 4.39 3.79 4.06 2.20 3.96 83.34
NET −1.69 −0.21 −0.81 −0.39 0.54 0.34 −0.25 0.48 −0.02 1.26 −0.74 0.23 0.28 −0.54 −0.82 0.69 1.41 −0.85 −1.06 −1.10 0.76 0.17 1.11 0.61 0.81 −0.90 0.69

TO (0;5] 0.30 0.80 0.62 0.78 0.95 1.05 0.88 1.04 0.78 1.37 0.38 0.91 0.93 0.67 0.24 1.13 1.35 0.46 0.35 0.22 1.22 0.90 1.31 1.08 1.17 0.64 1.13
TO (6;20] 0.36 0.89 0.69 0.80 1.10 1.07 0.88 1.10 0.91 1.38 0.67 1.00 1.02 0.72 0.54 1.18 1.44 0.57 0.45 0.35 1.22 0.98 1.29 1.13 1.25 0.66 1.16

TO (20;100] 0.58 1.24 1.01 1.12 1.65 1.44 1.18 1.56 1.40 1.82 1.19 1.44 1.45 1.08 0.94 1.65 1.93 0.96 0.78 0.70 1.60 1.41 1.75 1.57 1.65 0.92 1.58
NET (0;5] −0.14 −0.13 −0.12 −0.17 0.15 −0.25 0.06 0.21 0.38 0.29 −0.13 −0.01 −0.21 −0.02 −0.26 0.00 0.34 −0.15 −0.45 −0.20 0.13 0.03 0.20 0.14 0.27 0.01 0.03
NET (6;20] −0.52 −0.06 −0.22 −0.13 0.17 0.12 −0.19 0.11 0.22 0.35 −0.24 0.06 0.12 −0.16 −0.25 0.25 0.42 −0.29 −0.32 −0.31 0.21 0.02 0.31 0.10 0.25 −0.27 0.26

NET (20;100] −1.02 −0.01 −0.45 −0.17 0.24 0.49 −0.16 0.16 −0.58 0.63 −0.35 0.14 0.35 −0.35 −0.32 0.46 0.66 −0.39 −0.29 −0.58 0.43 0.14 0.57 0.37 0.31 −0.62 0.34
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Figure 2. The value of the R2 for regression models.

The values of the conditional spillover measures, were obtained using the VARX and
TS approaches, and us allowed to come to the following conclusions. The total value of NET-
effects is not very sensitive to the model’s specification, but the frequency decomposition
of volatility depends on whether exogenous variables are included in the model or not. A
more detailed analysis of this phenomenon is presented in the next section.

Table 3 presents the decomposition of connectedness.

Table 3. The decomposition of connectedness.

Spillover “From”

DY-BK Two Step VARX

Ticker All 1 2 3 All 1 2 3 All 1 2 3

AFKS 2.92 15.0% 30.4% 54.6% 2.88 21.3% 35.6% 43.1% 2.83 25.5% 40.2% 34.3%
AFLT 3.14 29.6% 30.5% 39.9% 3.00 39.4% 32.2% 28.4% 3.10 39.5% 34.9% 25.6%
ALRS 3.10 23.8% 29.4% 46.8% 2.98 35.9% 33.0% 31.1% 3.06 31.2% 37.2% 31.6%
CHMF 3.16 29.9% 29.3% 40.8% 3.07 41.4% 31.7% 27.0% 3.15 36.8% 35.8% 27.4%
FEES 3.14 25.4% 29.6% 45.0% 3.10 33.1% 33.8% 33.1% 3.14 32.5% 37.0% 30.6%
GAZP 3.20 40.8% 29.7% 29.5% 3.11 51.7% 28.7% 19.6% 3.17 49.0% 31.0% 20.1%
GMKN 3.24 25.3% 33.2% 41.5% 3.10 40.5% 32.9% 26.6% 3.17 36.8% 36.8% 26.4%
HYDR 3.21 25.8% 30.7% 43.4% 3.15 36.2% 33.9% 29.9% 3.20 33.1% 37.4% 29.6%
IRAO 3.07 13.0% 22.4% 64.6% 2.88 27.8% 29.6% 42.6% 2.97 22.9% 36.1% 40.9%
LKOH 3.29 32.7% 31.1% 36.2% 3.23 51.4% 28.4% 20.2% 3.28 46.0% 32.4% 21.7%
LSRG 2.96 17.3% 30.8% 51.9% 2.86 28.5% 35.4% 36.1% 2.97 25.0% 40.1% 34.9%
MAGN 3.16 29.0% 29.7% 41.3% 3.08 40.8% 31.7% 27.5% 3.14 36.9% 36.0% 27.1%
MGNT 3.14 36.3% 28.6% 35.1% 3.08 44.8% 29.9% 25.3% 3.13 43.0% 32.6% 24.4%
MTSS 2.99 22.8% 29.2% 48.0% 2.92 27.5% 33.1% 39.4% 2.98 31.1% 37.9% 30.9%
MVID 2.55 19.6% 30.8% 49.6% 2.46 28.9% 35.4% 35.8% 2.54 25.4% 39.3% 35.3%
NLMK 3.25 34.6% 28.7% 36.7% 3.18 45.2% 30.3% 24.6% 3.24 40.8% 34.1% 25.1%
NVTK 3.30 30.7% 30.9% 38.5% 3.25 43.8% 31.2% 25.0% 3.29 40.6% 34.5% 24.9%
PHOR 2.82 21.6% 30.3% 48.0% 2.81 27.2% 35.3% 37.5% 2.83 25.4% 38.9% 35.7%
PIKK 2.64 30.2% 29.3% 40.5% 2.56 46.2% 29.9% 23.9% 2.61 38.9% 34.5% 26.6%
PLZL 2.36 18.1% 27.7% 54.2% 2.04 40.8% 32.5% 26.7% 2.27 30.2% 38.0% 31.9%
ROSN 3.27 33.1% 31.0% 35.9% 3.19 51.0% 28.5% 20.6% 3.25 46.5% 32.2% 21.3%
RTKM 3.12 28.0% 31.0% 41.0% 3.03 36.5% 34.0% 29.5% 3.11 36.1% 36.4% 27.5%
SBER 3.27 33.9% 30.1% 36.0% 3.20 45.2% 30.7% 24.0% 3.25 42.7% 33.6% 23.7%
SNGS 3.17 29.7% 32.5% 37.7% 3.11 41.4% 34.0% 24.6% 3.16 39.1% 35.8% 25.1%
TATN 3.24 27.7% 30.7% 41.6% 3.18 45.0% 30.3% 24.7% 3.24 41.2% 34.3% 24.5%
TRNFP 3.11 20.4% 29.8% 49.8% 2.96 35.3% 33.4% 31.3% 3.03 32.8% 37.1% 30.1%
VTBR 3.25 33.9% 27.7% 38.4% 3.17 44.4% 29.8% 25.8% 3.22 42.3% 32.8% 24.9%

Spillover “To”

DY-BK Two step VARX

Ticker all 1 2 3 all 1 2 3 all 1 2 3

AFKS 1.24 24.2% 29.2% 46.6% 1.49 34.2% 32.9% 32.9% 1.35 33.3% 36.6% 30.1%
AFLT 2.93 27.1% 30.4% 42.4% 2.69 37.8% 33.1% 29.1% 2.93 35.8% 36.1% 28.1%
ALRS 2.32 26.6% 30.0% 43.4% 2.35 38.8% 32.2% 29.0% 2.39 34.5% 36.5% 28.9%
CHMF 2.70 28.8% 29.7% 41.6% 2.84 40.0% 31.9% 28.2% 2.90 37.0% 35.5% 27.5%
FEES 3.70 25.6% 29.7% 44.7% 3.76 36.9% 32.7% 30.4% 3.70 33.8% 36.4% 29.8%
GAZP 3.56 29.7% 30.0% 40.3% 3.21 42.3% 31.2% 26.4% 3.38 39.5% 34.7% 25.8%
GMKN 2.94 30.0% 29.9% 40.2% 2.76 42.5% 31.1% 26.4% 3.01 38.4% 35.1% 26.5%
HYDR 3.69 28.1% 29.7% 42.2% 3.77 39.4% 31.9% 28.8% 3.72 36.9% 35.4% 27.6%
IRAO 3.09 25.2% 29.4% 45.5% 3.02 37.3% 32.4% 30.3% 3.10 32.6% 36.1% 31.3%
LKOH 4.56 29.9% 30.1% 39.9% 4.26 42.8% 31.2% 26.1% 4.48 39.7% 34.6% 25.6%
LSRG 2.24 17.0% 30.0% 53.0% 2.26 27.9% 34.9% 37.3% 2.11 27.2% 39.0% 33.8%
MAGN 3.36 27.2% 29.8% 43.0% 3.30 38.7% 32.3% 29.0% 3.37 35.6% 36.0% 28.4%
MGNT 3.41 27.4% 30.0% 42.6% 3.31 39.3% 32.1% 28.6% 3.32 36.4% 35.7% 27.9%
MTSS 2.47 27.0% 29.0% 44.0% 2.58 36.6% 31.6% 31.8% 2.53 35.8% 35.7% 28.6%
MVID 1.72 13.8% 31.2% 55.0% 1.38 27.6% 35.8% 36.7% 1.64 21.2% 41.2% 37.6%
NLMK 3.96 28.5% 29.8% 41.7% 3.86 39.9% 31.9% 28.2% 3.97 37.1% 35.4% 27.4%
NVTK 4.71 28.6% 30.5% 41.0% 4.48 41.2% 31.7% 27.1% 4.59 38.5% 35.1% 26.4%
PHOR 1.99 23.1% 28.5% 48.4% 2.11 33.7% 32.8% 33.5% 1.90 30.5% 36.9% 32.6%
PIKK 1.58 22.1% 28.5% 49.4% 1.67 34.8% 32.2% 33.0% 1.47 32.1% 36.7% 31.2%
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Table 3. Cont.

Spillover “From”

DY-BK Two Step VARX

Ticker All 1 2 3 All 1 2 3 All 1 2 3

PLZL 1.27 17.6% 27.3% 55.1% 1.12 32.8% 31.6% 35.7% 1.20 27.3% 38.3% 34.4%
ROSN 4.04 30.1% 30.2% 39.7% 3.80 42.8% 31.2% 26.0% 3.96 39.9% 34.7% 25.4%
RTKM 3.30 27.3% 29.8% 42.9% 3.23 38.4% 32.1% 29.5% 3.38 35.8% 35.8% 28.4%
SBER 4.34 30.0% 29.8% 40.2% 4.05 42.1% 31.3% 26.6% 4.21 39.2% 34.7% 26.1%
SNGS 3.79 28.6% 29.9% 41.5% 3.53 41.5% 31.3% 27.1% 3.67 38.6% 35.0% 26.4%
TATN 4.07 28.7% 30.7% 40.7% 3.84 41.8% 31.5% 26.8% 4.00 38.6% 35.2% 26.2%
TRNFP 2.22 29.0% 29.5% 41.5% 2.17 41.2% 31.3% 27.5% 2.18 38.8% 34.8% 26.3%
VTBR 3.88 29.2% 29.9% 40.9% 3.74 41.1% 31.6% 27.3% 3.90 38.0% 35.2% 26.8%

4.2. Moving-Window Analysis

Analyzing connectivity across the entire sample gives a good estimate of the averaged
aspects of each connectivity measure, but does not track changes over time. Therefore,
it is also of interest to study interconnectedness in dynamics. One of the most common
solutions to this problem is based on the Moving-Window approach. The advantages
of this method are the simplicity and consistency with the mechanisms underlying the
time-varying parameters. Overlapping windows of 252 calendar days (1 year) width and
1 day increments were taken to track time-varying connectivity in real time.

Diebold–Yilmaz connectivity measures provide aggregated information on how the
systemic risk has changed over the period under study. However, it does not show whether
shocks affect the system in the short or long term. Therefore, it is of interest to study the
frequency sources of connectivity, since it is obvious that the response to shocks from
different transmitters is heterogeneous and has different effects on short-term, medium-
term and long-term systemic risks.

Figure 3 shows the dynamics of the total volatility connectivity index Sg of the system
for the VAR model (purple line), and also its decomposition Sg = ∑ds Sg(ds) into short-
term (d1 ∈ [1; 5]), medium-term (d2 ∈ (6; 20]) and long-term (d3 ∈ (21; 100]) components.
The time on the scale corresponds to the end of the window.
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Figure 3. Dynamic frequency connectedness. DY-BK approach.

The total connectivity in the considered period ranged from 35% to 90%. Large
fluctuations in index values can be explained by the different strength and speed of the
spread of shocks through the system, for example, weakening of spillover effects during
safe periods, or strengthening during periods of political, financial crises, pandemic. During
periods of low volatility, the overall connectedness decreased and in crisis periods, on the
contrary, it increased.

For example, during the political crisis in Ukraine and the decision to join Crimea to the
Russian Federation in 2014, there was an increase in volatility spillovers between Russian
assets. The jump in connectivity in the second quarter of 2018 also roughly corresponds
in time to the tightening of the sanctions regime against some Russian companies. Peaks
in connectivity in 2020 coincide with the beginning of several adverse factors, such as the
start of the COVID epidemic and a sharp drop in oil prices. High connectivity persisted for
some time after the acute phases of crises. This is typical for both the 2014 political crisis
and the 2020 pandemic.
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It is important to note that periods of high full connectivity are mainly explained by
high-frequency components, with the exception of the period of a pandemic (lockdown,
economic closure, a strong drop in oil prices), which is due to the low-frequency component.
After periods of crisis, markets begin to stabilize, which reduces uncertainty in low volatility
periods and growing markets. This leads to the fact that shocks that create uncertainty in
the system in the future will be transmitted much faster, and their impact on the system
will be of a short-term nature.

The volatility of volatility has been documented by many authors. To explain this phe-
nomenon, it is suggested that periods, when connectedness is created at high frequencies,
are characteristic of financial markets in states of their growth or stability [30]. In this case,
markets are able to process information quickly and a shock to one asset affects short-term
cyclical behavior. If connectivity appears at lower frequencies, then shocks are transmitted
over longer periods. This can be explained by the expectations of investors influencing
systemic risk in the long term, which are transferred to other assets in the portfolio. This
explanation does not take into account external influences and is correct if the analyzed
system is large enough or isolated.

For the past two decades, raw material exporting companies have played a leading
role in the Russian economy. The volatility of their shares is significantly influenced by the
conjuncture of the world markets for oil, metals, etc. That is, the Russian economy is not
closed or isolated, since it is significantly involved in the global exchange of goods through
the export of energy resources, raw materials and metals; therefore, volatility shocks in the
prices of assets traded in the Russian financial market can be generated by external factors
that simultaneously affect more than one asset.

Thus, some volatility spillovers between the Russian assets may be caused by foreign
commodity and stock markets fluctuation. The following mechanism of volatility shocks
propagation can be assumed. Price shocks in the oil, metals and raw materials markets
directly affect the asset prices of Russian exporting companies and indirectly influence the
asset prices of all other Russian companies. This leads to a significant overestimation of
volatility spillovers for the Energy and Basic Materials sectors. To identify the spillover
effects, cleared of the influence of external markets, it is possible either to include in the
VAR model exogenous variables reflecting the price volatility of commodity markets, or
to try to use indirect methods of estimation. We compared two methods of estimation:
VARX and 2-step procedure. Both volatilities and commodity price levels were considered
exogenous variables. It is possible that in the short term, price volatility in commodity
markets directly affects the price volatility of stocks in exporting companies. Higher or
lower prices should lead to a revaluation of the future earnings of exporters.

The following most important explanatory variables were selected: volatility in the
prices of oil, gold, aluminum, wheat, volatility of the SP500 index. Price levels turned out
to be less important predictors compared to volatility.

The estimation results for TS and VARX methods are presented below. As the final
specification of the VARX model, a vector autoregressive model with two lags is chosen.

We use the ratio of total mean squared errors to compare the accuracy of long-term
forecasts of different models (h = 20 or h = 100):

MSE(xj,t(H)) =
H−1

∑
h=0

(e′i AhΣA′hei)jj.

We denote
MSEratio = MSEVARX/MSEVAR

We also compare the mean square forecast errors for the volatility of each of the assets
for a given horizon. The Table A2 shows the MSE ratio for the DY and VARX models.

The MSE ratios for the DY and VARX models for different time horizons, as well as
their rolling estimates for h = 20 are given in Table A2 and Figure A1 (see Appendix B).
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Exogenous factors can explain about 40% of the mean squared errors of long-term
forecasts of volatility of oil companies’ stocks, while for companies focused on the domestic
market the impact of commodity prices is much weaker. The forecast error using the VARX
model is reduced by only 10–20% compared to the VAR model.

For the full sample, we obtain the following estimates:∑j MSEVARX
j (H = 20) = 111.39,

MSEVAR
j (H = 20) = 140.95, MSEratio = 0.79, that is, exogenous variables explained about

21% of the long-term forecast error.
Figure A1 shows a rolling estimate of the MSE-ratio for the 20-day horizon for the DY

and VARX models. The impact of exogenous factors on volatility spillovers in the Russian
financial market in 2016–2019 was relatively small. But during the crises of 2014 and 2020,
more than half of the fluctuations could be attributed to external factors. Thus, it can be
argued that, during stable periods, volatility flows are mainly generated within Russia.
During crises, a significant part of volatility flows are due to external factors. As can be
noted from the Figures 3–5, the values of the total spillover coefficient obtained by the VAR,
TS and VARX methods are quite close. However, adding exogenous variables to the model
significantly reduces the estimates of conditional medium-term and long-term spillovers
during crisis periods. The addition of exogenous variables is most noticeable in the case
of VARX.

Estimates of conditional medium and long-term spillovers declined both during the
economic and political crisis associated with the imposition of sanctions and the fall in
oil prices in 2014, and the beginning of the spread of the COVID pandemic in 2020. This
testifies in favor of the assumption that the spillover effects of volatility on the Russian
stock market can be divided according to the types of shocks that generate them. With the
exclusion of external sources of uncertainty, the systemic risk generated directly within
the Russian economy spreads rather quickly. More than half of the adaptation takes place
within a week, and within a month the influence of almost 85% of overflows is exhausted.
In the Figures 4 and 5, the estimate of the long-term component of the total overflow index
changes relatively weakly. Generally, the long-term component accounted for less than 15%
of the total spillover effect, while in the low volatility periods period of 2016–2018 for less
than 5%. Possibly higher estimates of the long-term component of 2014–2015 associated
with the fact that the exogenous variables we used not take into account all the features of
a given period.
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Figure 4. Dynamic frequency conditional connectedness. Two step approach.
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Figure 5. Dynamic frequency conditional connectedness. VARX approach.
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Table 4 shows the average values of the NET coefficients in total and for the frequency
(21–100) for all moving windows. The overall NET ratios obtained by all three methods
are in good agreement with each other. The positive spillover values for companies in
the Energy, Utilities and Financial Services sectors suggest that the risks arising in these
sectors spread further to the economy as a whole and outweigh the return flows in terms
of their impact. Companies in the Telecommunications and Basic Materials sectors have a
negative net ratio. It means that, for these companies, the influence of external sources on
risk exceeds in magnitude the outflow of their own risks to the outside.

Table 4. Overall and long term NET spillovers.

Overall Long term

Ticker VAR Two Step VARX Ticker VAR Two Step VARX

AFKS −1.68 −1.38 −1.48 AFKS −1.02 −0.75 −0.56
PIKK −1.06 −0.89 −1.14 PHOR −0.39 −0.35 −0.39
PLZL −1.09 −0.93 −1.07 TRNFP −0.62 −0.33 −0.34
PHOR −0.83 −0.69 −0.92 LSRG −0.35 −0.19 −0.32
MVID −0.83 −1.08 −0.9 PLZL −0.58 −0.15 −0.31
LSRG −0.72 −0.6 −0.86 MVID −0.32 −0.37 −0.28
TRNFP −0.88 −0.79 −0.85 ALRS −0.45 −0.25 −0.27
ALRS −0.79 −0.63 −0.67 IRAO −0.58 −0.31 −0.24
MTSS −0.52 −0.34 −0.45 PIKK −0.29 −0.06 −0.23
CHMF −0.46 −0.23 −0.25 MTSS −0.35 −0.33 −0.2
AFLT −0.2 −0.31 −0.17 CHMF −0.17 −0.03 −0.07
GMKN −0.29 −0.34 −0.17 GMKN −0.16 −0.09 −0.04
IRAO 0.02 0.14 0.13 AFLT −0.01 −0.07 0.03
MGNT 0.26 0.23 0.19 HYDR 0.16 0.14 0.08
GAZP 0.35 0.1 0.21 MAGN 0.14 0.11 0.1
MAGN 0.2 0.23 0.23 RTKM 0.14 0.06 0.11
RTKM 0.18 0.2 0.27 FEES 0.24 0.11 0.14
SNGS 0.62 0.42 0.51 MGNT 0.35 0.17 0.16
HYDR 0.48 0.62 0.52 SNGS 0.37 0.19 0.17
FEES 0.56 0.66 0.56 GAZP 0.49 0.24 0.24
VTBR 0.63 0.57 0.68 VTBR 0.34 0.2 0.25
ROSN 0.77 0.61 0.71 TATN 0.31 0.24 0.25
NLMK 0.71 0.68 0.73 NLMK 0.46 0.31 0.27
TATN 0.82 0.65 0.76 ROSN 0.43 0.33 0.31
SBER 1.07 0.84 0.95 SBER 0.57 0.3 0.33
LKOH 1.27 1.03 1.2 NVTK 0.66 0.4 0.39
NVTK 1.42 1.23 1.3 LKOH 0.63 0.46 0.44

For instance, the coefficient for AFKS is equal to −1.68 and corresponds to the average
value of the difference between transmitted and received flows from all other companies
(TO = 33.3%, FROM = 78.9%, (33.3 − 78.9)/27 = −1.68). Note that a FROM ratio of
around 80% is typical for most companies. But the transmitted spillover is the lowest in
our sample. For LKOH, the outgoing effects are much higher than the incoming ones,
which are reflected in the positive value of the coefficient (TO = 119.6%, FROM = 85.2%,
(119.6 − 85.2)/27 = 1.27). For PIKK, the incoming effects are much higher than the outgoing
ones, which is reflected in the negative value of the coefficient (TO = 43.6%, FROM = 72.1%,
(43.6 − 72.1)/27 = −1.06). For Sberbank, we get (TO = 118.1%, FROM = 89.2%, (118.1 −
89.2)/27 = 1.07). For all evaluation periods, the net effects for SBER and LKOH remain
positive, while AFKS and PIKK are negative. Financial services and Energy sectors have
been a source of instability, while Real Estate and Communications companies have had a
negative spillover effect.

NET coefficients obtained by the moving window method for AFKS and LKOH, as
well as PIKK and SBER are presented in Figures 6 and 7.
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Figure 6. Net volatility spillover for LKOH and AFKS.
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Figure 7. Net volatility spillover for SBER and PIKK.

Figures 8 and 9 present the results of frequency decomposition for the periods of
crises of 2014–2015 and 2020, respectively. In February and March of 2020, the most
important external shocks affecting economic processes in the Russian Federation were
a sharp drop in oil prices in March 2020, the spread of the COVID pandemic and the
imposition of restrictions on population mobility and economic activities. In March 2020,
several simultaneous surges in volatility were observed, attributable to the breakdowns of
OPEC agreements and a sharp drop in oil prices at the beginning of the month, as well as
the official introduction of quarantine measures at the end of the month. The VAR model
estimates lead to the conclusion of a sharp and long-term increase in long-term connectivity
after the beginning of March 2020. The shocks at the start of the pandemic, as well as the
oil crisis, created long-term ties above all. The diminishing of the volatility took several
months.

In contrast, the use of the TS and VARX approaches with the inclusion of exogenous
variables (oil, gold, etc.) indicate a fairly quick reaction of the markets. The oil and pan-
demic shocks were reflected in an increase in the overall interconnectedness by more than
30%, primarily due to the short-term component, and were significantly less pronounced
in the medium and long-term relationships. Indeed, for most Russian companies, there
was a jump in stock price volatility in March 2020 that was largely abated in a few weeks.
The graphs of the realized volatility values for several companies at the beginning of 2020
are given in Figure 8.
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Figure 8. Dynamic frequency connectedness during period of crisis 2020.

Next, we will consider the evolution of the frequency decomposition for the period
of the political and economic crisis of 2014 in Russia (Figure 9). The addition of oil and
gold price level to exogenous variables did not practically change the interconnection in
this time period. One may note that Black Monday (3 March 2014, marked with a dotted
line), associated with the political situation in the country, led to an increase in connectivity.
At the same time, a more significant jump in medium and long-term connectivity was
observed during the period of falling oil prices (from 20 June 2014 to 1 April 2015, marked
with dashed lines).
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Figure 9. Dynamic frequency connectedness during 2014–2016.

4.3. Directional Volatility Spillovers

The dynamic analysis of the overall connectivity provided an opportunity to elicit
the main factors affecting the correlations of the volatility of the pivotal Russian shares
in 2012–2021. Thus, it is possible to examine the dynamics of the directional connectivity
over time. Figure 10 shows the full directional connectivity (TO and FROM) plots for each
company.
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Figure 10. Overall Directional Connectedness.

The fact that FROM connectivity plots are smoother compared to TO connectivity plots
is consistent with previous studies for other [25,77] markets. This is due to how volatility
shocks propagate through the system. Idiosyncratic shocks are a significant component of
volatility, but some of them have little effect on the volatility of other assets, while others
significantly affect the volatility of many stocks in the short or long term. For example,
for large companies with strong ties to other companies, the shock can be expected to be
passed on to a large number of assets. As a result, individual shocks are more pronounced
in the TO coefficient. The FROM indicator reflects the aggregated impact of shocks of all
assets, and due to averaging, its fluctuations are weaker.

For most companies, FROM connectivity reached its highest level during the crises of
2014 and 2020. At the same time, a similar level shift in the TO connectivity indicators is
not observed. That is, shocks caused by crises first affect individual companies, and then
these shocks are transmitted further. During crises, these shocks became more frequent
and affected more companies each time than during low volatility periods. None of the
companies in our sample is immune to risk spillovers from other organizations and is not
exposed to systemic risk.

4.4. Pairwise Directional Spillovers

This section deals with the differences between directed connectivity graphs con-
structed from the results of evaluating the VAR, TS, VARX model for some periods. The
vertices of the graph correspond to the companies, and the edges correspond to the values
of the indicators θ

g
ij(d) from Equation (9). We simultaneously analyze the indicators of

the pairwise-spillover effect as a whole and with a breakdown into short-term, medium-
term and long-term components. The first column shows graphs based on short-term
relationships; the second column is based on long-term and the third column is based on
overall relationships. The graphs corresponding to the frequency from 5 to 20 days are
not presented, since they are quite similar to the short-term ones. The lines correspond to
different models: VAR, TS, VARX, respectively. Green, orange and gray directional links
correspond to the first, fifth and tenth percentile of all net directional links for the periods
under consideration. The blue node color corresponds to companies that have a negative
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NET effect (companies that take shocks), and the red color of the node corresponds to
companies with a positive NET effect (companies that distribute shocks). The node size
indicates the magnitude of the NET effect in absolute terms.

The structures of graphs built during stable and crisis periods are also compared.
Figure 11 shows an example of graphs built from data for the period from 1 March 2015
to1 March 2017. This period of time can be characterized as a period of stable external
conditions, a stable level of prices in the markets for raw materials and oil, relatively weak
volatility of most of the analyzed time series.

Note that during the low volatility periods, the graphs constructed according to
various models are very similar, both for short-term, long-term frequencies, and overall.
At the same time, the bulk of communications falls on short-term and medium-term
frequencies. The positive NET effect is typical for Energy and Financial Services companies;
for companies from other industries, incoming volatility spillovers exceed outgoing ones.
Overflows with a frequency of 20 days or more account for less than 10 percent of the
total flow. This time period can be considered an example of the behavior of the Russian
market in the absence of significant external shocks, when most of the volatility spillovers
arise under the influence of events taking place within the Russian economy. Shocks are
exhausted in a relatively short period of time (up to 5 or 20 days).
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Figure 11. Frequency decomposition of pairwise volatility spillovers networks (window: from 1 March 2015 to 1 March
2017).

During crises, the frequency of volatility shocks increases. If shocks are caused by
external factors, then volatility jumps appear in several or most of the assets at the same
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time. Figures 12 and 13 show the graphs of directional connections of crisis periods
(political crisis of 2014 and oil crisis and COVID in the spring of 2020, respectively).

Note that during crisis periods, the graphs based on overall effects are very close for
different model specifications.

The lists of companies that were transmitters and receivers of volatility during two
crises of 2014 and 2020 are quite different. Unlike the 2014 crisis, in 2020, in addition to
Real Estate and Communications Services, the receivers of volatility were added Consumer
Defensive, Consumer Cyclical, Industrials and Basic Materials. In the case of using the
VAR model, most of the flows occur on a frequency of a month or more. Those shocks are
long term. The addition of exogenous variables (TS and VARX models) to the model leads
to a redistribution of a part of the long-term spillover effects in favor of the medium-term
and short-term ones.
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Figure 12. Net Pairwise Directional Connectedness by pandemic crisis period (from 6 January 2020 to 6 January 2021).
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Figure 13. Net Pairwise Directional Connectedness by politic crisis period (from 1 January 2014 to 1 March 2015).

Volatility spillovers for oil exporting countries have been the subject of analysis by
many researchers. For example, Mikhailov [78] analyze the features of the bidirectional
volatility spillover effect between the stock and foreign exchange markets for four emerging
markets. The results indicate that bidirectional spillover effect turned out to be the most
visible in the Russian stock market, because investors in Russian stocks are the most careful
and react sharply to bad news and changes in the exchange rate. Pavlova and et.al. [79]
study the dynamic spillover of crude oil prices and volatilities on sovereign risk premia
of ten oil-exporting countries. The results indicate that Venezuela, Colombia, Russia, and
Mexico are the top recipients of crude oil shocks. The effect of political variables, and
aggregate demand and supply shocks are relatively less than the oil-specific shocks. The
study [80] examines the volatility spillovers between gold, oil futures, and stock markets.
Authors find evidence of time-varying volatility spillovers, which are intensified under
major events. A portfolio management analysis reveals that a mixed portfolio (commodity
and stock markets) provides a higher level of hedging effectiveness for both emerging and
developed markets. Kai Shi [81] attempts to comprehensively decode the connectedness
among the stock markets of BRICS countries between 1 August 2002 and 31 December
2019 not only in the time domain but also in the frequency domain. The paper shows
that China’s and Russia’s stock markets play the influential role for return spillover and
volatility spillover across BRICS markets, respectively. Paper [82] examines the direction
and extent of the asymmetric volatility connectedness among international equity markets.
The authors analyze asymmetric volatility connectedness using realized volatility and
identify the magnitude of the volatility spillover and the connectedness in networks. It is
shown that macroeconomic shocks increase volatility asymmetry.

As far as we know, no one has previously used the method we have developed in
this paper for evaluating conditional spillover effects. In most of the previous studies,
time varying spillovers are firstly estimated by the moving window method. Then, the
dependence of the spillovers on selected factors [66] is analyzed. This is easy to do for a
general spillover. However, if one would like to estimate directional and pairwise effects,
then the number of equations becomes too large, which complicates the analysis and the
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formulation of conclusions. Our approach suggests a uniform way to include in the model
the variables that reflect the impact of shocks external to the system under study.

The estimates of conditional spillovers significantly depend on the choice of exogenous
variables. The huge number of factors can potentially influence volatility spillovers between
Russian assets. Perhaps the use of the FAVAR approach could solve the problem of factors
selection. In our study, we choose the exogenous variables based on generally accepted
opinions about the most important foreign factors affecting the prices of Russian export
goods and cross-border cash flows. However, we did not consider the impact of the
government and the Central Bank monetary and fiscal policy. The comparison of the
impact of external and internal shocks can be the subject of additional research. To do
this, the conditional spillover coefficients should be multiplied by the ratio of the forecast
variance of the conditional and unconditional models. This could reveal how the absolute
values of spillovers change when exogenous variables are added to the model.

5. Conclusions

This article examines the volatility spillovers between the stocks of the 27 largest
Russian assets. The approach proposed in this paper extends:

• the estimation method developed by Francis X. Diebold and Kamil Yilmaz [29] for
estimation both total and directional spillovers;

• the Frequency Domains Decomposition technique proposed by Jozef Baruník and
Tomas Kr̆ehlik [30].

The results of estimating volatility spillovers for the model without exogenous and
with exogenous variables were compared. We analyzed 5-minute data on the stock prices
of the 27 largest Russian companies from 1 Jaunary 2012 to 1 June 2021. The volatilities of
commodity prices and foreign stock markets were used as exogenous variables.

We estimated the parameters of the models, both for the sample as a whole, and using
the sliding window method, lasting 1 year with a step of 1 day. Frequency decomposition
was performed for the intervals of 0–5 days, 6–20 days, 21 days or more.

In 2012–2021, the transmitters of spillover effects were the companies of Oil and Gas
and Financial Services sectors, which, on average, were characterized by positive values of
NET-coefficients. Companies from Real Estate, Consumer Cyclical and Communications
Services are characterized by negative values of NET-effects. This is consistent with the
leading role of the Energy sector as the main provider of export revenues. During periods of
stable external economic and political conditions, a large share of the spillovers accounted
for the short-term component.

The Russian stock market is closely integrated into the global financial system and, as
shown in previous studies, is the net receivers of volatility. Moreover, such spillovers are
especially intensified during times of crises in the world commodity and stock markets,
as well as periods of increasing political risks. To determine the net effects generated by
the domestic risk factors impacts of Russian companies the conditional spillovers were
calculated. For this, the basic VAR model was extended by exogenous variables.

In times of crisis, methods that take into account and do not take into account external
factors led to significantly different results of frequency decomposition. We present the
results of the analysis of the directed relationship graphs for the periods of crises of 2014
and 2020. The crisis of 2014 coincides in time with a period of external political uncertainty,
and 2020 with a sharp drop in oil prices and the onset of the COVID pandemic.

Application of the Baruník and Krehlík method without exogenous variables led to the
conclusion that the long-term component predominated. However, in the case of adding
exogenous variables to the model, conditional overflows were redistributed in favor of
short-term ones. This suggests that volatility shocks generated within the Russian economy
are absorbed rather quickly (more than 50% per week, 90% per month). However, it takes
much longer to overcome external shocks associated with changes in the conjuncture of
commodity markets or political crises.
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The clusters of companies that are transmitters and receivers of volatility during the
crises of 2014 and 2020 do not coincide. In 2020, unlike in 2014, Consumer Defensive,
Consumer Cyclical, Industrials and Basic Materials were added to the volatility receivers.

The results of the study provide new information on the impact of external factors
on volatility flows in the Russian stock market, the significance of shifts in external and
internal transmitters of volatility, switching between low and high volatility modes.

The research results can also be used to assess the potential selection of risk-adjusted
portfolios and thus provide new information for investor portfolio decisions.

We believe that comparisons of unconditional and conditional estimates of volatility
spillovers can be useful in the assessment and management of systemic risk. Unconditional
measures depict the connectivity of asset price volatility without considering the impact of
external political or economic factors. Conditional measures allow us, due to the inclusion
of exogenous variables in the model, to obtain measures of the connectivity of the system
under study, cleared from the influence of the selected factors. In addition, comparing
unconditional and conditional networks of financial connectivity allows one to trace the
most important links in the sense of systemic risk propagation.

Of course, in future studies, it is advisable to expand the composition of exogenous
variables to include a larger number of both external and internal factors. Spillover shocks
can result from decisions of the central bank or government, for example, changes in key
rate, taxes, tariffs, or measures aimed at supporting specific industries. The inclusion of
such variables would allow one to examine the response of the spillovers around financial
markets to monetary or fiscal policy shocks.
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Appendix A. Simulation Study

To show the importance of conditional measures, we examine the processes that
generate volatility spillovers by simulation. Suppose the data is generated from the
following equations:

y1,t = β1y1,t−1 + γ1y2,t−1 + s1zt + ε1,t

y2,t = γ2y1,t−1 + β2y2,t−1 + s2zt + ε2,t

zt = ρzt−1 + ηt

where (ε1,t, ε2,t, η1,t) ∼ N(0, I).
We are considering the following cases:

1. Bivariate VAR(1) model (s1 = s2 = 0, ρ = 0);
2. Augmented bivariate VAR(1) model (s1 = s2 > 0, ρ = 0);
3. Augmented bivariate VAR(1) model with autocorrelated exogenous variable (s1 =

s2 > 0, 0 < ρ < 1);

www.finam.ru
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4. Three-variable vector autoregressive model:

y1,t = β1y1,t−1 + γ1y2,t−1 + s1zt−1 + ε1,t

y2,t = γ2y1,t−1 + β2y2,t−1 + s2zt−1 + ε2,t

zt = α1y1,t−1 + α2y2,t−1 + ρzt−1 + ηt,

where (ρ > 0, s1 = s2 > 0, α1 6= 0, α2 6= 0).

The length of the simulated time series is T = 2500. The estimates are computed
averaging over the 100 simulations, and the standard error is the sample standard devia-
tion. The simulations are carried out with the given values of the following parameters:
β1 = β2 = 0.6, γ1 = 0.4, γ2 = 0.1.

We start with the bivariate autoregressive case with uncorrelated errors. Further, we
assume that the exogenous variable is z ∼ iid(0, 1). Then the data generation process can
be represented as VAR(1) with error covariance matrix:

Σ =

(
1 + s1s2 s1s2

s1s2 1 + s1s2

)
For this model, all assumptions of the Diebold–Yilmaz approach are fulfilled, and the

Baruník-Kr̆ehlik method can be used for spectral representation for variance decomposi-
tions.

We then consider the case where the exogenous variable is generated by AR(1) processe
with ρ = 0.5. Finally, we assume that the variable z is endogenous (s1 = s2 = 0.4, ρ = 0.5,
α1 = α2 = 0.1).

The purpose of the simulation example is to demonstrate the consequences of re-
strictions when choosing the composition of time series for assessing volatility spillovers.
Variables y1, y2 correspond to the subset of indicators selected for analysis. The variable
z reflects the influence of factors external to the system under consideration. We analyze
4 cases: there are no external factors (model (i)); exogenous non-autocorrelated external
variables (model (ii)); exogenous variables with time dependency (model (iii)); endogenous
external factors (model (iv)).

For cases (iii) and (iv), assumption DY does not hold, so we use the methods described
in Section 2.3 for estimating conditional spillovers. As exogenous variables, we used
zt, zt−1. Thus, the regression equations used in the first step of the TS procedure were as
follows:

y1,t = β1y1,t−1 + γ1y2,t−1 + s11zt + s12zt−1 + ε1,t

y1,t = β1y1,t−1 + γ1y2,t−1 + s21zt + s22zt−1 + ε1,t

Also, in the augmented vector autoregression model, the variable z and its first lag were
used. The results obtained by simulations are presented in Table A1.
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Table A1. Simulation results.

Model Total (0, 5) (6, 20) (21, 100)

(i) s1 = s2 = 0, ρ = 0

DY-BK 20.322 2.435 8.475 9.413
(1.239) (0.142) (0.38) (0.896)

(ii) s1 = s2 = 0.4, ρ = 0

DY-BK 20.295 2.413 8.45 9.431
(1.353) (0.173) (0.475) (0.917)

TS 20.319 2.415 8.462 9.441
(1.139) (0.161) (0.401) (0.776)

VARX 20.319 2.415 8.462 9.441
(1.14) (0.161) (0.402) (0.776)

(iii) s1 = s2 = 0.4, ρ = 0.5

DY-BK 27.144 2.14 9.324 15.68
(1.318) (0.152) (0.406) (1.164)

TS 20.468 2.415 8.496 9.557
(1.255) (0.171) (0.423) (0.816)

VARX 20.468 2.415 8.496 9.557
(1.256) (0.171) (0.424) (0.816)

(iv) s1 = s2 = 0.4, ρ = 0.5, α1 = α2 = 0.1

DY-BK 45.049 0.479 2.071 42.5
(0.758) (0.062) (0.481) (1.277)

TS 20.419 2.418 8.495 9.506
(0.955) (0.147) (0.352) (0.604)

VARX 20.418 2.418 8.494 9.505
(0.954) (0.147) (0.352) (0.604)

Under the assumption of the Diebold and Yilmaz model unconditional and conditional
volatility spillovers are close to theoretical values.

However, if external factors are generated by the autoregression process (ρ > 0),
then the spillovers found by the DY-BK method change significantly. The value of the
long-term component changes especially noticeably. For the four considered models of data
generation processes, the average values of the long-term component were respectively
9.413; 9.431; 15.68; 42.50.

The methods we have proposed in Section 2.3 for assessing conditional spillover
effects (TS, VARX) make it possible to obtain estimates that are close to theoretical ones.

Note that the estimates obtained by the TS and VARX methods practically coincide.
However, when analyzing real data, we performed the first step of the TS procedure

for the entire sample. The second step is either for the sample as a whole, or for sliding
windows with a step-by-step procedure for selecting predictors. This made it possible
to guarantee the participation of exogenous variables in the estimation process. In the
case of the rolling window and VARX procedure, the same weights were used for both
endogenous and exogenous variables of the LASSO method. Therefore, for some windows,
not all exogenous variables in each of the equations of the VARX model could be used.
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Appendix B. The Mean Squared Error Ratio of the h-Step Forecast

Table A2. Mean square error ratio of the h-step forecast for full sample.

Ticker (0;5] (0;20] (0;100]

AFKS 0.97 0.92 0.91
MTSS 0.95 0.9 0.89
MVID 0.92 0.88 0.88
PHOR 0.93 0.88 0.87
PIKK 0.92 0.88 0.87
FEES 0.91 0.84 0.83
MGNT 0.88 0.83 0.82
LSRG 0.89 0.82 0.82
PLZL 0.89 0.81 0.81
RTKM 0.88 0.81 0.81
ALRS 0.88 0.8 0.79
AFLT 0.85 0.78 0.78
HYDR 0.87 0.78 0.77
CHMF 0.85 0.78 0.77
MAGN 0.86 0.77 0.77
GAZP 0.81 0.77 0.76
VTBR 0.84 0.76 0.76
NLMK 0.83 0.76 0.75
IRAO 0.87 0.73 0.71
SNGS 0.8 0.71 0.71
SBER 0.78 0.71 0.7
TRNFP 0.8 0.7 0.69
GMKN 0.78 0.68 0.67
NVTK 0.75 0.67 0.66
ROSN 0.7 0.61 0.61
TATN 0.68 0.59 0.59
LKOH 0.67 0.58 0.58

0.00

0.25

0.50

0.75

1.00

2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure A1. Dynamic MSEVAR/MSEDY .

Appendix C. Optimal Measure of Daily Volatility

We shall employ the estimator that Hansen & Lunde (2005) [71] refer to as the Newey-
West modified realized variance:

RV[a,b]
NW =

m

∑
j=1

r2
tj
+ 2

q

∑
h=1

(1− h
q + 1

)
m−h

∑
j=1

rtj rtj+m

The optimal weights were calculated as follows

w1 = (1− φ)
µ0

µ1
,

w2 = φ
µ0

µ2
,

where
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µ0 = E(IV), µ1 = E(r1), µ2 = E(RV[a,b]
NW ), η2

1 = var(r1), η2
2 = var(RV[a,b]

NW ), η12 =

cov(r1,t, RV[a,b]
NW ),

φ =
µ2

2η2
1 − µ1µ2η12

µ2
2η2

1 + µ2
1η2

2 − 2µ1µ2η12
To find the parameter η12, robust estimates were used.

Table A3. Optimal measure of daily volatility: Empirical estimates of components.

TICKER µ0 µ1 µ2 η1 η2 η12 φ w1 w2

1 AFKS 10.442 2.142 10.371 16.588 39.898 0.214 0.802 0.965 0.808
2 AFLT 5.516 0.989 5.458 4.581 11.601 0.152 0.827 0.966 0.836
3 ALRS 5.393 0.716 5.278 2.709 9.006 0.129 0.832 1.264 0.850
4 CHMF 3.860 0.716 3.823 4.032 5.773 0.075 0.934 0.358 0.943
5 FEES 6.441 1.035 6.359 4.342 13.505 0.158 0.797 1.265 0.807
6 GAZP 2.745 0.613 2.725 4.232 6.318 0.038 0.899 0.452 0.906
7 GMKN 3.447 0.677 3.403 2.533 6.770 0.063 0.780 1.118 0.791
8 HYDR 4.464 0.677 4.442 3.222 8.844 0.078 0.852 0.977 0.856
9 IRAO 6.353 0.920 6.234 4.922 14.955 0.143 0.833 1.153 0.849
10 LKOH 3.067 0.637 3.025 6.335 8.537 0.038 0.926 0.358 0.939
11 LSRG 8.289 1.083 8.128 5.391 13.590 0.224 0.899 0.770 0.917
12 MAGN 5.102 0.811 5.045 3.437 7.711 0.119 0.886 0.717 0.896
13 MGNT 4.599 0.756 4.550 4.790 8.285 0.076 0.924 0.462 0.934
14 MTSS 3.767 0.747 3.725 3.840 8.378 0.052 0.840 0.808 0.849
15 MVID 8.145 1.402 8.098 10.795 19.595 0.257 0.910 0.521 0.916
16 NLMK 4.423 0.732 4.363 2.643 6.376 0.096 0.861 0.842 0.873
17 NVTK 4.626 0.764 4.584 5.419 11.114 0.067 0.896 0.632 0.904
18 PHOR 8.341 0.824 8.124 3.055 20.793 0.159 0.678 3.262 0.696
19 PIKK 6.408 0.653 6.355 2.851 14.462 0.095 0.787 2.092 0.793
20 PLZL 8.268 1.054 8.174 4.523 19.326 0.124 0.768 1.824 0.776
21 ROSN 3.238 0.742 3.212 6.202 8.434 0.061 0.911 0.391 0.918
22 RTKM 3.599 0.611 3.570 3.744 8.950 0.052 0.857 0.843 0.864
23 SBER 3.501 0.838 3.476 4.286 8.022 0.086 0.832 0.704 0.838
24 SNGS 4.124 0.680 4.079 6.151 10.414 0.053 0.926 0.447 0.937
25 TATN 4.654 0.788 4.586 4.915 8.314 0.089 0.923 0.457 0.936
26 TRNFP 4.778 0.564 4.720 3.277 9.757 0.084 0.888 0.946 0.899
27 VTBR 3.601 0.639 3.562 3.471 6.263 0.063 0.906 0.530 0.916
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