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Abstract: The use of data-based models is a favorable way to optimize existing industrial processes.
Estimation of these models requires data with sufficient information content. However, data from
regular process operation are typically limited to single operating points, so industrially applicable
design of experiments (DoE) methods are needed. This paper presents a stepwise DoE and modeling
methodology, using Gaussian process regression that incorporates expert knowledge. This expert
knowledge regarding an appropriate operating point and the importance of various process inputs is
exploited in both the model construction and the experimental design. An incremental modeling
scheme is used in which a model is additively extended by another submodel in a stepwise fashion,
each estimated on a suitable experimental design. Starting with the most important process input
for the first submodel, the number of considered inputs is incremented in each step. The strengths
and weaknesses of the methodology are investigated, using synthetic data in different scenarios.
The results show that a high overall model quality is reached, especially for processes with few
interactions between the inputs and low noise levels. Furthermore, advantages in the interpretability
and applicability for industrial processes are discussed and demonstrated, using a real industrial use
case as an example.

Keywords: Gaussian process regression; design of experiments; static process models; industrial
processes; stepwise experimental design

1. Introduction

Modern industrial companies are facing several challenges that are caused by legis-
lation and the market. Key factors for economic success are continuous improvements
in product quality, resource efficiency and productive time. Since production lines are
typically operated for decades, methods for improving such existing industrial processes
are needed. These improvements could be, for example, to determine the optimal process
parameters for an individual product or to predict a need for maintenance of a production
plant [1]. To do this, two basic types of models can be distinguished. On the one hand, first
principles models can be used, which possess a high area of validity but require in-depth
knowledge of the regarded system. On the other hand, data-based models can be used,
which can be estimated with less knowledge, for example, by applying machine learning
techniques, but heavily rely on the available data. Due to the high complexity of real-world
processes and missing insight, the creation of the first principles models is often inapplica-
ble, and thus, data-based models are preferred. However, collecting representative data
sets for model estimation is a challenging task for real-world industrial processes. These
challenges include the availability of data, variations of external influences on a process
and the detection of system boundaries [2].
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As stated in [3], design of experiments (DoE) methods are helpful to support the
creation of machine learning models in real industrial environments, for example, by
identifying relevant features used as model inputs. If no continuous process monitoring
is available, DoE methods can be used to create suitable data sets for model estimation
with reasonable effort. Furthermore, industrial processes are typically operated in few
fixed operating points. Even if a process is monitored continuously and a huge amount of
data is available, data distribution might be unsuitable for model estimation. Such a data
distribution is schematically depicted in Figure 1 for an industrial process with a single
operating point in a two-dimensional input space.
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Figure 1. Schematic two-dimensional input space of an industrial process. Without performing
experiments, data can only be gathered from the operational area.

As shown, data points are mainly concentrated around the given operating point.
Due to normal process variations, an operational area surrounding the operating point
is given in which data can be observed. As the operational area covers only parts of the
input space, the validity of a model estimate on these data is limited. In particular, such
a model is inappropriate to determine an optimum outside this operational area due to
extrapolation, which is exemplarily shown in Figure 1. For gathering information in all
relevant parts of the input space, DoE methods are needed that take additional require-
ments of industrial processes, such as constraints in the input space, into account. Such
constraints are exemplarily shown in Figure 1 and define the borders of the feasible input
region. Design points must only be placed inside this region to avoid abnormal process
behavior or even defects of the process equipment. Applying DoE methods to industrial
processes heavily relies on domain knowledge. Typically, experiments are planned by an
interdisciplinary team and are executed sequentially in order to gain additional information
that supports the next experiment [4]. A critical step in this procedure is the specification
of the regarded factors. This specification requires in-depth knowledge or special screening
experiments [5]. In case of doubt, an input will be included in the experiment, leading to
higher dimensionality of the design space, which increases the required number of data
points and the measurement effort.

To overcome these issues, this paper presents a stepwise DoE and modeling method-
ology called incremental Latin hypercube additive design (ILHAD) in which the dimen-
sionality of the design space does not need to be predefined. Instead, in each step, one new
input is incorporated into the experimental design. All inputs regarded in the experimental
design are varied systematically, whereas all remaining process inputs are fixed to the
value of a given operating point. By previously sorting all inputs according to the expected
influence on the process output, data containing the main functional relationships are
gathered in the first steps. Data from every step are then used to estimate a new submodel
that models the main effects of the newly added input and the interactions with all already
regarded inputs. By additively superposing all available submodels, the overall process
model is built. The benefits of this methodology were shown in [6] in combination with
local linear model trees as the submodel structure. For constructing this type of submodel
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structure, the input space is successively partitioned. The process behavior in each partition
is mainly modeled by a corresponding local linear model. As the parameters of these local
models need to be estimated, sufficient data points in each partition must be present. To
achieve a high model quality, a strategy for increasing the point density in specific parts
of the input space, based on information from previous ILHAD steps, was proposed. In
this work, the submodels are created, using Gaussian process regression (GPR), which is a
non-parametric regression model. In this way, a flexible model structure is given, enabling
the modeling of nonlinear processes. GPR models offer a high model quality, even on a
low number of training data points, which makes them well suited for an application on
designed experiments.

In terms of the information content of the gathered data and the measurement effort,
Figure 2 compares between process observation, ILHAD and using a space-filling design,
which is one of the classical DoE methods.
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Figure 2. Trade-off between information content and measurement effort, with qualitative grading of
different methods for data acquisition.

As stated before, the information content of data from process observation is typically
low because data are often limited to distinct operating points. As no separate experiments
need to be performed, this method possesses the lowest measurement effort. Using space-
filling design methods, a high information content can be achieved by gathering data
over the whole input space. However, in-depth process knowledge is required in advance
to check the feasibility of all design points and to select all inputs that span the design
space. ILHAD aims to reduce the measurement effort by applying stepwise experiments
in a design space with increasing dimensionality. This leads to a low complexity of the
measurement procedure and the process model in the first steps, which enables an intuitive
understanding of the process behavior and supports the incorporation of expert knowledge.
Concerning this methodology, the following research questions are addressed:

• What benefits in the applicability of DoE methods for industrial processes can be
achieved using the proposed method?

• What model quality can be achieved by the incremental modeling methodology,
compared to a classical DoE and modeling method?

• How can expert knowledge be used to support the experimental design and model-
ing process?

The remainder of this paper is organized as follows: Section 2 reviews related work
concerning DoE approaches for industrial applications, additive model structures and
stepwise DoE and modeling methodologies. In Section 3, the proposed DoE and modeling
methodology is described with a focus on different modifications of the GPR model to be
used in ILHAD. Results from a computer simulation experiment and a real-world industrial
process are presented in Section 4. In Section 5, the obtained results are discussed with
respect to the stated research questions. Finally, concluding remarks are given in Section 6.
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2. Related Work

In this section, related work in the area of additive model structures and DoE methods
for industrial applications is presented. As the proposed methodology combines methods
from both areas, stepwise DoE and modeling methodologies are reviewed.

2.1. Additive Model Structures

Additive model structures are a common approach in data-based modeling. An over-
all process model is created from multiple submodels, which are additively superposed.
Typically, simple submodel structures are used, which can be estimated with low compu-
tational effort. This computational effort can further be reduced if each submodel makes
use of a subset of the given inputs so that a lower-dimensional problem is given [7]. A
simple additive model structure is a polynomial regression model in which each regressor
depends either on a single input (main effect) or on a combination of different inputs (inter-
actions). This separation of main effects and interactions enables the interpretation of such
models [8]. In addition, these models can be estimated with a low computational effort
but possess limited flexibility, due to the fixed model structure. By extending a polynomial
model with nonparametric functions of the regressors, generalized additive models (GAM)
are given, which provide higher flexibility while maintaining the interpretability, due to
the separation of the single effects [9]. In [10], a GAM was used for forecasting the heat
production of a heat and power plant based on weather data. Due to the GAM structure,
an interpretable model was estimated that can be simply validated.

Additive Gaussian processes use a similar strategy to increase interpretability and
to achieve a low model error. In [11], a GPR model was trained with an additive kernel
function, consisting of a base kernel and kernels for the interactions. Each interaction
is weighted by an individual hyperparameter that controls the influence of a specific
interaction on the process output. These hyperparameters can be interpreted as a measure
of the importance of such interactions.

Additive models that combine different types of models were described in [12,13].
These incremental models consist of a global model and additional local models, which
refine the model in nonlinear regions of the input space. For the global model, a linear
regression model is suitable, whereas fuzzy models are used as local models for error
compensation. Another popular technique that makes use of an additive model structure is
boosting, in which an initial model is improved stepwise by additional error models. Each
error model is trained on the error of the previous model, for which the sum of squared
errors can be used as a loss function. This enables a computationally efficient model fitting
by using the least squares method [14]. Even with simple model structures of the additive
models, a high overall model quality can be achieved, which is, for example, demonstrated
by the state-of-the-art boosting method XGBoost [15].

2.2. DoE for Industrial Applications

An efficient way to create representative data sets for modeling is to make use of
DoE methods. Classical experimental designs, such as full factorial designs, examine
combinations of factors on distinct levels. With a high number of factors and levels
considered, these designs lead to a high measuring effort [16]. In [17], such a full factorial
experimental design was applied to a metal cutting process. To achieve an appropriate
measurement effort in this use case, the number of regarded factors has to be reduced.
Therefore, a prior screening experiment is performed to identify significant factors.

Another class of experimental designs are optimal designs. Compared to full factorial
designs, the measurement effort is reduced by selecting design points, according to an
optimization criterion. A popular criterion is the D-optimality, which minimizes the
determinant of the Fisher information matrix. In this way, the overall variance of the
parameter estimates is minimized [18]. An application of such a D-optimal design for
modeling the surface quality in a turning process is given in [19]. However, optimal
designs require a specification of the model structure prior to the measurements. The
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generalization error of a model is composed of bias and variance error. As the variance
error can be minimized by an optimal design criterion, the bias error is caused by the
assumed model structure. If a chosen model structure is not flexible enough for the
modeled functional relationship, this leads to a high bias error [20].

A popular way to overcome this issue is to make use of a flexible model structure
in combination with regularization techniques, such as ridge regression or lasso [21].
These techniques use a penalty term in the loss function to reduce the number of effective
parameters in a model. In this way, even the very flexible model structure of Gaussian
process (GP) models, which possess as many parameters as training data points, can
be used without overfitting [22]. To estimate such GP models, space-filling designs are
typically used, which evenly spread design points over the input space [18]. This type of
uniform space-filling designs can directly be used if little knowledge about the functional
relationship to be modeled is given. In [23], methods for creating non-uniform space-
filling designs are presented, which make use of expert knowledge. These methods
include an individual scaling of the inputs to reflect the assumed effect of an input on the
process output and an increased point density in important regions of the input space by
assigning weights.

All previously discussed experimental designs require the number of data points
to be determined in advance, which is a nontrivial task and heavily affects the model
quality and the required measurement effort. Sequential designs, in which an overall
design is created in multiple steps, do not possess this drawback [24]. These designs
enable efficient strategies to reduce the computational effort for optimizing a design, for
example, by constructing nested designs in high-dimensional spaces [25]. Furthermore,
the knowledge gained in previous steps is available, which can be used to improve the
design in the next step. Such techniques in which additional points are placed in regions of
interest in the input space, such as regions close to a predicted location of an optimum, are
called augmentation [26]. Sequential designs are closely related to the concept of active
learning. In active learning techniques, informative data points are selected, according to
a criterion based on the model trained so far. Active learning strategies can be divided
into stream-based active learning in which a measurement decision is made for each point
in a data stream, and pool-based active learning in which a set of informative points is
selected from a large set of points [27]. Active learning approaches have successfully been
used for modeling industrial processes. For example, in [28] a soft sensor for a penicillin
fermentation process was developed, which achieves a high prediction accuracy and a low
measurement effort compared to a classical approach.

2.3. Stepwise DoE and Modeling Methodologies

Classical DoE strategies are intended to be executed only once. However, in practice
multiple experiments with different design strategies are typically performed so that more
process knowledge is gained in each experiment. These experiments might fulfill a special
purpose, such as identifying relevant inputs in a screening experiment, or might aim to
model the process with an assumed model structure [16]. Choosing a suitable sequence of
experimental design methods for a specific industrial use case is a challenging task. Instead,
stepwise methods, with an increasing complexity of the models and the measurement
procedure, enable to execute as many steps as required with a clear strategy.

In [29], a stepwise methodology for creating high-order polynomial surrogate models
was presented. It makes use of Chebyshev polynomials as a model structure, which are
newly estimated in each step. Additional training data points are selected stepwise from
a space-filling design based on the current model. To reach a higher accuracy, the order
of the Chebyshev polynomial is incremented in each step until a termination criterion is
met. A similar approach for the identification of dynamic systems was described in [30]. A
procedure with alternating DoE and modeling steps is applied. It makes use of polynomial
nonlinear state space models in combination with D-optimal designs. In each step, a new
model with an incremented polynomial is estimated in order to improve the model quality.
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3. Materials and Methods

The preceding brief literature review reveals that additive model structures are widely
used and are beneficial in terms of interpretability. In addition, a broad variety of DoE
methods exists, but most classical DoE methods either require in-depth knowledge of the
functional relationship to be modeled or make use of measurement procedures that cause a
high effort in real industrial processes. To apply DoE methods in practice, confidence needs
to be built so that the plant operators are willing to take the risk of performing experiments.
Stepwise experiments with increasing complexity are one way to create this confidence. In
combination with process model structures composed of multiple submodels, a stepwise
exploration of process behavior can be achieved, providing both a simplified measurement
procedure and an increased understanding of the functional relationships of the process.

The regarded industrial process possesses p different inputs u1, u2, . . . , up and one
output y and should be modeled by a static process model. The basic activities of the pro-
posed DoE and modeling methodology to create such a model are depicted as a flowchart
in Figure 3.

Start Determine input ranking, i = 1

Expansion of the design space

New optimized LHC design Di

Experiments

Estimation of GPR submodel fi

Superpose submodels

i ≤ p∗ Stop

Next step
i = i + 1

falsetrue

Figure 3. Flowchart of the ILHAD methodology.

Real industrial processes usually have inputs that vary in importance. Some inputs
strongly influence the process, while the effects of some inputs might even be neglected.
As an initial activity in the methodology, all available process inputs are ranked, according
to their expected influence on the process output. These inputs are arranged in descending
order of relevance in the input vector u = [u1 u2 . . . up], so that u1 is the most important
input. All remaining activities of the methodology are performed in p∗ ≤ p steps. In each
step i ∈ {1, 2, . . . , p∗}, the next important input ui is used to expand the design space so
that its dimensionality increases. To gather information over the whole newly regarded
design space, a new space-filling designDi is created in each step. For that purpose, several
design strategies are suitable. As an example, uniform designs [31] that minimize the
discrepancy between the uniform distribution and the distribution of the design points can
be effectively used for stepwise experiments [32]. The threshold accepting algorithm [33]
and adjusted threshold accepting algorithm are widely used algorithms for constructing
this type of design. In the following, an optimized Latin hypercube (LHC) design is
used, which provides good space-filling and projectional properties. These projectional
properties ensure that a space-filling design is still given if inputs are irrelevant [34]. Next,
the design points in Di are used in an experiment to gather data from the process. All
inputs ui+1, ui+2, . . . , up that are not specified by the design are fixed to the values of a
given operating point ū = [ū1 ū2 . . . ūp]. The obtained measurements in this step are then
used to estimate a new submodel fi, which models the main effect of the newly added input
ui and the interactions with all previously regarded inputs u1, u2, . . . , ui−1. All estimated
submodels are superposed to create an overall process model, which contains all main
effects and all interactions of all inputs regarded so far. GPR is used as the internal model
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structure of each submodel, enabling the modeling of nonlinear process behavior, due to
its high flexibility. As these submodels are estimated one after another on a relatively small
data set, the parameter estimation is simple and the computational demand is low. The
methodology can be terminated after every step so that the number of steps p∗ does not
have to be predefined. Instead, a required model quality or available measurement time
can be used as a termination criterion. Hereafter, the single activities of the methodology
are described in more detail.

3.1. Incremental Models

In ILHAD, an additive model structure, which is shown in Figure 4, is used to create
the overall process model.

Σ GPR
process
model..

.

u1

u2

up∗

ŷ

submodel
f1(u1)

submodel
f2(u1, u2)

submodel
f3(u1, u2, u3)

..
.

u1 ŷ1 ŷ

u2
ŷ2

u3

ŷ3

Figure 4. Structure of the incremental process model. In each of the p∗ steps, a new submodel is
added to the structure. For simplicity, only the first three submodels are shown.

An overall process model in step i consists of i different submodels, which are created
one after another. By summing up all outputs of the submodels ŷj the overall model output
is calculated as follows:

ŷ =
i

∑
j=1

ŷj =
i

∑
j=1

f j(uj) (1)

Each submodel f j(uj) in the additive structure makes use of a subset of inputs, which is
described as an individual input vector uj = [u1 u2 . . . uj]. The main construction principle
of an increasing input dimensionality is related to [35] in which such an approach is applied
to neural networks. In each step, a new neural network is trained, incorporating additional
inputs. All networks are then merged together to create an overall process model. In this
way, new functional relationships can be incorporated into the model without retraining
the whole model.

In ILHAD, each submodel is estimated on the basis of an individual experimen-
tal design Di = {x(1), x(2), . . . , x(Ni)} with Ni design points. The designs are created
using the construction mechanism described in Section 3.2. Each design point x(k) =
[u1(k) u2(k) . . . ui(k)] with k = 1, . . . , Ni contains input values for all i inputs regarded
so far. All remaining p− i process inputs are fixed to the corresponding coordinates of
the operating point ūp−i = [ūi+1 ūi+2 . . . ūp]. The composition of the process input vector
u = [u1 u2 . . . ui ūi+1 ūi+2 . . . ūp] from the experimental design and the operating point is
depicted in Figure 5.
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fi
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−
yΣ
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Figure 5. Estimation of the i-th submodel, modeling the difference ỹi between the process output y
and the summed up outputs of all existing models yΣ. The composition of the process input vector u
is depicted, whereas the models only use the inputs ui specified by the experimental design.

In addition, the calculation of the output value ỹi = y− yΣ that should be modeled by
the submodel fi is shown. Each submodel is trained to model the difference between the
measured process output y and the already modeled process behavior, given by the sum of
all existing model outputs yΣ = ∑i−1

j=1 ŷj. As each submodel is a GPR model, which is linear
in the parameters, the least squares method can be used for parameter estimation, which
leads to a minimization of the quadratic model error e2

i = (ỹi − ŷi)
2 in each step. For the

process to be modeled, additive white Gaussian noise n ∼ N (0, σ2
n) at the process output

is assumed.

3.2. Experimental Design

In each step of ILHAD, a suitable experimental design is needed to gather data for
estimating a new submodel fi. Each of these designs must provide as much information
on the main effects and interactions of the newly added input as possible with manageable
measurement effort. Due to the composition of the process input, depicted in Figure 5,
the dimensionality of the regarded input space is incremented step by step, starting with
the one-dimensional input space of f1. As the hypervolume of the input space grows
exponentially with increasing dimensionality, an exponentially increasing number of data
points would be needed to maintain a desired point density in the input space (curse of
dimensionality) [36]. As this exponentially increasing number of points leads to a high
measurement effort that is impracticable for real industrial processes, the number of data
points must be limited. Due to the ranking of the inputs, the first regarded inputs are
most important for the overall model quality, whereas the influences of further inputs
can be modeled more roughly. Consequently a decreasing point density with growing
dimensionality of the input space can be accepted if the difference in importance of the
single inputs is large enough. Various strategies for determining the number of design
points in each step are possible, which reduce the measurement effort, compared to the
exponential case. In the following, a constant and a linear increasing number of data points
are used, which are determined empirically. In general, the number of points can also be
specified based on domain knowledge. For example, a higher number of data points can
be assigned to steps in which strong nonlinearities or strong interactions of the inputs are
expected. The numbers of data points in each incremental design are summarized in the
vector N = [N1 N2 . . . Np∗ ].

In addition to the number of design points, the type of design must be specified. As,
typically, little prior knowledge on the exact functional relationship of the regarded process
is given, space-filling designs are used in every step of ILHAD to gather information
over the whole regarded input space. An optimized LHC design is a common type of
space-filling design, which is used in the following. A LHC with Ni data points divides
each axis into Ni equally spaced levels. Design points are placed such that each level on
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each axis is only assigned once to a design point. LHC can be easily constructed with
an arbitrary number of design points and dimensionality, but require an optimization to
ensure good space-filling properties [37]. For the optimization different criteria can be
used, which are discussed in [34]. In the following, the maximin criterion is used:

max
Di

(dmin) = max
Di

(
min

x(k),x(l)∈Di , k 6=l

(
d(x(k), x(l))

))
, (2)

leading to a maximization of the minimal point distance dmin in a design Di. The Euclidean
distance between two different design points is denoted as d(x(k), x(l)). Starting from a
random LHC, an optimization is performed by the extended deterministic local search
(EDLS) algorithm [38], which uses a local search strategy. Each iteration of the algorithm
begins with identifying the worst point in the design in terms of the maximin criterion.
All other design points are systematically checked as possible exchange partners for a
coordinate exchange in one dimension. If such a coordinate exchange leads to an increased
minimal point distance in the design, this exchange is executed, and the algorithm proceeds
to the next iteration. If no further improvement of the minimal distance in the design is
possible, the worst point is temporarily excluded from the determination of the minimal
distance. In this way, further minimal distances can be improved, resulting in a more
uniform distribution.

The incremental design is constructed by creating optimized LHC designs in an input
space with increasing dimensionality. As described in Section 3.1, all inputs that are not yet
regarded in the incremental design are fixed to the coordinate of the given operating point.
The resulting experimental designs in the second and third step of ILHAD are exemplarily
depicted in Figure 6.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Experimental design in step i = 2

0

0.5

1

0

0.5

1

0

0.5

1

(b) Experimental design in step i = 3

Figure 6. Overall experimental designs in the a) second and b) third step with N = [11 16 20] data
points and the operating point ū = [0.5 0.5 0.5].

To illustrate the construction principle, design points from the previous steps are
additionally presented. The one-dimensional LHC in the first step leads to equally spaced
points on a straight line parallel to the u1-axis, running through the operating point. All
points depicted in Figure 6a are also visible in Figure 6b in the u1u2-plane with u3 = ū3 =
0.5. This means that each design created in step i− 1 covers a subspace of the input space
in step i with ui = ūi. As plenty of data points from this subspace are already available, no
additional point must be measured in this subspace. In addition, the used model structure
enforces that a point in this subspace would not have any influence on a newly estimated
submodel (see Section 3.4).

3.3. Gaussian Process Regression

For each submodel in the incremental model structure, a separate GPR model is
estimated on the basis of Ni data points. These data points consist of the design points
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x(k) = [u1(k) u2(k) . . . ui(k)] with k = 1, . . . , Ni in Di, each containing a subset of the
process inputs, and the corresponding output values ỹ = [ỹ(1) ỹ(2) . . . ỹ(Ni)]

T to be
modeled.

3.3.1. Fundamentals

GPR models are Bayesian models that use a prior over functions to control the smooth-
ness of the model output. As GPR models are non-parametric, high flexibility is given [22].
A key element to specify the prior is the kernel function K(x(k), x(l)), which is used
as a measure of similarity. It is evaluated on two arbitrary points x(k) and x(l) with
k = 1, . . . , Ni and l = 1, . . . , Ni. A main assumption is that a high similarity of these two
points in terms of the kernel function should result in similar output values of the model.
As a kernel function, the Gaussian kernel with an Euclidean norm is used as follows:

K(x(k), x(l)) = σ2
f exp

(
− 1

2

i

∑
m=1

(um(k)− um(l))2

σ2
m

)
(3)

This kernel is parametrized by the signal standard deviation σf and an individual
length scale σm for each of the i regarded input dimensions. In general, the output values
used for model estimation are affected by noise. In the following, the noise-free case n = 0
is considered first. Based on all input data x ∈ Di the kernel matrix

K =


cov{ỹ(1), ỹ(1)} cov{ỹ(1), ỹ(2)} . . . cov{ỹ(1), ỹ(Ni)}
cov{ỹ(2), ỹ(1)} cov{ỹ(2), ỹ(2)} . . . cov{ỹ(2), ỹ(Ni)}

...
...

. . .
...

cov{ỹ(Ni), ỹ(1)} cov{ỹ(Ni), ỹ(2)} . . . cov{ỹ(Ni), ỹ(Ni)}

 (4)

with cov{ỹ(k), ỹ(l)} = K(x(k), x(l)) is calculated. The kernel matrix describes all covari-
ances between the corresponding model outputs

ŷ = [ŷ(1) ŷ(2) . . . ŷ(Ni)]
T ∼ N (0, K) (5)

for which typically a zero mean joint normal distribution is assumed. This joint normal
distribution of the output is the prior, which determines the smoothness of the model
output [7]. For predicting the output value y∗ for an arbitrary point x∗ the joint normal
distribution is extended to the following:[

ŷ
ŷ∗

]
∼ N (0, K̃) , with K̃ =

[
K k(x∗)

k(x∗)T K(x∗, x∗)

]
(6)

and k(x∗) =
[
K(x∗, x(1)) K(x∗, x(2)) . . . K(x∗, x(Ni))

]T so that all covariances be-
tween the training outputs and the output to be predicted are taken into account. By
conditioning the prior distribution on the training outputs, the posterior distribution for
the output to be predicted is derived as follows [7]:

ŷ∗ ∼ N
(

kT(x∗)K−1ỹ︸ ︷︷ ︸
θ

, K(x∗, x∗)− kT(x∗)K−1k(x∗)
)

(7)

The mean of the posterior can be interpreted as a superposition of kernels, given in
vector k(x∗), weighted by a parameter vector θ. This interpretation is the basis for one
modification of the model described in Section 3.4.2. In order to incorporate the noise
assumption of additive white Gaussian noise at the process output (see Figure 5), the
covariances in the kernel matrix are modified to the following:

cov{ỹ(k), ỹ(l)} =
{

K(x(k), x(l)) + σ̂2
n for k = l

K(x(k), x(l)) for k 6= l
(8)
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in which σ̂n indicates the assumed noise standard deviation.

3.3.2. Hyperparameter

The model characteristics of a GPR model heavily depend on its hyperparameters
σ̂n, σf and the individual length scales σk with k = 1, 2, . . . , i for each of the i dimensions.
These hyperparameters are determined by an optimizer that maximizes the marginal
likelihood function [22]. In each step of ILHAD, an independent optimization is performed
to determine the hyperparameters of each new submodel.

An exception is made for the assumed noise standard deviation σ̂n, which only needs
to be determined once. For many real-world processes, the assumption of additive white
Gaussian noise at the process output is appropriate. This implies that the output noise is
independent of the number of varied inputs and the current ILHAD step. The determined
noise standard deviation in the first ILHAD step can, therefore, be fixed and used as a
constant value for the noise assumption in the following steps. In ILHAD, the linear
growing number of regarded inputs also leads to a growing number of hyperparameters,
due to the individual length scale for each dimension. This results in an exponentially
increasing search space for the optimizer so that a more demanding optimization task is
given [39].

3.4. Zero-Forcing in a Subspace

Each newly estimated submodel fi extends the overall process model and mainly
approximates the effects of the newly added input ui on the process output. As this
submodel possesses all inputs regarded so far u1, u2, . . . , ui and is valid over the whole
input space, a degradation of the overall process model in certain areas of the input space
is possible. This results from the independent fitting of the submodel on an individual
training data set. For each submodel, a best fit for all of its training data points is aspired,
which might cause a significant model error close to the operating point. To prevent such a
degradation of the overall model quality in further steps, the GPR is modified so that a
model output of zero in the previously regarded subspace of the input space is enforced.
As an example, the model f3 is estimated in the third ILHAD step on the basis of the
three-dimensional experimental plan depicted in Figure 6b. All design points from the
previous steps (see Figure 6a) are located in a plane with u3 = ū3, which is a subspace
of this input space. To safely prevent model degradation, a submodel output f3 = 0 in
this subspace is enforced. Due to the zero-forcing, design points located in this subspace
do not influence the submodel estimation. These points do not need to be measured and
can be removed from the experimental plan, changing the number of data points Ni in an
incremental design step. Especially for a constant number of design points, one LHC level
in steps i > 1 always matches the zero-subspace, so one point is always removed.

The zero-forcing ensures that in each step of ILHAD, the process model can only
be extended by new functional relationships, without changing the previously modeled
functional relationships. Two approaches to create such a behavior for GPR are presented
in the following.

3.4.1. Additional Dummy Points

A method for enforcing a specific behavior of a GPR model is described in [40]. In
this paper, monotonicity information is included into a GPR model by learning a nominal
model, which is based on a grid of dummy data points. By using a constrained optimization
method, the nominal model is fitted to the data with respect to the monotonicity constraints.
A similar approach with the zero-forcing property as a constraint could be used in incre-
mental modeling. However, additional points need to be placed in the regarded subspace
so that the model is able to represent the additional constraints, while maintaining the
required flexibility. This approach, based on additional dummy points in the input space,
was used as an inspiration for the method actually employed in this paper, which possesses
a lower computational effort by avoiding the constrained optimization procedure.
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The main idea is to place additional dummy points xd(m) with m = 1, . . . , Mi that
possess an output value of zero in the previously regarded subspace. The experimental
design for these Mi dummy points is defined by the set Dd,i = {xd(1), xd(2), . . . , xd(Mi)}.
The GPR model is trained on both, the dummy points and the points specified by the
incremental design so that the set Di → Dd,i ∪ Di contains all regarded inputs. The
corresponding output vector ỹ → [0, ỹ]T is extended with zero values for all dummy
points. To uniformly cover the whole subspace with dummy points, Dd,i is created, using a
space-filling LHC optimized by the EDLS algorithm [38]. For all dummy points, a noise
standard deviation of zero is assumed. Therefore, the effect of the noise assumption on the
kernel matrix in (8) is changed to the following:

cov{ỹ(k), ỹ(l)} =
{

K(x(k), x(l)) + σ̂2
n for k = l and x(k) /∈ Dd,i

K(x(k), x(l)) otherwise.
(9)

This means that the noise assumption with variance σ̂n is only applied to points outside
the previously regarded subspace. For numerical reasons, a small diagonal offset of 10−8

is added to the kernel matrix, leading to an inexact reproduction of the dummy points.
However, the diagonal offset is significantly smaller than the regarded noise levels in the
experiments such that the effect of the different noise assumptions is still relevant. The
resulting GPR can be seen as a simple realization of a GPR with input-dependent noise,
because a different noise assumption is used in a subspace of the input space. For a more
advanced approach on such GPR, in which the noise standard deviation is modeled by a
second GPR, see [41].

The described method with additional dummy points is denoted as ILHAD-DP in
the following. It can simply be implemented by changing the noise assumption in the
model-fitting procedure. However, this method does not lead to an exact model output
of zero in the subspace. Even without the diagonal offset, a slight nonzero model output
might occur in between the dummy points. In Figure 7a, training data and dummy points
for estimating a submodel f2 are depicted.

(a) Training data points and dummy points for
estimating model f2.

(b) Model output of f2 with 95 % confidence
interval in the previously regarded subspace.

Figure 7. A 2D example for illustrating the mechanism for zero-forcing in ILHAD-DP. The model is
trained on its specific training data points and additional dummy points. The dummy points lead to
a model output of approximately zero in the previously regarded subspace.
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The submodel is trained on N2 = 15 training data points and M2 = 6 additional
dummy points located in the previously regarded subspace. This subspace corresponds
to a straight line through the operating point. Figure 7b shows the mean model output
and the 95 % confidence interval of the model output in the subspace. In this example, the
number of dummy points was chosen to be quite low so that a larger confidence interval
in-between the dummy points is visible. However, the span of the confidence interval in
this example is three orders of magnitude smaller than the maximal process output, which
is acceptable for most practical applications. As the possible discrepancy of the model
output depends on the number of dummy points, a sufficient number must be chosen.
Therefore, the same number of dummy points as training data points Mi = Ni is used in
the following.

3.4.2. Nonstationary Kernel Function

Typical kernel functions, such as the Gaussian kernel, are stationary, which means
that such kernels are invariant to translations in the input space [22]. If a model output of
zero should be enforced via the kernel in a specific subspace only, nonstationary model
behavior is needed. Typical approaches for incorporating nonstationary process behavior
are warping in which a non-linear mapping is applied to the inputs [22], or the construction
of nonstationary kernel functions for which construction principles are described in [42].
The following approach is based on the interpretation of the mean output value of a GPR
model, according to (7) as a weighted sum of kernels. Consequently, a model output of
zero is given if all kernels are zero. By modifying the kernel function below,

K(x(k), x(l))→ (ui(k)− ūi) · (ui(l)− ūi) · K(x(k), x(l)) (10)

all kernels are set to zero if an involved point lies in the previously regarded subspace.
This method, making use of a nonstationary kernel function, is named ILHAD-NS in
the following. Compared to ILHAD-DP, no additional dummy points that increase the
computational effort for training and model evaluation are needed. In addition, the model
output is exactly zero over the whole subspace. However, the modification of the kernel
function described in (10) is not carried out according to the kernel construction principles
described in [42]. This means that formally, an invalid kernel function is used, due to the
missing positive definiteness property. Nevertheless, this approach can also be interpreted
as a regularized radial basis function network, which does not require the radial basis
functions to be positive definite [43]. As a consequence, the confidence interval of the
model output is not reliable in this approach.

4. Results

To identify strengths and weaknesses of the proposed methodology, first computer
simulation experiments are performed. These experiments mainly focus on the achievable
model quality and the interpretation of model hyperparameters, compared to a classical
DoE and modeling methodology. Second, a real-world industrial use case is presented in
order to demonstrate the applicability of the proposed method.

4.1. Computer Simulation Experiment

In the computer simulation experiment, the ILHAD methodology is applied to differ-
ent test processes that are defined by mathematical functions. These functions are selected
to reflect different characteristics of industrial processes. White Gaussian noise with a
standard deviation of σn is added to the function value. In the computer simulation experi-
ments, a maximum of p∗ ILHAD steps is performed. In each step, the chosen test function
is evaluated on the basis of the experimental design Di to generate training data. In the last
regarded step, p∗, the model quality is assessed on separate test data sets, each consisting
of Nt = 1000 data points. These independent test data sets reflect the model quality in
different parts of the input space. To evaluate the overall model quality, a Sobol set [44]
is used, which covers the whole input space uniformly. As typical industrial processes
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are designed to be operated close to a specified operating point, the model quality is
additionally evaluated with a focus on this area. For that purpose, a p∗-dimensional set of
test data points

T ={(p1, . . . , pj, . . . , pp∗) ∈ Rp∗ | 0 ≤ pj ≤ 1 ∀ j ∈ {1, 2, . . . , p∗}},
with pj ∼ N (ūj, σ2

t ), (11)

is generated from an independent normal distribution for each input with the standard
deviation σt. For σt → 0, a test data distribution is achieved that is concentrated around
the operating point, whereas a larger value of σt leads to a broader coverage of the input
space. The range of values for all test data distributions is limited to [0, 1]p

∗
by skipping

outlier points so that extrapolation is avoided. Based on these test data sets, the root mean
squared error (RMSE)

RMSE =

√√√√ 1
Nt

Nt

∑
k=1

(ŷ(k)− y(k))2 (12)

is calculated and used to assess the quality of different models. As a reference for this
method, a comparison model is created in a single step for all p∗ inputs. This single step
model is estimated on a space-filling LHC, optimized, using the EDLS algorithm [38]. In
this design, the same number of data points NΣ = ∑

p∗

j=1 Nj is used as in the incremental
design in total.

4.1.1. Comparison of Different Submodel Structures in ILHAD

In this experiment, different submodel structures in ILHAD are compared. In addition
to the GPR model, polynomial models of degree two and local linear model trees are used
as submodel structures. These submodel structures are modified to create a model output
of zero in the previously regarded subspace by extending the polynomial model and the
local linear models with a linear factor [6]. The test function

y(k) = 20(u1(k)− 0.5)2 + 10 sin(πu2(k)u3(k)) + 10u4(k) + 5u5(k) (13)

with two interacting inputs and three inputs with only main effects is used, which is
described in [45]. In contrast to the original definition of the function, an input ranking is
assumed in which the two inputs u1 and u3 are swapped.

Figure 8 compares the model behavior of an incremental model and a single step
model for different distributions of the test data.

Figure 8. RMSE of ILHAD-DP and the single step GPR model for different standard deviations σt of
the test data. Average values over 40 repetitions are given for p∗ = 3 modeling steps, a noise level of
σn = 10−3, an operating point ū = [0.7 0.7 0.7] and N = [11 16 20] training data points.
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Exemplarily, the RMSE of ILHAD-DP and the single step model are shown for different
values of σt. Qualitatively similar results are achieved for the other submodel structures
in comparison to the corresponding single-step model. The incremental models are able
to reach a higher model quality on test data located around the operating point (σt → 0),
whereas typically better results of the single step model are given for test data covering
larger areas of the input space (σt → 1).

Table 1 compares the obtained results with different submodel structures in step
p∗ = 3 for two different operating points and two test data distributions.

Table 1. Comparison of different submodel structures in ILHAD and the corresponding single-step
models for test function (13). The table presents results from p∗ = 3 ILHAD steps with a noise
standard deviation of σn = 10−3 and N = [11 16 20] data points. Mean values and standard
deviations of the RMSE on two test data distributions over 40 repetitions are given. The best result
for each test data distribution and operating point are in bold print.

Operating Model Submodel RMSE/10−3 RMSE/10−3

Point Type Structure on Test Data: on Test Data:
σt = 0.03 Sobol Set

[0.5 0.5 0.5] Incre- Polynomial 6.11± 1.70 127.74± 7.38
mental Local model tree 1.11± 0.74 23.12± 8.66

GPR (ILHAD-DP) 0.63± 0.36 6.23± 2.78
GPR (ILHAD-NS) 0.50± 0.26 6.96± 2.96

Single Polynomial 20.75± 0.51 93.11± 0.05
step Local model tree 8.10± 0.32 29.40± 0.40

GPR 0.82± 0.45 4.34± 0.31

[0.7 0.7 0.7] Incre- Polynomial 4.44± 1.95 114.81± 9.06
mental Local model tree 1.53± 0.55 25.92± 8.94

GPR (ILHAD-DP) 0.71± 0.46 6.45± 2.60
GPR (ILHAD-NS) 0.73± 0.38 8.15± 3.92

Single Polynomial 77.33± 0.35 93.12± 0.05
step Local model tree 22.33± 0.50 29.42± 0.40

GPR 2.10± 0.69 4.27± 0.27

The results on normally distributed test data with σt = 0.03 indicate that all incre-
mental models better approximate the process behavior in an area around the chosen
operating points than the corresponding single-step models. The biggest model errors
on this test data are given for the polynomial model structure, whereas the proposed
incremental GPR models reach the smallest errors of all incremental models. On the basis
of the Sobol set, the model quality in the whole input space is assessed. On this test data
set, typically lower RMSE values are achieved by the single-step models, compared to the
corresponding incremental models. Regarding the incremental models, the ILHAD-DP
models best approximate the overall process behavior. The model quality in the whole
input space of the incremental models is influenced by the choice of the operating point.
In the experiment, the operating point [0.5 0.5 0.5] leads to smaller RMSE values of the
incremental models than the operating point [0.7 0.7 0.7], except for the polynomial models,
which suffer from low flexibility.

The standard deviation of the RMSE is an indicator for the stability of the model
construction process. It can be seen that, except for the incremental polynomial model, all
standard deviations for the test data distribution with σt = 0.03 are of the same order of
magnitude. On the Sobol set, the incremental models possess a much higher standard devi-
ation of the RMSE, compared to the single-step models. This indicates a stronger influence
of random fluctuations, such as the applied output noise and the random initialization of
the LHC designs on the incremental models.
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4.1.2. Comparison of ILHAD and a Single Step GPR Model

In this experiment, the strengths and weaknesses of the ILHAD method, using GPR
submodels in comparison to a single-step GPR model, are examined. For this purpose, two
additional test functions are used that reflect different types of functional relationships. As
a test function with independent effects of all inputs, the weighted power function

y(k) =
p∗

∑
j=1

1
j

u4
j (k) (14)

with decreasing input weights is used. Due to the weighting, the inputs differ in importance
so that a clear ranking of the process inputs is given. A functional behavior that is contrary
to this function is given by the following:

y(k) =
p∗

∏
j=1

u2
j (k), (15)

in which interactions of all inputs are given and all inputs are treated equally. To take the
complexity of the regarded functional relationships into account, two different approaches
for the number of data points in each incremental step are investigated in p∗ = 3 modeling
steps. Either a constant number or a linearly increasing number of data points are used.

The obtained results in this experiment are presented in Table 2.

Table 2. Comparison of the ILHAD-DP, ILHAD-NS and a single-step model for different test
functions and a varying number of data points. All results are presented in step p∗ = 3 with a noise
standard deviation of σn = 10−3 and the operating point ū = [0.5 0.5 0.5]. Mean values and standard
deviations of the RMSE over 40 repetitions per parameter set are given, with the best mean values in
each experiment in bold print.

Test N Test ILHAD-DP ILHAD-NS Single Step
Function Data Model: Model: GPR Model:

RMSE/10−3 RMSE/10−3 RMSE/10−3

(14) [11 16 20] σt = 0.03 0.59± 0.37 0.68± 0.54 4.69± 1.00
σt = 0.36 1.32± 0.68 2.19± 2.58 3.36± 0.42
Sobol set 1.46± 0.88 2.69± 3.61 4.75± 0.51

[21 20 20] σt = 0.03 0.52± 0.24 0.44± 0.29 1.00± 0.58
σt = 0.36 1.00± 0.39 1.08± 0.66 1.10± 0.15
Sobol set 1.08± 0.46 1.25± 0.90 1.48± 0.23

(15) [11 16 20] σt = 0.03 1.26± 0.84 0.78± 0.41 1.54± 0.54
σt = 0.36 14.59± 5.27 11.37± 7.16 2.63± 0.29
Sobol set 21.93± 7.73 17.09± 9.59 3.37± 0.20

[21 20 20] σt = 0.03 1.06± 0.58 0.61± 0.32 0.73± 0.48
σt = 0.36 15.18± 5.29 10.76± 7.66 1.47± 0.32
Sobol set 22.93± 7.31 16.12± 11.30 2.07± 0.20

For test function (14), both ILHAD models reach smaller RMSE values than the single
step model for all numbers of training data points and all test data sets, even for the Sobol
set. This indicates that ILHAD is well suited for processes without interactions between
the inputs. For the second test function (15) with interactions between all inputs, ILHAD
models provide a similar or better model quality close to the operating point. However, the
single-step models better represent the overall functional relationship as indicated by the
lower RMSE obtained on the Sobol set. This can be explained by the more uniform training
data distribution, which is necessary to model interactions over the whole input space.
In ILHAD, a low number of data points in each step is given, leading to an insufficient
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coverage of the input space to reproducibly model all interactions. This is visible as a
comparatively high standard deviation for both types of ILHAD models.

4.1.3. Examination of the Kernel Length Scales

GPR models with separate length scales per input enable the detection of irrelevant
inputs, due to the hyperparameter optimization. If no functional relationship between
an input and the process output is given, a large length scale is assigned to this input.
This causes the model output to be almost independent of that input. This mechanism
for detecting irrelevant inputs is called automatic relevance determination (ARD) [22].
The incremental model structure enables not only to detect irrelevant inputs, but also to
classify different types of effects. Table 3 presents the length scales σj with j = 1, . . . , p∗ for
the corresponding input uj of each submodel in ILHAD and the single-step model with
p∗ = 3 inputs.

Table 3. Comparison of the kernel length scales in ILHAD-DP, ILHAD-NS and a single-step model
for different test functions. All results are presented with a noise standard deviation of σn = 10−3,
the operating point ū = [0.5 0.5 0.5] and a number of data points N = [21 20 20]. Average values over
40 repetitions per parameter set are given.

Test Model Sub- Length Scales
Function Type Model σ1 σ2 σ3

(13) ILHAD- f1 2.44
DP f2 1.26 · 106 1.19

f3 2.71 · 106 0.64 0.63

ILHAD- f1 2.50
NS f2 1.28 · 104 1.48

f3 2.46 · 104 0.64 1.06

Single step 2.50 1.10 1.14

(14) ILHAD- f1 0.85
DP f2 3.07 · 106 0.75

f3 4.09 · 108 4.51 · 108 0.66

ILHAD- f1 0.86
NS f2 1.94 · 104 1.12

f3 2.83 · 104 1.39 · 104 0.94

Single step 1.71 1.69 1.70

(15) ILHAD- f1 1.19
DP f2 0.88 0.84

f3 0.50 0.50 0.37

ILHAD- f1 1.27
NS f2 0.88 1.86

f3 0.60 0.60 17.14

Single step 0.89 0.91 0.90

By comparing the length scales in different steps, insights into the modeled functional
relationships can be gained. If only a main effect of an input uj is present, this main effect is
mainly modeled by the first submodel f j that incorporates this input. Thereafter, this input
is of minor importance for the following submodels, leading to the assignment of a huge
length scale. This characteristic is visible for the first input of (13) with σ1 and the first two
inputs of (14) with σ1 and σ2, which only possess main effects. For these inputs, an increase
in the length scale by several orders of magnitude, compared to the first incorporation of the
input, is visible. In the incremental model structure, interactions between the inputs cause
a refinement of the functional relationship modeled by the previous models. Therefore,
smaller length scales are assigned to an input in further submodels. This behavior of
decreasing length scales σj in further ILHAD steps is visible for the first two inputs of
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test function (15) and the second input of test function (13). Compared to ILHAD-NS, the
described characteristics are more distinctive for ILHAD-DP so that a better interpretability
of this method can be concluded.

4.1.4. Influence of Noise and the Number of Performed Modeling Steps

Real industrial processes typically possess inputs that differ in the type of functional
relationship and the impact onto the process output. Therefore, a more realistic test function
is regarded as follows:

y(k) =4(ũ1(k)− 2 + 8ũ2(k)− 8ũ2
2(k))

2 + (3− 4ũ2(k))2 + 16
√

ũ3(k) + 1(2ũ3(k)− 1)2

+
8

∑
m=4

m ln
(

1 +
m

∑
n=3

ũn(k)
)

(16)

which is used in [46] to compare non-uniform LHC designs. It consists of eight inputs
ũj, with j = 1, . . . , 8 that differ in the nonlinearity of the main effect and in the strength
of the interactions. The ranking of the inputs is obtained by varying each input over the
entire range ũj ∈ [0, 1], with all other inputs fixed at the value ũm = 0.5 ∀ m 6= j. The
input that causes the largest range of output values is considered the most important
one. In this way, the mapping of the input vector onto the inputs of the test function
u→ [ũ7, ũ2, ũ1, ũ3, ũ4, ũ5, ũ6, ũ8] is derived.

Table 4 presents the model quality of both types of ILHAD models with different
numbers of performed steps and noise levels. Both ILHAD models are compared to a
single-step model, for which the test data distribution (11) with σt = 0.36 is used. In this
way, the model quality is evaluated with a slight focus on the operating point.

Table 4. Comparison of the ILHAD-DP, ILHAD-NS and a single-step model for different numbers
of steps and noise levels. All results are presented for test function (16), an operating point ū =

[0.5 . . . 0.5] and N = [21 20 . . . 20] training data points. The RMSE is evaluated on p∗-dimensional
test data with σt = 0.36. Mean values and standard deviations over 40 repetitions per parameter set
are given, with the best mean values in bold print.

Maximal Noise ILHAD-DP ILHAD-NS Single Step
Step Level Model: Model: GPR Model:

p∗ σn RMSE RMSE RMSE

4 10−3 0.0019± 0.0005 0.0038± 0.0040 0.0135± 0.0002
10−2 0.0128± 0.0042 0.0154± 0.0119 0.0142± 0.0006

6 10−3 0.0046± 0.0035 0.0201± 0.0240 0.0131± 0.0003
10−2 0.0193± 0.0112 0.1143± 0.4884 0.0126± 0.0025

8 10−3 0.0155± 0.0072 0.0923± 0.0018 0.0016± 0.0001
10−2 0.0280± 0.0110 0.1777± 0.0086 0.0063± 0.0006

For the smallest number of performed modeling steps p∗ = 4 and the low noise level
σn = 10−3, both ILHAD models achieve a higher model quality than the single-step model,
with the best results given for ILHAD-DP. With increasing noise (σn = 10−2), a stronger
increase in error of the ILHAD models is visible, compared to the single-step model. This
indicates that both ILHAD models are more sensitive to noise than the single-step model.
A higher noise level also reduces the stability of the incremental model construction, which
is indicated by larger standard deviations of the RMSE.

With more modeling steps p∗ performed, an increasing RMSE of the incremental
models for each noise level is visible. This behavior is caused by the incremental model
structure in which errors of the submodels may sum up. For the single-step model, the
RMSE decreases with the increasing dimensionality of the input space. This decrease is
caused by the additional points in the global optimal LHC design and the applied ranking
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of the inputs. This ranking causes the additional inputs to be of minor importance for the
overall model quality such that the complexity of the modeling task is not significantly
increased. Furthermore, in each step, the number of design points in the LHC of the
single-step model is increased by 20, contributing to a better estimation of all effects. In
this way, the single-step model achieves the best results for a higher number of modeling
steps. All in all, the results indicate that ILHAD models are well suited for a low number
of inputs and a low noise level. In this experiment, ILHAD-DP provides a better model
quality than ILHAD-NS. ILHAD-NS suffers from a more unstable model construction,
leading to much worse results in single runs. As an example, for p∗ = 6 and σn = 10−2, the
error and the standard deviation are dominated by a single run with a RMSE value of 3.42.

4.2. Bitumen Oven

As a real-world use case, the ILHAD method is applied to a bitumen oven of Miele
& Cie. KG, which is used for melting sheets of bitumen on water containers of washing
machines. Unprocessed parts with sheets of bitumen on top can be seen in Figure 9 at the
entry of the oven.

conveyor

speed
v

c

heating power Ph

water
container
height hw

surface tem-
perature ϑ

Figure 9. The entry of the bitumen oven of Miele & Cie. KG is shown. Several water containers with
sheets of bitumen on top are visible.

A conveyor belt is used to continuously move the parts through the oven in which the
sheets of bitumen are heated up by infrared heaters. At the end of the oven, a contact-free
measurement of the resulting surface temperature ϑ of each part is made. In order to
achieve a reliable bonding of the bitumen, a sufficient temperature must be reached. This
temperature should be predicted by a process model to enable an optimization of the
process parameters. In this way, a high bonding quality for different types of parts with
minimal power consumption should be achieved.

The main inputs of the process are the conveyor speed vc, which can be varied
continuously, and the heating power Ph for which five discrete values can be selected.
In addition, the height of the water containers hw has a slight influence on the surface
temperature, due to the directional characteristic of the infrared heaters. Five different
types of water containers with specific heights are regarded. A ranking of the inputs based
on domain knowledge leads to the input vector u = [vc Ph hw]. As the first input, the
conveyor speed is preferred over the heating power because it can be varied more easily.
A variation of the heating power requires additional heat-up time of the infrared heater,
which would increase the measurement time in the first ILHAD step.

The resulting experimental design for step p∗ = 3 with N = [9, 12, 12] design points is
depicted in Figure 10a.
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(a) Experimental design for the bitumen oven
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DP for two regarded inputs.

Figure 10. Experimental design for all p∗ = 3 ILHAD steps performed at the bitumen oven and the
resulting model output of ILHAD-DP in step i = 2.

To prevent insufficient and excessive surface temperatures of the bitumen, constraints
in the input space are defined based on domain knowledge and data from the first ILHAD
step. In this way, areas in the input space with low conveyor speed and high heating power
or high conveyor speed and low heating power are avoided. The inputs Ph and hw can
only be varied in steps, which define the possible LHC levels. In addition to the level of
the operating point, both inputs only possess four levels, which would limit the number of
possible design points to four in step i = 2 and i = 3. To enable the acquisition of sufficient
data points, each level is occupied by three design points so that no LHC is given anymore.
However, a space-filling design is still created by applying the EDLS algorithm, which is
extended to incorporate the defined constraints in the input space.

The training data points in steps i = 1 and i = 2 and the exemplary model output of
ILHAD-DP in the second step ŷ, depicted as a grid, are presented in Figure 10b. To evaluate
the estimated models, an additional 15 test data points are measured, which are defined
by an optimized LHC in the constrained input space. Table 5 compares the prediction
accuracy of different incremental models based on these test data points.

Table 5. Comparison of incremental model structures for the bitumen oven. The RMSE on the
additional test data points is presented in different ILHAD steps.

Step Polynomial Local Model ILHAD-DP ILHAD-NS
Model: Tree: Model: Model:

RMSE in ◦C RMSE in ◦C RMSE in ◦C RMSE in ◦C

1 27.62 29.69 26.44 26.44
2 6.37 4.63 4.83 4.81
3 4.32 4.07 3.02 3.29

As more inputs and functional relationships are incorporated into the incremental
models, the gain in accuracy in every ILHAD step can be seen. All models provide a similar
model quality, with ILHAD-DP achieving the best results in the last step p∗ = 3. The RMSE
value of approximately 3 ◦C indicates a sufficient model quality for practical application, as
a temperature interval of 10 ◦C is specified as the target value of the bitumen temperature.

5. Discussion

In the following, the obtained results are discussed. As the proposed methodology
not only focuses on the model quality, additional aspects concerning the role of the domain
expert and the applicability for industrial processes are discussed as well.
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5.1. Model Quality

Making use of GPR models as the submodel structure increases the flexibility of
the incremental model and leads to a higher overall model quality in the incremental
model structure, compared to local linear model trees and polynomial models. Due to its
construction mechanism, an incremental model is focused on an operating point in which
high model quality is achieved, whereas the single step models are trained on a more
uniform training data distribution, leading in general to lower RMSE values in the whole
input space (see Table 1). Compared to the single-step models, ILHAD causes a higher
variation in the RMSE, especially for test data covering the whole input space. This can be
explained by the smaller number of data points in each step, leading to larger gaps in the
input space of each submodel. Due to the random initialization of the LHC, the position
of the gaps varies. In some runs, these gaps are located in areas with a strongly nonlinear
process behavior, leading to a high variation in the obtained RMSE. However, many real
industrial processes can be expected to be less nonlinear than the used test function (13),
leading to a reduction of this effect.

For different types of functional relationships, ILHAD models achieve a higher model
quality close to the operating point, compared to the single-step models (see Table 2).
The best case scenario for ILHAD is given with test function (14), in which independent
functional relationships for each input are present. Each design Di used for estimating the
incremental model is a LHC, which is a non-collapsing design. This means that a projection
of a LHC in a lower-dimensional subspace is still a space-filling design, which is beneficial
if the inputs are irrelevant [34]. In this particular case with no interactions between the
inputs, each model fi only models the influence of input ui, whereas all the other inputs
are irrelevant. This means that for estimating fi, the LHC collapses to equally spaced
points in ui, which is a well-suited point distribution for GPR model estimation. The worst
case scenario for ILHAD is given with test function (15), because neither the ranking of
the inputs nor the projection capabilities of the LHC can be exploited. Nevertheless, the
incremental model is able to model the interactions between the inputs and provides a
good model quality, especially close to the operating point.

As the experiments presented in Table 4 indicate, ILHAD models are more sensitive
to noise than the single-step GPR models. Due to the smaller number of data points in
each step, each submodel of ILHAD is more affected by random fluctuations in the data,
whereas the single step models are trained on a higher number of data points so that
random fluctuations are more likely to be compensated. In addition, with an increasing
number of modeling steps, the benefit in model quality of the incremental model structure
fades. If a new submodel is added, the incremental model structure ensures that the overall
process model is not changed in the previously regarded subspace. However, this property
also prevents additional submodels from correcting the error of previous ones in this
subspace. Nevertheless, no suitable correction of the previous model is expected because
more complex functional relationships need to be modeled by the additional submodels in
a higher dimensional input space, with only a few data points given. These more complex
functional relationships result from interactions, which can be expected to occur more
likely if a higher number of inputs is given.

As no correction of an already created submodel is possible, submodels with a high
generalization capability and the ability to represent all significant interactions are needed.
Making use of a sequential design strategy within each step of ILHAD is a further research
direction to improve the model quality and the stability of the incremental model. Starting
from an initial space-filling design with a low number of data points in each step, additional
design points can be added successively. Some strategies for creating such sequential
space-filling designs are discussed in [23]. This method can make use of the interpretable
length scales in ILHAD-DP and ILHAD-NS. The more interactions between the inputs are
detected, the more data points should be added to the design. Moreover, an extension of
this approach toward active learning is possible. In active learning, a sequential design is
created with an optimization criterion based on the current model. In this way, new data
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points are placed such that the best improvement of the model can be expected. Active
learning strategies for GPR models are, for example, based on the output variance and
were successfully applied to industrial processes [47].

Regarding the model quality, it can be concluded that ILHAD is well suited for indus-
trial processes with few inputs and low output noise. However, reaching a higher model
quality than the single-step model is not the main aim of the proposed methodology. Due
to the less uniform point distribution of ILHAD in the input space, a higher model error
can be expected in general if significant interactions between the inputs are present. Never-
theless, the methodology possesses several advantages over classical DoE and modeling
approaches in terms of interpretability and applicability for industrial processes, which are
discussed in the following.

5.2. The Role of Domain Experts

Domain knowledge plays an important role in the ILHAD methodology. A domain
expert defines the operating point, used as the starting point for the exploration of the
process behavior. In ILHAD, a high model quality around this operating point can be
expected. Even though the whole input space is explored and modeled by ILHAD, the
choice of this point also has an influence on the overall model quality as indicated by
Table 1. This can be explained by interactions between the inputs that affect the functional
relationships present in the data. These functional relationships are more or less complex,
dependent on the values of further inputs that are defined by the operating point. The
choice of the operating point, therefore, depends on the purpose of the model. If a high
overall model quality is required, an operating point should be used in which preferably
no functional relationships are suppressed due to interactions. Another important task that
can be performed based on expert knowledge is the ranking of the inputs. This ranking
affects the number of ILHAD steps needed to achieve a desired overall model quality. If
a suitable ranking is chosen, the ILHAD methodology might be terminated after a few
steps, leading to a low measurement effort. To support a domain expert in determining
this input ranking, automatic methods based on data from normal process operation can
additionally be used. For example, methods that evaluate the correlation between the
inputs and outputs may be suitable [48]. Finally, for real industrial processes, the definition
of the feasible input space is crucial for performing safe and successful measurements. For
typical experimental designs, this is a complex task due to the high dimensionality of the
input space and the simultaneous variation of all inputs. Due to the lower dimensionality
in the first ILHAD steps, this task is simplified.

As the success of the measurements and the achievable model quality depend on
domain knowledge, the domain expert that provides this knowledge must be supported.
ILHAD possesses several characteristics that simplify the incorporation of domain knowl-
edge and the verification of the model. As measurement and modeling in ILHAD start
with a one-dimensional input space, the complexity is low and increases in each step.
Similar to the one-factor-at-a-time method [49], this is a more intuitive procedure for most
humans than classical experimental designs. In particular, the first steps are easy to un-
derstand and visualize, creating confidence toward the model. As in each step of ILHAD,
a usable process model is created, this model can be used to simplify the determination
of the feasible input space in the next step. Based on the current model, critical areas in
the input space can be identified in which the effect of only one additional input must
be evaluated. As an example, a current ILHAD model predicts a temperature close to a
specified temperature limit in an area of the input space. The domain expert only needs to
assess the effect of the newly added input and if it will lead to an increase in temperature,
violating the temperature limit. Compared to the single-step GPR model with ARD, it is
not only possible to detect irrelevant inputs, but the length scales of the submodels also
indicate interactions between the inputs. This enables insights into the process behavior
and can be used to validate the model based on expert knowledge.
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5.3. Comparison of ILHAD-DP and ILHAD-NS

Both presented methods for zero-forcing in a subspace provide similar results for a
small number of modeling steps and low noise. ILHAD-DP requires no changes to the
kernel function and enables using all information provided by the GPR model, such as
the confidence interval of the model output. However, due to the diagonal offset in the
kernel matrix and spaces in between the dummy points, a slight nonzero output for each
submodel might occur (see Figure 7b). This non-zero model output does not significantly
degrade the model as indicated by a similar RMSE close to the operating point, such as
ILHAD-NS, which realizes an exact submodel output of zero. Due to the dummy points,
ILHAD-DP causes a higher computational effort than ILHAD-NS. The dummy points
increase the model complexity and the number of parameters. In addition, the creation
of the space-filling design with the EDLS algorithm for populating the subspace with
dummy points is computationally demanding, especially for high dimensionality of this
subspace. However, due to the relatively small sample size in DoE for industrial processes
and only the few modeling steps that are performed, this additional computational effort
of ILHAD-DP has low relevance in practice.

With strong interactions present, ILHAD-NS achieves better results than ILHAD-DP
(see test function (15) in Table 2). This can be explained by the zero-forcing property, which
has a stronger influence on the submodel if interactions are present. In ILHAD-NS, this
zero-forcing property is incorporated into the hyperparameter optimization loop, leading
to a better submodel fit. In ILHAD-DP, hyperparameter optimization is performed without
the dummy points so that the changes introduced by the zero-forcing property are not
taken into account. Furthermore, the higher variation of the RMSE in most experiments
indicates that ILHAD-NS is less stable than ILHAD-DP. Especially for higher noise levels
and a higher number of modeling steps, the RMSE increases. This can be explained by the
modification of the kernel function, leading to distortions close to the previously regarded
subspace. Another drawback of this modification is that the confidence interval of the
model output is not valid anymore.

5.4. Applicability

The creation of classical experimental designs requires a prior specification of all
inputs that should be regarded in the experiment. In practice, this may lead to a higher
dimensionality of the experimental design and the input space of the model than necessary.
If the relevance of an input is questionable according to the current level of knowledge,
it is more reasonable to incorporate it into the design, because otherwise, the resulting
process model might perform badly, due to the missing information. ILHAD can reduce
the measurement effort, because the number of inputs does not need to be predefined.
After each step, the suitability of the model for practical usage can be evaluated and further
inputs can be added, if required. This keeps the dimensionality of the input space low,
leading to a less complex and better interpretable model.

In the presented real-world experiment, additional benefits of ILHAD in terms of
applicability become apparent. ILHAD offers a simplified measurement procedure for real
industrial plants, due to the increasing complexity in each step. As only a few inputs are
varied in the first steps, supervision of the process behavior is simplified. In particular, there
is no need to simultaneously vary all process inputs at the beginning of the measurements,
which might cause unexpected process behavior, or even defects of the plant, due to
infeasible design points. Furthermore, information from the previous ILHAD steps can
be used to assess the feasibility of design points in the next steps. At the bitumen oven,
critical values of the conveyor speed, determined in the first step, are used to better define
infeasible regions in the input space for the next steps. Due to the fixing of later considered
process inputs to the level of the operating point, fewer variations of these inputs are
required. If the variation of an input value is a manual task or takes some time, ILHAD can
reduce the actuation effort or the measurement time. In the use case of the bitumen oven, a
variation of the heating power is time consuming because a heat-up time of approximately
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five minutes is required after every change. As the heating power is constant in the first
ILHAD step, the measurement time is reduced compared to a LHC design in which a new
value of the heating power is selected for every point.

6. Conclusions

This paper presented the incremental Latin hypercube additive design (ILHAD)
methodology with Gaussian process regression models (GPR) as a submodel structure,
which is an applicable method for modeling industrial processes. In ILHAD, alternating
DoE and modeling steps with an increasing number of regarded inputs are performed
so that a process model is incrementally extended by new additive submodels. In order
to prevent a degradation of the overall process model, each submodel ensures, due to its
structure, that the previous model remains unchanged in its region of validity. To realize
this behavior for GPR submodels, two different approaches—ILHAD-DP and ILHAD-NS—
were presented. In ILHAD, measurement procedures and models are established, which
are simple in the first step and become more complex as the number of steps increases. This
procedure with increasing complexity represents a more intuitive approach than classical
DoE procedures.

The model quality of the incremental models was investigated in comparison to
a model estimated in a single step on the basis of a classical space-filling design. The
proposed incremental models are able to achieve a high model quality in an area around
the specified operating point, which is typically most relevant for practical usage of a
process model in industry. Process characteristics that favor a high model quality of ILHAD
were identified on the basis of computer simulation experiments. Beneficial characteristics
are mainly additive functional relationships between the inputs and the output and a low
noise level at the process output. In this way, even a higher model quality in the whole
input space, compared to the single-step model, can be achieved. The experimental design
and the resulting model can be adapted to the specific needs of the regarded use case
by incorporating domain knowledge. Such knowledge is used for selecting an operating
point, defining the feasible input space and determining a suitable input ranking. If proper
domain knowledge is provided, a high model quality can be reached where it is required,
safe experiments can be performed, and the number of measurements steps might be
reduced. Moreover, characteristics of ILHAD that support the incorporation of domain
knowledge and the validation of the model were presented. These include the usage of
previous models for evaluating the feasibility of design points and the interpretability
of the kernel length scales of each submodel, enabling the detection of different types of
effects. Furthermore, the applicability of this methodology for modeling real industrial
processes was demonstrated by the example of a bitumen oven.

In most experiments, the ILHAD-DP method reached a higher model quality than
ILHAD-NS. The main issue in both methods is an unstable model construction, caused
by an insufficient number of data points, if strong interactions between the inputs are
present. Making use of a sequential design strategy in each ILHAD step, which can further
be extended toward an active learning approach, is proposed as a new research direction.
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