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Abstract: In this study, the challenges of the controller design of a class of Uncertain Switched Neutral
Systems (USNSs) in the presence of discrete, neutral, and time-varying delays are considered by using
a robust observer-based control technique. The cases where the uncertainties are normbounded and
time-varying are emphasized in this research. The adopted control approach reduces the prescribed
level of disturbance input on the controlled output in the closed-loop form and the robust exponential
stability of the control system. The challenge of parametric uncertainty in USNSs is solved by
designing a robust output observer-based control and applying the Yakubovich lemma. Since the
separation principle does not generally hold in this research, the controller and observer cannot be
designed separately, sufficient conditions are suggested. These conditions are composed of applying
the average dwell time approach and piecewise Lyapunov function technique in terms of linear
matrix inequalities, which guarantees robust exponential stability of the observer-based output
controller. Finally, two examples are given to determine the effectiveness of the proposed method.

Keywords: neutral systems; switched system; uncertainty; dwell time; observer design; H∞ control

1. Introduction

Switched systems are a category of hybrid systems consisting of several subsystems
activated via switching signals [1–3]. Switched systems are extensively employed in
modeling various dynamic systems [4–6], for instance, chaotic systems [7], traffic control [8],
singular systems [9], networked nonlinear systems [10], chemical processes [11], and
mechanical systems [12]. Time delay exists in several practical and engineering systems,
such as chemical processes [13], nonholonomic systems [14,15], electrical circuits [16–18],
descriptor systems [19], and biological systems [20]. This phenomenon causes the system to
perform poorly and can even lead to instability [21]. In practice, time delays exist not only in
the states but also in their derivatives. Time-Delay Neutral Systems (TDNSs) can be found
in chemical processes, population dynamics, and water pipes [22]. However, Switched
Neutral Systems (SNSs) stability is a challenging problem [23,24]. Several Lyapunov-based
methods have been proposed to study the stability of SNSs. Dwell time (DT) and Average
Dwell Time (ADT) methods have been applied for studying the stabilization of SNSs [25,26].
The problem of stabilization and robust guaranteed cost control of a switched neutral
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system in the presence of uncertain interval time-varying delays via the dynamic output
feedback approach has been focused on in [26]. The existing condition of an appropriate
controller for stabilization and control of the system is changed to solve an iterative convex
optimization problem in the form of LMI [26]. Furthermore, uncertainty terms, such as
environmental noises, parametric uncertainties, and external disturbances, are frequently
encountered in numerous engineering applications, and the exact mathematical model
development is difficult [27–30]. Additionally, the presence of uncertainties can degrade
the performance of the closed-loop system and even lead to instability. There are several
uncertain sources, such as ambient noise, parameter variations, modeling and measurement
errors, linearization approximation, and disturbance, in real-world systems. By considering
the uncertainty in SNSs, the obtained systems can be named Uncertain Switched Neutral
Systems (USNSs). Thus, investigating the robust control approaches of USNSs is critical
in both theory and practice [31,32]. In [33], the robust stabilization of USNSs has been
investigated with constant delay and parametric uncertainty. In [34], the problem of
exponential stabilization has been studied for USNSs with time-varying uncertainties. In
the studied work, the neutral delay is constant. Using the ADT approach and the piecewise
Lyapunov functional technique, Reference [22] proposed the exponential stabilization
condition of USNSs with norm-bounded uncertainty, nonlinear perturbations, and neutral
delays [35]. Though the various research methods have been investigated in the works
mentioned above, it appears that the parametric uncertainty should be studied in the state-
derivatives matrix. In practice, the state feedback (SF) control fails to guarantee the stability
of the system when the state variables cannot be accessed from measurement [36]. Thus,
observer-based control designs can be a good option in those cases. In the observer-based
control, the output dynamic feedback controller is provided, and the state variables can be
estimated from the process. Hence, the observer-based control for Switched Time-Delay
Systems (STDSs) with or without a neutral type has been a stimulating subject in the
control scheme [37–39]. Event-triggered control is an appropriate control approach that
can reduce the volume of communications and provide a suitable closed-loop performance.
This strategy and an observer-based output feedback control have been designed for SNSs,
considering the mixed time-varying delays [40–43]. Another expectation in many practical
systems is H∞ control. This concept has been presented to decrease the disturbance input
effect on the regulated output at a given level and satisfy the stability of the closed-loop
system. In recent years, H∞ control has received extensive attention in switched systems,
with or without delays.

This paper designs a robust H∞ control law for a class of USNSs with interval time-
varying delays and norm-bounded uncertainties. Its main contributions are as follows:

- It addresses the stabilization and H∞ control problem of Uncertain Switched Neutral
Systems with interval time-varying delays in the system states and their time-derivatives.

- It solves the parametric uncertainty problem in USNSs by designing a robust observer-
based control and applying the Yakubovich lemma.

- It suggests sufficient robust exponential stability conditions using the average dwell
time approach and piecewise Lyapunov function technique in terms of a set of linear
matrix inequalities.

- When the system state variables cannot be measured, the observer-based control
approach applies to the stability guarantee. In this study, the separation principle was
not met.

- The problem of the USNSs with interval time-varying delays that existed in the state
and its derivatives (neutral) is addressed in this paper.

- Due to this study considers the time-varying and explored uncertainties in the state
derivatives matrix, the presented model is closer to the practical situations.

- To notice the decay rates, as an important feature of real cases, the exponential stability
or stabilization is considered here.
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- The upper bound of the discrete and neutral delays and their derivatives are effective
in this paper designing procedure, causing the treatment to be more general with less
conservatism compared to the literature approaches.

The remainder of the article is organized as follows: Section 2 provides the definitions,
lemmas, and description of USNSs. In Section 3, the problem of robust output observer-
based H∞ control for USNS is given. Section 4 illustrates the performance of the proposed
approach via a numerical example. Some concluding remarks are finally given in Section 5.

2. Problem Formulation and Preliminaries

Consider the following class of USNSs:
.
x(t) = A1,σ(t)(t)x(t) + A2,σ(t)(t)x(t− d(t)) + A3,σ(t)(t)

.
x(t− h(t)) + Bσ(t)(t)u(t) + Hσ(t)w(t) (1)

y(t) = Cσ(t)x(t)

z(t) = C1,σ(t)x(t) + C2,σ(t)x(t− d(t)) + C3,σ(t)
.
x(t− h(t)) + B1,σ(t)u(t) + H1,σ(t)w(t)

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−H, 0], H = max{d2, h2}

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and z(t) ∈ Rm are the state vector, the control
input vector, the measurement output vector, and the controlled output, respectively. For
convenience, σ(t) = σ is considered in this study. A1,σ(t), A2,σ(t), A3,σ(t), Bσ, and B1,σ are
the system matrices with time-varying uncertainties. These uncertainties are assumed to be

A1,σ(t) = A1,σ + ∆A1,σ(t), A2,σ(t) = A2,σ + ∆A2,σ(t),

A3,σ(t) = A3,σ + ∆A3,σ(t), Bσ(t) = Bσ + ∆Bσ(t),

where A1,σ, A2,σ, A3,σ, and Bσ are the given constant matrices. Cσ, C1,σ, C2,σ, C3,σ, Hσ, and
H1,σ are the known constant matrix of appropriate dimensions. ϕ(.) is the continuous vector-
valued function specifying the initial state of the system. σ(t) : [0,+∞)→ L = {1, 2, . . . , l}
is a switching signal. In addition, σ(t) = i means that the ith subsystem is activated. The
following observer-based control is proposed for the stabilization of the USNS introduced
in (1):

.
x̂(t) = AC,σ x̂(t) + AD,σ x̂(t− d(t)) + AE,σ

.
x̂(t− h(t))

+Bσu(t) + Lσ(y(t)− ŷ(t)),

ŷ(t) = Cσ x̂(t),

u(t) = K1,σ x̂(t) + K2,σ x̂(t− d(t)),

(2)

where x̂(t) is the estimation of the state vector, ŷ(t) is the observer output vector, K1,σ and
K2,σ are the controller gains, Lσ is the observer gain, and AC,σ, AD,σ, and AE,σ are matrices
to be specified. Applying (2) to (1) yields:

.
x̃(t) = Ã1,σ(t) x̃(t) + Ã2,σ(t) x̃(t− d(t)) + Ã3,σ(t)

.
x̃(t− h(t)) + H̃σ(t)w(t) + Ẽσ(t)∆(t) (3)

For the sake of convenience, define x̃(t) =
[

eT(t) x̂T (t)
]T , where the signal

e(t) = x(t)− x̂(t) is defined as the estimated error of the USNS, and

Ã1,σ(t) =

[
A1,σ(t) − Lσ(t)Cσ(t) A1,σ(t) − AC,σ(t)

Lσ(t)Cσ(t) AC,σ(t) + Bσ(t)K1,σ(t)

]
,

Ã2,σ(t) =

[
A2,σ(t) A2,σ(t) − AD,σ(t)

0 AD,σ(t) + Bσ(t)K2,σ(t)

]
,H̃σ =

[
Hσ

0

]
,
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Ã3,σ(t) =

[
A3,σ(t) A3,σ(t) − AE,σ(t)

0 AE,σ(t)

]
,Ẽσ(t) =

[
E
0

]
,

∆(t) = F(t){N1,ie(t) + (N1,i + N4,iK1,i) x̂(t) + N2,ie(t− d(t)) + N4,iK2,i)x̂(t− d(t)) + N3,i
.
e(t− h(t)) + N3,i

.
x̂(t− h(t))

}
,

z(t) = C1,σ[e(t) + x̂c(t)] + C2,σ[e(t− d(t)) + x̂c(t− d(t))] + C3,σ

[ .
e(t− h(t)) +

.
x̂c(t− h(t))

]
+B1,σ[K1,σ x̂c(t) + K2,σ x̂c(t− d(t))]+H1,σw(t)

=
[

C1,σ C1,σ + B1,σK1,σ
]
x̃(t) +

[
C2,σ(t) C2,σ(t) + B1,σ(t)K2,σ(t)

]
x̃(t− d(t)) +

[
C3,σ C3,σ

] .
x̃(t− h(t)) + H1,σw(t)

= C̃1,σ x̃(t) + C̃2,σ x̃(t− d(t)) + C̃3,σ
.
x̃(t− h(t)) + H1,σw(t)

The following assumptions, definitions, and lemmas are considered in the control design.

Assumption 1. The delay h(t) is the time-varying neutral delay satisfying

0 ≤ h1 ≤ h(t) ≤ h2 < ∞,
.
h(t) ≤ µh < 1, (4)

and d(t) is the discrete delay meeting

0 ≤ d1 ≤ d(t) ≤ d2 < ∞,
.
d(t) ≤ µd < 1. (5)

Assumption 2. The time-varying matrices ∆A1,i(t), ∆A2,i(t), ∆A3,i(t), and ∆Bi(t) are assumed
to be norm-bounded with appropriate dimensions satisfying the following condition:[

∆A1,i ∆A2,i ∆A3,i ∆Bi
]
= EF(t)

[
N1,i N2,i N3,i N4,i

]
, (6)

where E ∈ Rn×α and N1,i, N2,i, N3,i ∈ Rβ×n, and N4,i ∈ Rβ×m are the constant matrices,
and F(t) ∈ Rα×β is the unknown continuous time-varying matrix function with Lebesgue
measurable elements, satisfying:

FT(t)F(t) ≤ I. (7)

The following results can be easily obtained using the Equation (7):

∆T(t)∆(t) ≤ QT .NNT .Q, (8)

Q =



e(t)
x̂(t)

e(t− d(t))
x̂(t− d(t))
.
e(t− h(t))
.̂
x(t− h(t))


, N =



NT
1,i

(N1,i + N4,iK1,i)
T

NT
2,i

(N2,i + N4,iK2,i)
T

NT
3,i

NT
3,i


.

Assumption 3. Suppose that the matrix Cσ(t) is full-row rank. For convenience, the singular
value decomposition of Cσ(t) is of the form Ci = Ui

[
Si 0

]
VT

i , where Si ∈ Rp×p is a diagonal
matrix with positive diagonal elements in decreasing order; Ui ∈ Rp×p and Vi ∈ Rn×n are
unitary matrices.

Assumption 4. The external noise signal ω(t) is time-varying and satisfies∫ ∞

0
wT(t)w(t)dt < d, d ≥ 0 (9)

Definition 1 ([44]) For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the number of switching σ(t) at
an interval (T1, T2). If Nσ(T1, T2) ≤ N0 +

T1−T2
τa

holds true for any given N0 ≥ 0, τa ≥ 0, the
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constant τa is called the average dwell time. For the sake of convenience and following the common
practice in the literature, we consider N0 = 0.

Definition 2 ([21]). The USNS (1) is said to be robust and exponentially stable under σ(t), if there
exist constants M ≥ 0 and λ > 0 such that

||x(t, ϕ)|| ≤ Me−λ(t−t0)||ϕ||, ∀t ≥ t0, (10)

for all admissible uncertainties FT(t)F(t)(t) ≤ I, where x(t0 + θ) = ϕ(θ).

Definition 3 ([45]). For a prescribed level of disturbance attenuation γ > 0, find an observer-based
control (2) satisfying the following conditions:

• With w(t) = 0, the USNS (1) with observer-based control (2) is exponentially stabilizable.
• Under zero-initial condition ϕ(t) = 0, ∀t ∈ [−H, 0], the output z(t) satisfies∫ ∞

0
zT(t)z(t)dt ≤ γ2

∫ ∞

0
wT(t)w(t)dt. (11)

Lemma 1 (Yakubovich lemma) ([46]). Let Ω0(x) and Ω1(x) two quadratic matrix func-
tions over Rn, and Ω1(x) ≤ 0 for all x(t) ∈ Rn − {0}. Then, Ω0(x) < 0 holds true for all
x(t) ∈ Rn − {0}, if and only if there exists the constant ε ≥ 0 such that

Ω0(x)− εΩ1(x) < 0, ∀x(t) ∈ Rn − {0}. (12)

Lemma 2. ([47]) For a given C ∈ Rp×n with rank (C)= p, assume that X ∈ Rn×n is a symmetric
matrix, then there exists a matrix X̂ ∈ Rp×p such that CX = X̂C, if and only if

X = V
[

X̂11 0
0 X̂22

]
VT , (13)

where X̂11 ∈ Rp×p and X̂22 ∈ R(n−p)×(n−p).

3. Observer-Based Robust H∞ Control

The class of USNSs given in (1) is considered here. The following theorem proves the
stabilization of the USNS (1) via the observer-based control (2) in terms of feasible solutions
to a certain set of LMIs.

Theorem 1. Consider the System (1). Let P1,i = P−1
1,i , P2,i = P−1

2,i , Q1,i = Q−1
1,i , Q2,i = Q−1

2,i ,
R1,i = R−1

1,i , R2,i = R−1
2,i . Assume that there exist matrices Pi > 0, Qi > 0, Ri > 0, X1,i, X2,i, Y1,i,

Y2,i, W1,i, W2,i, and W3,i and positive constants α and γ such that for i ∈ L, Λ11 Λ12 Λ13
∗ Λ22 Λ23
∗ ∗ Λ33

 < 0, (14)

where

Λ11 =


Σ11 Σ12 A2,iQ1,i A2,iQ2,i −W2,i A3,iR1,i
∗ Σ22 0 W2,i + BiY2,i 0
∗ ∗ Σ33 0 0
∗ ∗ ∗ Σ44 0
∗ ∗ ∗ ∗ Σ55

,
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Λ12 =



A3,iR2,i −W3,i Hi E P1,i AT
1,i − CT

i XT
1,i CT

i XT
1,i

W3,i 0 0 P2,i AT
1,i −WT

1,i WT
1,i + YT

1,iB
T
i

0 0 0 Q1,i AT
2,i 0

0 0 0 Q2,i AT
2,i −WT

2,i WT
2,i + YT

2,iB
T
i

0 0 0 R1,i AT
3,i 0


,

Σ11 =
(

A1,iP1,i − XiCi
)
+
(

A1,iP1,i − XiCi
)T

+ αP1,i,

Σ12 = A1,iP2,i + CT
i XT

i −W1,i,

Σ22 = W1,i + WT
1,i + BiY1,i + YT

1,iB
T
i + αP2,i,

Σ33 = −(1− µd)e−αd2 Q1,i, Σ44 = −(1− µd)e−αd2 Q2,i,

Σ55 = −(1− µh)e−αh2 R1,i, Σ66 = −(1− µh)e−αh2 R2,i,

Λ13 =



P1,iCT
1,i P1,i NT

1,i P1,i 0

P2,iCT
1,i + YT

1,iB
T
1,i P2,i NT

1,i + YT
1,i N

T
4,i 0 P2,i

Q1,iCT
2,i Q1,i NT

2,i 0 0

Q2,iCT
2,i + YT

2,iB
T
1,i Q2,i NT

2,i + YT
2,i N

T
4,i 0 0

0 0


,

Λ22 =



Σ66 0 0 R2,i AT
3,i −WT

3,i WT
3,i

∗ −γ2 I 0 HT
i 0

∗ ∗ −I ET 0

∗ ∗ ∗ −R1,i 0

∗ ∗ ∗ ∗ −R2,i


,

Λ23 =


R2,iCT

3,i R2,i NT
3,i 0 0

HT
1,i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

Λ33 =


−I 0 0 0
∗ −I 0 0
∗ ∗ −Q1,i 0
∗ ∗ 0 −Q2,i

,

Pi =

[
P1,i 0
0 P2,i

]
, Qi =

[
Q1,i 0

0 Q2,i

]
, Ri =

[
R1,i 0
0 R2,i

]
.

then for any switching signal with ADT τa > τ∗a = ln µ
α , where µ ≥ 1 satisfies

Pi ≤ µPj , Qi ≤ µQj, Ri ≤ µRj, ∀i, j ∈ L, (15)

System (1) is exponentially stable using the observer-based control (2) with

AC,i = W1,iP
−1
2,i , AD,i = W2,iQ

−1
2,i ,

AE,i = W3,iR
−1
2,i , K1,i = Y1,iP

−1
2,i ,

K2,i = Y1,iQ
−1
2,i , Li = XiUiSi P̂−1

11,iS
−1
i UT

i .

(16)
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Furthermore, the estimate of the state decay is given by

||η(t)|| ≤
√

b
a
||ηt0 ||c1 e−λ(t−t0),

√
b
a
≥ 1, (17)

where

λ = 1
2

(
α− lnµ

τa

)
, a = min∀i∈Lλmax(Pi),

b = max∀i∈Lλmax(Pi) + d2max∀i∈Lλmax(Qi) + h2max∀i∈Lλmax(Ri).
(18)

Proof: See Appendix A. �

Remark 1. When µ = 1, given τa > τ∗a = lnµ
α , we will have τa > τ∗a = 0, which means that the

switching signal σ(t) can be arbitrary. Thus, (15) takes the following form

Pi ≤ Pj, Qi ≤ Qj, Ri ≤ Rj, ∀i, j ∈ L, (19)

Equation (18) in the form of (19) is considered as

Pi = Pj = P, Ri = Rj = R, Qi = Qj = Q (20)

This shows that a common Lyapunov function is required for all subsystems.

Remark 2. This study presents a controller design method applying the observer to realize expo-
nential stabilization. The LMI approach is employed for the expression of the existing condition.
For more closeness between the model and the real system, uncertainties, delay (time-varying and
neutral), and nonlinear perturbations are inserted into the model, leading to the problem complex-
ity. By this approach, the system dimension and, consequently, LMI size is increased due to the
computational complexity.

Remark 3. The stability is proved, employing the conservative Lyapunov function that guarantees
sufficient conditions, not the necessary ones. In this paper, the multiple Lyapunov functions
are utilized that are less conservative compared to the common Lyapunov function. For more
conservativeness reduction, the ADT approach is used. Besides, the upper bound of the discrete and
neutral delays and their derivatives are effective in the designing procedure, causing the treatment
to be more general with less conservatism compared to the literature approaches.

Remark 4. The main differences between the present study and [26] can be summarized as follows.
While [26] uses output dynamic feedback, the observer is designed in the present study. In addition,
the cost function of [26] is in the form of guaranteed cost control, but this work focuses on the
problem of H∞control approach. Besides, convex optimization is employed in order to convert the
problem to LMI in [26]; this research utilizes SVD lemma and change of variables.

4. Numerical Example

In this section, two examples are presented for more illustration of the effectiveness of
the proposed method.

Example 1. We consider the USNS described by (1) comprised of two subsystems with the following
constant values:

A1,1 =

 −2.0 −1.0 −1.2
0.7 −1.4 0.5
−1.3 0.5 −1.0

, A2,1 =

 0.2 0.0 0.1
0.1 0.3 0.1
0.3 0.1 0.2

, A3,1 =

 0.2 0.0 0.1
0.1 0.3 0.1
0.3 0.1 0.2

,

B1 =
[

1.0 0.5 2.0
]T , C1 =

[
−1.2 0.5 0.7

]
,B1,1 = 0.2,
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C1,1 =
[
−1.2 0.5 0.7

]
, C2,1 =

[
1.0 0.6 0.9

]
, C3,1 =

[
−0.8 0.5 0.4

]
,

N1,1 =

 0.2 0.0 0.1
0.0 0.1 0.1
0.0 0.1 0.1

, N2,1 =

 0.0 0.2 0.1
0.0 0.2 0.1
0.0 0.1 0.0

,

N3,1 =

 0.2 0.1 0.1
0.0 0.1 0.2
0.1 −0.1 0.1

, N4,1 =
[

0.1 0.0 0.1
]T ,

A1,2 =

 −3.0 −1.2 −3.0
0.2 −1.0 0.4
−0.7 1.1 −1.2

, A2,2 =

 0.2 0.0 0.0
0.1 0.2 0.1
0.1 0.1 0.3

, A3,2 =

 0.2 0.0 0.0
0.1 0.2 0.1
0.1 0.1 0.3

,

B2 =
[

0.9 0.4 1.8
]T , C2 =

[
−1.0 0.5 0.7

]
,B1,2 = 0.5,

C1,2 =
[
−1 0.5 0.7

]
, C2,2 =

[
1.2 0.5 0.8

]
,

C3,2 =
[

1.2 0.7 0.3
]
, N1,2 =

 0.2 0.1 0.0
0.1 0.1 −0.1
0.1 0.1 0.1



N2,2 =

 0.0 0.1 0.1
0.2 0.1 0.2
0.1 0.1 0.1

, N3,2 =

 0.1 0.1 0.2
0.2 0.0 −0.1
0.1 0.1 0.1

,

N4,2 =
[

0.2 0.1 0.0
]T , H1,1 = 0.2, H1,2 = 0.1,

H1 =
[

0.4 0.5 0.6
]T , H2 =

[
0.2 0.4 0.5

]T ,

E = 0.5×

 0.1 0 0
0 0.3 0
0 0 0.1

,F(t) = cos(0.1t)× I3×3 (21)

Considering d(t) = 0.3 + 0.2 sin(t), α = 0.01, and h(t) = 0.1 + 0.1sin(t), we obtain
µd = 0.2, µh = 0.1, d2 = 0.5, and h2 = 0.2. The switching signal is shown in Figure 1. A
robust output observer-based control u(t) in the form of (2) is designed such that system
(3) reaches exponential stability. In this section, an output observer-based controller is
designed for USNS by setting µ = 1.01 (thus, τa > τ∗a = ln µ

α = 0.9950).

Figure 1. The switching signal where ADT is τa = 1.5.

Solving (14)–(16) gives the following feasible solutions:

AC,1 =

 −3.7061 −0.1460 −0.0663
−2.1033 0.0935 2.4948
1.3059 −1.0545 −3.0714

, AC,2 =

 −3.5295 −0.4767 −1.6496
0.6550 −2.2515 −1.7738
−0.5361 1.3005 −0.9880

,
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AD,1 =

 1.0623 0.5414 0.8907
1.9652 1.4266 1.8252
−1.3036 −0.8201 −1.2587

, AD,2 =

 0.3043 0.0418 0.0899
0.1532 0.2271 0.0916
−0.0232 0.1013 0.2414

,

AE,1 =

 −0.6014 0.5003 0.4794
−1.5211 1.2726 0.8944
1.6894 −0.6811 −0.4099

, AE,2 =

 0.2046 −0.0164 −0.0365
0.1382 0.2743 0.2394
0.1051 0.0935 0.2862

,

L1 =
[
−0.0269 0.0013 0.4726

]T , L2 =
[
−1.0741 1.5364 0.8094

]T ,

K1,1 =
[

1.0897 −2.3793 −3.4141
]
, K1,2 =

[
0.7733 −3.6634 −5.7249

]
,

K1,1 =
[

1.0897 −2.3793 −3.4141
]
, K1,2 =

[
0.7733 −3.6634 −5.7249

]
,

The state trajectories and state estimation trajectories of the USNS are shown in
Figures 2–4, with the initial conditions satisfying (0) =

[
0.7 −0.1 0

]T ,

x̂(0) =
[

0.5 −0.3 0.5
]T , t ∈ [−0.5, 0]. It can be observed that system (3) is expo-

nentially stable. Figures 5–7 depict the output observer-based control trajectory, the observer
output, and the estimated error of the system, respectively.

Figure 2. State trajectory of x1 and state estimation trajectory x̂1.

Figure 3. State trajectory of x2 and state estimation trajectory x̂2.

Figure 4. State trajectory of x3 and state estimation trajectory x̂3.
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Figure 5. Output observer-based control trajectory.

Figure 6. Observer output (ŷ) and measured output (y ).

Figure 7. The estimated error of the system.

As can be comprehend from Figures 2–4 that the estimations for all states are reached
to their actual values, which means that the estimation errors go to zero in an acceptable
time. Furthermore, the control signal is completely feasible, and the observer signal tracks
the actual output suitably. These points can be understood from Figures 5–7.

Example 2. The model of the water-quality dynamic of the River Nile considering two modes of
operation are presented as follows [48,49]:

.
x(t) = A1,σ(t)(t)x(t) + A2,σ(t)(t)x(t− d(t)) + Bσ(t)(t)u(t) + Hσ(t)w(t)

y(t) = Cσ(t)x(t)

z(t) = C1,σ(t)x(t) + C2,σ(t)x(t− d(t)) + B1,σ(t)u(t) + H1,σ(t)w(t)

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−H, 0], H = max{d2, h2}
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where

A1,1 =

[
−1.0 0.0
−3.0 −2.0

]
, A2,1 =

[
−0.55 0.70
−0.25 −0.30

]
, B1 =

[
1.4 0.0
0.0 1.5

]
,

C1 =

[
1.0 1.0
1.0 2.0

]
, C1,1 =

[
0.1 0.1
0.1 0.2

]
, C1,2 =

[
−0.1 0.1
0.1 −0.2

]
, B1,1 =

[
0.2 0
0 0.4

]
,

A2,1 =

[
1.0 0.0
−3.0 −2.0

]
, A2,2 =

[
−0.45 −0.50
−0.15 −0.10

]
, B2 =

[
1.2 0.0
0.0 1.4

]
,

C2 =

[
1.0 1.4
1.5 1.0

]
, C2,1 =

[
0.2 0.1
0.1 0.1

]
, C2,2 =

[
−0.1 0.1
0.1 −0.2

]
, B1,2 =

[
0.1 0
0 0.5

]
,

N1,1 =

[
0.5 −0.3
−0.2 0.8

]
, N2,1 =

[
−0.2 0.0
0.0 −0.1

]
, N4,1 =

[
−0.2 0.1
0.1 −0.2

]
,

N1,2 =

[
0.7 −0.3
−0.6 0.7

]
, N2,2 =

[
−0.1 0.1
0.0 −0.1

]
, N4,2 =

[
−0.2 0.1
0.1 −0.1

]
,

H1 =

[
1 −1
2 1

]
, H2 =

[
−1 0
2 0.8

]
, H1,1 =

[
1 −1
2 1

]
, H1,2 =

[
0.8 0
1.0 −1.0

]
,

E1 = E2 = 0.1×
[

0.1 0
0 0.3

]
, F(t) =

[
sin(0.1t) 0

0 sin(0.1t)

]
. (22)

Defining the disturbance signal as d(t) = 0.3+ 0.2 sin(t), and α = 0.5, the values of µd
and d2 can be obtained as 0.2 and 0.5, respectively. Considering the control signal (u(t)) of
a robust output observer-based approach in the form of (2), caused the system (3) to reach
exponential stability. By quantifying µ = 1.1 (thus, τa > τ∗a = ln µ

α = 0.1906), an output
observer-based controller is designed for USNS. The below matrices can be provided as
the feasible solutions via solving (14)–(16):

AC,1 = 107.
[
−0.4617 0.2672
1.0394 −1.0707

]
, AC,2 = 107.

[
3.8016 −1.5925
−1.5922 0.6451

]
,

AD,1 =

[
0.7600 −0.0954
0.9121 0.7380

]
, AD,2 =

[
0.3083 −0.6657
−0.0178 −0.2518

]
,

L1 = 107.
[

1.0548 −0.2817
−0.8875 1.4418

]
, L2 = 105.

[
−2.0540 2.8763
3.0830 −2.0549

]
,γ = 0.03

K1,1 =

[
−28.1942 20.2509

6.0480 −5.9665

]
, K1,2 =

[
435.1665 −186.0161
12.5632 −6.4043

]
,

K2,1 =

[
−1.0871 0.0521
−0.2368 −0.3336

]
, K2,2 =

[
−0.8792 0.6582
−0.1681 0.3803

]
.

The trajectories of the states and their estimations for the USNS can be demon-
strated in Figures 8 and 9, by selecting the initial conditions as x(0) =

[
−3 4

]T ,

x̂(0) =
[

2 −3
]T , and t ∈ [−0.5, 0]. As can be seen, System (3) is exponentially sta-

ble. Figures 10 and 11 illustrate the estimated error and the output observer-based control
trajectory, respectively. The appropriate performance of the designed system is demon-
strated in Figure 3, in which the output estimated errors for both states reach zero in a
short time.
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Figure 8. State trajectory of x1 and state estimation trajectory x̂1.

Figure 9. State trajectory of x2 and state estimation trajectory x̂2.

Figure 10. The estimated error of the system.
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Figure 11. Output observer-based control trajectories.

5. Conclusions

This paper investigated the problem of a robust observer-based H∞ control for USNSs
with interval time-varying mixed delays. It considered the systems with norm-bounded
time-varying uncertainties. By utilizing the average dwell time approach and the piecewise
Lyapunov functional technique, the LMI-based feasibility conditions have been established
to ensure that the considered system is exponentially stable with a prescribed level of H∞
performance. The observer gains are determined by solving a set of LMIs. The uncertainties
in USNSs are solved by designing an output observer-based controller and employing
the Yakubovich lemma. The proposed observer-based H∞ control is verified through
two numerical simulations. The obtained results confirmed the effectiveness and robust
performance of the proposed approach. It is worth noting that most previous studies have
only dealt with the stabilization and H∞ control problem of USNSs without considering
uncertainty and time-varying delays. However, the present work is more practically
oriented because it considers parametric uncertainties and time-varying delays in the
states and their derivatives. The extension of the proposed observer-based robust control
technique for switched neutral systems with input saturation and multiple time-varying
delays can be the topic of our future research. The subject of mixed H2/H∞ control for
USNSs may be considered in future studies. Besides, by designing the Lyapunov function
and employing the free weight matrices, the system conservation can be decreased in
switched neutral systems along with uncertainty and nonlinear perturbation. In addition,
designing a finite-time controller for the USNSs stabilization, considering the system
constraints, and studying uncertain stochastic systems are the other issues for future works.
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Appendix A

Proof of Theorem 1. A Lyapunov functional candidate is defined as follows:

V(t) , x̃T(t)
[

P1,i 0
0 P2,i

]
x̃(t) +

∫ t
t−d(t) eα(s−t) x̃T(s)

[
Q1,i 0

0 Q2,i

]
x̃(s)ds +

∫ t
t−h(t) eα(s−t)

.
x̃

T
(s)
[

R1,i 0
0 R2,i

]
.
x̃(s)ds, (A1)

where Pj,i > 0, Qj,i > 0, and Rj,i > 0 (j = 1, 2) are to be determined. Taking the
derivative of V(t) with respect to t along the trajectory of the USNS (1), using (4) and (5),
and adding αV(t) (for the satisfaction of the exponential stability), yields:

.
V(t) +αV(t) ≤ αx̃T(t)Pi x̃(t)

+x̃T(t)
[

Pi Ã1,i + ÃT
1,iPi

]
x̃(t)

+x̃T(t)Pi Ã2,i x̃(t− d(t))

+x̃T(t− d(t))ÃT
2,iPi x̃(t)

+x̃T(t)Pi H̃iw(t) + ∆T(t)ẼT
i Pi x̃(t)

+wT(t)H̃T
i Pi x̃(t) + x̃T(t)Pi Ẽi∆(t)

+x̃T(t)Pi Ã3,i
.̃
x(t− h(t))

+
.̃
x

T
(t− h(t))ÃT

3,iPi x̃(t)

+x̃T(t)Qi x̃(t) +
.̃
x

T
(t)Ri

.̃
x(t)

−(1− µd)e−αd2 x̃T(t− d(t))Qi x̃(t− d(t))

−(1− µh)e−αh2
.̃
x

T
(t− h(t))Ri

.̃
x(t− h(t)).

(A2)

Equation (A2) is rewritten as the following linear inequality by adding
zT(t)z(t)− γ2wT(t)w(t) to (A2):

.
V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ ΣT(t)∆iΣ(t), (A3)

where
Σ(t) ,

[
x̃T(t) x̃T(t− d(t))

.
x̃

T
(t− h(t)) wT(t) ∆T(t)

]T

and

∆i ,



Π11,i Pi Ã2,i Pi Ã3,i Pi H̃i PiEi ÃT
1,i

∗ Π22,i 0 0 0 ÃT
2,i

∗ ∗ Π33,i 0 0 ÃT
3,i

∗ ∗ ∗ −γ2 I 0 H̃T
i

∗ ∗ ∗ ∗ 0 ẼT
i

∗ ∗ ∗ ∗ ∗ −R−1
i


+


C̃T

1,i
C̃T

2,i
C̃T

3,i
HT

1,i
0




C̃T

1,i
C̃T

2,i
C̃T

3,i
HT

1,i
0

,

Π11,i = Pi Ã1,i + ÃT
1,iPi + Qi + αPi,

Π22,i = −(1− µd)e−αd2 Qi,

Π33,i = −(1− µh)e−αh2 Ri. (A4)
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If one can prove that ∆i < 0, which implies
.

V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ 0,
the robust exponential stability and H∞ control of the system is guaranteed. According to the
Schur complement lemma [50], Condition (A4) is equal to

Ξi =



Π11,i Pi Ã2,i Pi Ã3,i Pi H̃i Pi Ẽi ÃT
1,i C̃T

1,i
∗ Π22,i 0 0 0 ÃT

2,i C̃T
2,i

∗ ∗ Π33,i 0 0 ÃT
3,i C̃T

3,i
∗ ∗ ∗ −γ2 I 0 H̃T

i HT
1,i

∗ ∗ ∗ ∗ 0 ẼT
i 0

∗ ∗ ∗ ∗ ∗ −R−1
i 0

∗ ∗ ∗ ∗ ∗ ∗ −I


(A5)

Thus,
.

V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ ΣT(t).Ξi.Σ(t). (A6)

Now, if one can prove Ξi < 0, which implies
.

V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ 0,
the robust exponential stability and H∞ control of the system is guaranteed. Substituting Ã1,i, Ã2,i,
Ã3,i, Ẽ, C̃1,i, C̃2,i, C̃3,i, and H̃i into Ξi gives

Ξi =

 (1, 1) (1, 2) (1, 3)
∗ (2, 2) (2, 3)
∗ ∗ (3, 3)

, (A7)

where
ε11 = P1,i(A1,i − LiCi) + (A1,i − LiCi)

T P1,i + Q1,i + αP1,i,

ε12 = P1,i(A1,i − AC,i) + (LiCi)
T P2,i,

ε22 = P2,i(AC,i + BiK1,i) + (AC,i + BiK1,i)
T P2,i + Q2,i + αP2,i,

ε33 = −(1− µd)e−αd2 Q1,i,

ε44 = −(1− µd)e−αd2 Q2,i,

ε55 = −(1− µh)e−αh2 R1,i,

ε66 = −(1− µh)e−αh2 R2,i,

(1, 1) =


ε11 ε12 P1,i A2,i P1,i(A2,i − AD,i)
∗ ε22 0 P2,i(AD,i + BiK2,i)
∗ ∗ ε33 0
∗ ∗ ∗ ε44

,

(1, 2) =


P1,i A3,i P1,i(A3,i − AE,i) P1,i Hi PiE

0 P2,i AE,i 0 0
0 0 0 0
0 0 0 0

,

(1, 3) =


(A1,i − LiCi)

T (LiCi)
T CT

1,i
(A1,i − AC,i)

T (AC,i + BiK1,i)
T (C1,i + B1,iK1,i)

T

AT
2,i 0 (C2,i + B1,iK2,i)

T

(A2,i − AD,i)
T (AD,i + BiK2,i)

T CT
3,i

,
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(2, 2) =


ε55 0 0 0
∗ ε66 0 0
∗ ∗ −γ2 I 0
∗ ∗ ∗ 0

,

(3, 3) =

 −R−1
1,i 0 0
∗ −R−1

2,i 0
∗ ∗ −I

,

(2, 3) =


AT

3,i 0 CT
3,i

(A3,i − AE,i)
T AT

E,i CT
3,i

HT
i 0 0

ET 0 0

.

On the other hand, noting (6) and (7), we will have

∆T(t)∆(t)−QT .NNT .Q ≤ 0, (A8)

where Q and N have been defined before (See (8)). Now, according to Lemma 1, if
.

V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) ≤ ΣT(t).Ξi.Σ(t) < ∆T(t)∆(t)−QT .NNT .Q, (A9)

Then, system (3) is exponentially stable. Hence, (A9) is rewritten as the following inequality:

.
V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t)− ∆T(t)∆(t)−QT .NNT .Q < 0, (A10)

Now, according to Lemma 1, if

Ω1|ε=1 = ∆T(t)∆(t)−QT .N.NT .Q ≤ 0, (A11)

the condition Ω0(x) =
.

V(t) + αV(t) + zT(t)z(t)− γ2wT(t)w(t) < 0 holds if and only if

Ω0 − εΩ1 < 0. (A12)

It can be seen that (A12) is equivalent to (A10). Writing Equation (A12) in the matrix
form, we will obtain the inequality (A13), which will guarantee the stability of the system.

Ai =



| NT
1,i

| (N1,i + N4,iK1,i)
T

| NT
2,i

| (N2,i + N4,iK2,i)
T

Ξi | NT
3,i

| NT
3,i

| 0
| 0
| 0

− − − 0
∗ . . . ∗ 0
∗ . . . ∗ −I



< 0, (A13)

and Ξi is defined above (see (A7)). Pre- and post-multiplying the matrix Ai in (A13) by
ΛTand Λ, where

Λ = diag
(

P−1
1,i , P−1

2,i , Q−1
1,i , Q−1

2,i , R−1
1,i , R−1

2,i , I, I, I, I, I, I
)

,
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we will have  Γ11 Γ12 Γ13
∗ Γ22 Γ23
∗ ∗ Γ33

, (A14)

where

Γ11 =


θ11 θ12 A2,iQ−1

1,i (A2,i − AD,i)Q−1
2,i A3,iR−1

1,i
∗ θ22 0 (AD,i + BiK2,i)Q−1

2,i 0
∗ ∗ θ33 0 0
∗ ∗ ∗ θ44 0
∗ ∗ ∗ ∗ θ55

,

Γ12 =


(A3,i − AE,i)R−1

2,i Hi E P−1
1,i (A1,i − LiCi)

T

AE,iR−1
2,i 0 0 P−1

2,i (A1,i − AC,i)
T

0 0 0 Q−1
1,i AT

2,i
0 0 0 Q−1

2,i (A2,i − AD,i)
T

0 0 0 R−1
1,i AT

3,i

,

Γ13 =


P−1

2,i (LiCi)
T P−1

1,i CT
1,i P−1

1,i NT
1,i

P−1
2,i (AC,i + BiK1,i)

T P−1
2,i (C1,i + B1,iK1,i)

T P−1
2,i (N1,i + N4,iK1,i)

T

0 Q−1
1,i CT

2,i Q−1
1,i NT

2,i
Q−1

2,i (AD,i + BiK2,i)
T Q−1

2,i (C2,i + B1,iK2,i)
T Q−1

2,i (N2,i + N4,iK2,i)
T

0 R−1
1,i CT

3,i R−1
1,i NT

3,i

,

Γ22 =


θ66 0 0 R−1

2,i (A3,i − AE,i)
T

∗ −γ2 I 0 HT
i

∗ ∗ −I ET

∗ ∗ ∗ −R−1
1,i

,

Γ23 =


R−1

2,i AT
E,i R−1

2,i CT
3,i R−1

2,i NT
3,i

0 HT
1,i 0

0 0 0
0 0 0

,

Γ33 =

 −R−1
2,i 0 0
∗ −I 0
∗ ∗ −I

,

θ11 = (A1,i − LiCi)P−1
1,i + P−1

1,i (A1,i − LiCi)
T + P−1

1,i Q1,iP−1
1,i + αP−1

1,i ,

θ12 = (A1,i − AC,i)P−1
2,i + P−1

1,i (LiCi)
T ,

θ22 = (AC,i + BiK1,i)P−1
2,i + P−1

2,i (AC,i + BiK1,i)
T + P−1

2,i Q2,iP−1
2,i + αP−1

2,i ,

θ33 = −(1− µd)e−αd2 Q−1
1,i ,

θ44 = −(1− µd)e−αd2 Q−1
2,i ,

θ55 = −(1− µh)e−αh2 R−1
1,i ,

θ66 = −(1− µh)e−αh2 R−1
2,i .

The Schur complement lemma is used for P−1
1,i Q1,iP−1

1,i and P−1
2,i Q2,iP−1

2,i . Furthermore,

in view of Lemma 2 the conditions CiP1,i = P̂1,iCi holds where P1,i = Vi

[
P̂11,i 0

0 P̂22,i

]
VT

i .
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By setting P1,i = P−1
1,i , P2,i = P−1

2,i , Q1,i = Q−1
1,i , Q2,i = Q−1

2,i , R1,i = R−1
1,i , R2,i = R−1

2,i ,
Y1,i = K1,iP2,i, Y2,i = K2,iQ2,i, W1,i = AC,iP2,i, W2,i = AD,iQ2,i, and W3,i = AE,iR2,i, the
matrix inequality (A14) is equivalent to (14). Assuming that Equation (14) is satisfied, by
considering (A5), we will have

.
V(t) + αV(t) ≤ 0 (A15)

Integrating both sides of (A15) from tk to t, the following inequality holds:

V(t) ≤ e−α(t−tk)V(tk) (A16)

From (15) and (1.1), at the switching moment tk, we will have

V(tk) ≤ µV
(
t−k
)

(A17)

Therefore, from (A16) and (A17), for t ∈ [tk, tk+1) , and according to Definition 2, we
know ρ = Nσ(t0, t) ≤ t−t0

τa
, t0 = 0, then

V(t) ≤ e−α(t−tk)V(tk) ≤ µe−α(t−tk)V
(
t−k
)

≤ µe−α(t−tk−1)V(tk−1) ≤ µ2e−α(t−tk−1)V
(

t−k−1

)
≤ . . . ≤ µρe−α(t−t0)V(t0) ≤ e−(α−ln µ

τa )tV(t0)

(A18)

Furthermore, given the definition of the Lyapunov function (A1) and its monotonous-
ness, the following inequalities hold:

a||η (t) ||2 ≤ V(t) ≤ e−(α−
lnµ
τa )tV(t0) ≤ b||η (t0) ||2cl , (A19)

where a and b are defined in (17). Then, we will have

||η (t) ||2 ≤ 1
a

V(t) ≤ b
a

e−(α−
lnµ
τa )t||η (t0) ||2cl . (A20)

Now, we will establish the H∞ performance defined in (11) for the system in (3).
Considering (A6), we have

.
V(t) ≤ −αV(t) + γ2wT(t)w(t)− zT(t)z(t), (A21)

Integrating (A21) from tk to t, the following inequality holds:

.
V(t) ≤ e−α(t−tk)V(tk) +

∫ t
tk

e−α(t−s)(γ2wT(s)w(s)− zT(s)z(s)
)
ds

= e−α(t−tk)V(tk) +
∫ t

tk
e−α(t−s)T(s)ds

(A22)

Therefore, it follows from (A17) and (A22) and the inequality ρ = Nσ(0, t) ≤ t−0
τa

that

V(t) ≤ µe−α(t−tk)V
(
t−k
)
+
∫ t

tk
e−α(t−s)T(s)ds ≤ µρe−αtV(t0) + µρ

∫ t1
0 e−α(t−s)T(s)ds

+µρ−1
∫ t2

t1
e−α(t−s)T(s)ds + . . .+µ0

∫ t
tk

e−α(t−s)T(s)ds = e−αt+Nσ(0,t)lnµV(0)

+
∫ t

tk
e−α(t−s)+Nσ(s,t)lnµT(s)ds

(A23)

Under zero initial condition, (A23) implies∫ t

0
e−α(t−s)+Nσ(s,t)lnµzT(t)z(t)dt ≤ γ2

∫ t

0
e−α(t−s)+Nσ(s,t)lnµwT(t)w(t)dt. (A24)

Multiplying both sides of (A24) by e−Nσ(0,t)lnµ yields∫ t

0
e−α(t−s)−Nσ(0,s)lnµzT(t)z(t)dt ≤ γ2

∫ t

0
e−α(t−s)−Nσ(0,s)lnµwT(t)w(t)dt. (A25)
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Notice that Nσ(0, s) ≤ s
τa

and τa > τ∗a = lnµ
α , we will have Nσ(0, s)lnµ ≤ αs. Thus,

(A25) implies ∫ t

0
e−α(t−s)zT(t)z(t)dt ≤ γ2

∫ t

0
e−α(t−s)wT(t)w(t)dt, (A26)

Integrating the above inequality from t = 0 to ∞ yields (11). The proof is complete at
this point. �
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