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Abstract: This paper deals with the problem of managing the risks of complex systems under targeted
attacks. It is usually solved by using Defender–Attacker models or similar ones. However, such
models do not consider the influence of the defending system structure on the expected attack
outcome. Our goal was to study how the structure of an abstract system affects its integral risk. To
achieve this, we considered a situation where the Defender knows the structure of the expected attack
and can arrange the elements to achieve a minimum of integral risk. In this paper, we consider a
particular case of a simple chain attack structure. We generalized the concept of a local risk function
to account for structural effects and found an ordering criterion that ensures the optimal placement
of the defending system’s elements inside a given simple chain structure. The obtained result is
the first step to formulate the principles of optimally placing system elements within an arbitrarily
complex network. Knowledge of these principles, in turn, will allow solving the problems of optimal
allocation of resources to minimize the risks of a complex system, considering its structure.

Keywords: complex systems; risk management; structure control

1. Introduction

One of the most topical problems in studying complex networks is developing mathe-
matical models of various disruptive effects, including targeted attacks on the nodes or
edges of a network. Such models assess the risks and the propagation of failures in complex
systems of different natures. This approach is widely used in solving the problems of
cyber-physical systems [1,2], computing systems [3,4], epidemiology [5,6], as well as other
subject areas.

The classic approach considers such impacts (or attacks) as an accidental (uninten-
tional) occurrence. The corresponding models are the error tolerance model [7]; “forest
fire”-based models [8], including the one with immune trees [9]; demon model [10]; cellular
automata-based model [11,12]; and random attack percolation models [13,14]. The latter
ones, including the targeted attack percolation models [15–18], localized attack percolation
models [19], and k-core percolation [20–23], are also used to simulate the intentional attacks
on a network’s nodes and edges, assuming that the Attacker tries to disrupt the network
connectivity as quickly as possible.

In terms of complex network risk management problems, these percolation models
naturally belong to a broader class of Defender–Attacker–Defender (D-A-D) models [24,25].
Such models consider the conflict between two actors. One of them is the Attacker, who
brings a negative impact on the network. The other one is the Defender, who tries to
resist it. D-A-D models generally assume that the Attacker and the Defender have limited
resources to undertake their actions. In this case, the problem is the optimization of
resources for both actors. However, the Defender can also act differently, e.g., intentionally
changing the complex network’s structure to reduce risks. We can mention cascading
failure propagation models [26,27] as an example of such models for non-targeted attacks
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and their implementation in several interconnected networks. For instance, paper [28]
describes the model for two interconnected networks.

Models considering the intentional modification (or establishing) of the network struc-
ture by the Defender to counter the targeted attacks seem to exist only for interconnected
networks [29–31].

Networks describing real-world systems mostly have a pre-defined and fixed structure.
At the same time, there are practical challenges, e.g., building a layered defense or a multi-
level defense, where the Defender can choose the structure of the protected system to
restrict the malicious acts. The authors could not find any mathematical models describing
this case in the literature.

Table 1 shows the classification of the above-mentioned mathematical models. The
models describing the influence of a complex network structure on its risk are in cell (4).

The purpose of this study is to examine how the Defender could lower the integral
risk to a network by choosing (or changing) its structure. We consider a simple case of a
chain structure. The Defender can place elements with different local risks into its nodes.
We formulated the optimal placement criteria for such structures. The Defender will use
the obtained results when solving the problem of optimal resources allocation with classic
Defender–Attacker and Defender–Attacker–Defender models of countering the attacks
in complex systems, or models of effective security monitoring and risk management of
complex networks, which we have considered in prior studies [32,33]. The obtained results
are the step towards deriving the optimal placement criteria for arbitrary structures.

Table 1. The classification of failure propagation models on complex networks.

Attack

Unintentional (Random) Targeted

Network
structure
changes

Unintentional or
no changes at all

(1)
Random attack percolation models [13,14]

Error tolerance model [7]
“Forest fire” (FF) [8] based models: FF with

immune trees [9], Demon model [10],
Cellular automata-based model [11,12]

(2)
Attacker–Defender, Defender–Attacker,
Defender–Attacker–Defender models

[24,25]
Targeted attack percolation models

[15–18]
Localized attack percolation models [19]

k-core percolation [20–23]
Interdependent networks robustness

under targeted attacks [34]

Intentional

(3)
Cascading failure propagation models [26,27]
Regular allocation strategy of bidirectional

interconnections [28]

(4)
Cascading failure propagation model for

networks of networks [29–31]

The structure of the study is as follows. Section 2 describes the general statement
of the problem of managing the risks of the complex system under attack with a known
structure. We also prove several supplemental statements. Section 3 considers the problem
of finding the optimal mapping of the system elements onto a given simple chain attack
structure and solving it.

2. General Problem Statement

We use the general risk model described in [34] adopted to consider the influence of a
system structure.

Consider a complex system consisting of a finite set of elements (objects, so far of an
arbitrary nature): S = {s1, . . . , si, . . . , sn}, i ∈ N = {1, . . . , n}. We assume that the elements
si ∈ S, i ∈ N of the system are autonomous so that they cannot influence each other’s states.

Suppose that there are two subjects (also of an arbitrary nature for the time being),
which we will call player A (otherwise, the Attacker) and player D (otherwise, the Defender).
These two subjects have different intentions towards the state of system S.
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We assume that player D has a certain resource quantity X≥ 0, which he can arbitrarily
distribute among the elements of the system S: x = (x1, . . . , xn), xi ≥ 0, i ∈ N, ∑n

i=1 xi ≤ X.
Similarly, we assume that player A also has a certain quantity of resource Y≥ 0, which

he can arbitrarily distribute among the elements of the system S: y = (y1, . . . , yn), yi ≥ 0,
i ∈ N, ∑n

i=1 yi ≤ Y.
In the framework of the considered model, we will consider the “resource” as any

measurable and arbitrarily divisible asset represented by a non-negative real number.
It could be financial, labour, time, production, and other resources/costs depending on
the context.

We will call the local risk some local characteristic of an element si ∈ S, depending
on the quantity of resources allocated by players D and A. The local risk characteristic
represents possible losses (damage) due to changing the element’s state.

In turn, we will call the integral risk some overall characteristic of the entire system S,
depending on the quantity of resources allocated by players D and A to all its elements,
and associated with possible losses (damage) because of a state change of each element.

If the system’s elements are autonomous, the local risk of any element will depend
on the quantity of resources allocated to it by players D and A. We define the local risk
function for each element as ρi (x i, yi) : R+

0 ×R+
0 → R+

0 , where R+
0 is a set of non-negative

real numbers.
Considering the described model, we will further assume that the local risk functions

ρi (·, ·), i ∈ N, have the following properties:

1. Risk non-negativity:

∀i ∈ N, xi, yi ≥ 0 : ρi(xi, yi) ≥ 0. (1)

2. Risk monotonicity:

∀i ∈ N :
∂ρi(xi, yi)

∂xi
≤ 0,

∂ρi(xi, yi)

∂yi
≥ 0. (2)

3. Risk finiteness:

∀i ∈ N, xi, yi ≥ 0 ∃ ρx
i = const, ρ

y
i = const : 0 < ρx

i ≤ ρi(xi, yi) ≤ ρ
y
i . (3)

The risk non-negativity property means that the potential damage associated with
a local risk occurrence for any element si ∈ S cannot be negative. We assume that there
is always a positive residual risk in the common case, regardless of the measures taken to
reduce it. There are only separate, exceptional cases when risk can be lower to zero.

The risk monotony property means that the additional allocation of resources to any
element si ∈ S by the Defender should not increase the local risk for any element of system
S. On the other hand, the additional resource allocation by the Attacker should not decrease
the local risk for any element of system S.

The risk finiteness property means that the Defender cannot reduce the residual risk for
any element si ∈ S to a zero value, and, on the other hand, there is a final positive marginal
risk for any element si ∈ S (regardless of the quantity of resources spent by the Attacker).

Let the structure W = 〈G (S, E), T〉 be a graph with a set of elements S as its vertices, a
set of edges E, and a specific subset of vertices T ⊆ S, which we will call the perimeter of the
system S.

We assume that player A attacks the elements of the system for the selected path
c = (v, . . . , w), v, w ∈ S and transits from some vertex si ∈ c to an adjacent vertex sj ∈ c
only if his attack on the element si was successful. If the element si ∈ S is in state ei = 1,
we assume it operates in its normal mode. If ei = 0, then the element si is not operational,
which means player A has successfully disabled it.
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Let x = (x1, . . . , xn), y = (y1, . . . , yn) be some valid resource distributions among the
vertices (elements) of the system S for players D and A, respectively. Consider the local
risk functions for each vertex si ∈ S as follows:

ρi (x, y) = ui (x, y)pi (x, y) (4)

where ui(x, y) : R+
n × R+

n → R+
0 is a function describing the dependence of the expected

damage in the case of a successful attack depending on the resource distributions x and
y, and pi(x, y): R+

n × R+
n → (0, 1] is the probability of a successful attack depending on

the distributions x and y.
The following tuple defines the basic risk management model for complex systems

with the structure and the perimeter:〈
S ={si}i ∈ N, T, E, D, A, x, y, {ρi(·, ·)}i ∈ N, ρ(·, ·)

〉
(5)

If the structure is W = 〈G (S, E), T〉 is defined, then:

• The Defender’s goal is to allocate the available resource X among the elements of the
system S to reduce the value of the integral risk function ρ (x, y) to a minimum.

• On the contrary, the Attacker’s goal is to distribute the available resource Y among
the system elements S to increase the value of the integral risk function ρ (x, y) to
a maximum.

Let p0
i (xi, yi): R+

0 × R+
0 →

[
pmin, 1

]
, pmin = min

i ∈ N
min
xi, yi

p0
i (xi, yi) > 0 be a function

describing the relationship between of the probability of a successful attack on the ver-
tex si and the quantity of resources xi and yi allocated to it by players D and A, re-
spectively, in an isolated case, i.e., without considering the structure V. Then, the value
ρ0

i (xi, yi) = ui(x, y)p0
i (xi, yi) will be called the eigen local risk.

For simplicity, we consider a special case when expected damage is independent of x,
y, i.e., ui(x, y) = ui > 0 ∀i ∈ N.

The following propositions are correct.

Proposition 1. If the graph G (S, E) is connected, then ∀i ∈ N: si ∈ S\T, there is a sim-
ple path, including vertices si = sim , sim−1 , . . . , si1 , si0 ; si1 , . . . , sim ∈ S\T, si0 ∈ T that

pi(x, y) = p0
i (xi, yi) · max

sj ∈ S̃i

pj(x, y) = p0
i0

(
xi0 , yi0

)
p0

i1

(
xi1 , yi1

)
· . . . · p0

im−1

(
xim−1 , yim−1

)
p0

im

(
xim , yim

)
, where S̃i ⊆ S is the set of vertices adjacent to si.

Proof. The existence of a simple path directly follows from the connectivity of the graph.
Let us prove the equality. Partition S0, S1, . . . of the vertex set S is as follows. We include
all the vertices of the perimeter T ⊆ S in the set S0. All the vertices si ∈ S\S0 adjacent to
the vertices of set S0 are included in the set S1. We continue this until we distribute all
the vertices of S over the sets S0, S1, . . . , Sl, i.e., ∀i ∈ N ∃j ∈ {0, 1, . . . , l}: si ∈ Sj. Note that
under n < ∞, this process is finite, and l ≤ n − 1. The equality will have place if the graph
G (S, E) is the chain on n vertices.

Let us consider an arbitrary vertex si = sim ∈ S1. If there is only one vertex in the set

S1, then ∃si0 ∈ S0: pi(x, y) = p0
im

(
xim , yim

)
·max

sj ∈S̃i

pj(x, y) = p0
im

(
xim , yim

)
p0

i0

(
xi0 , yi0

)
,

where S̃i ⊆ S is the set of vertices adjacent to si. We provide a proof by contradiction when
the set S1 contains more than one vertex.

Suppose that ∀si0 ∈ S0 p0
im

(
xim , yim

)
· max

sj ∈S̃i

pj(x, y) > p0
im

(
xim , yim

)
p0

i0

(
xi0 , yi0

)
.

Then, ∃sim−1 ∈ S1 ∪ S2: pim−1
(x, y) =max

sj ∈S̃i

pj(x, y). Due to the vertex attack order de-

fined above and the definition of the local risk function ρim−1(x, y), the notation of the
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latter necessarily includes the multipliers p0
im−1

(
xim−1 , yim−1

)
and p0

k0

(
xk0 , yk0

)
, where

p0
k0

(
xk0 , yk0

)
is the probability of a successful attack of some vertex sk0 ∈ S0, for which

there is a chain
(
sim−1 , . . . , sk0

)
of length m − 1 connecting sk0 with sim−1 ∈ S1 ∪ S2.

That is, max
sj ∈S̃i

pj(x, y) = pim−1
(x, y) = p0

k0

(
xk0 , yk0

)
· . . . · p0

im−1

(
xkm−1 , ykm−1

)
, with

all multipliers not exceeding the value of 1. However, then p0
k0

(
xk0 , yk0

)
· . . . ·

p0
im−1

(
xim−1 , yim−1

)
p0

im

(
xim , yim

)
> p0

im

(
xim , yim

)
· p0

k0

(
xk0 , yk0

)
, since (according to

the above assumption) this inequality holds for all S0 vertices, including sim . Since the
values in both sides of the inequality are strictly positive, and all the multipliers in the left
side do not exceed 1, our assumption is incorrect. The above-described considerations are
valid for any pair of sets Sk, Sk+1 of the S partition. �

Proposition 2. If ∀I ∈ N functions p0
i (x i, yi

)
monotonically decrease with the first argument

and monotonically increase with the second one, then the functions pi (x, y) = uipi (x, y), satisfy the
properties (1)−(3) for all i ∈ N.

Proof. First, we prove the boundedness. From the definition of the functions pi(x, y),
p0

i (xi, yi) and the proposition 1, it follows that ρi(x, y) = uipi(x, y) ≤ umax , and the
equality will have place only when pi (x, y) = 1 and ui = umax. We show that ∃ρx > 0: ∀x, y
ρi (x, y) ≥ ρx.

According to proposition 1, ρi (x, y) could be represented as follows:

ρi(x, y) = uip0
i0

(
xi0 , yi0

)
p0

i1

(
xi1 , yi1

)
· . . . · p0

im−1

(
xim−1 , yim−1

)
p0

im

(
xim , yim

)
(6)

where si0 ∈ T, si1 , . . . , sim= si ∈ S\T, p0
im

(
xim , yim

)
= p0

i (xi, yi).

By definition, p0
i (xi, yi) ∈ [pmin , 1], pmin > 0 − hence, the desired ρx= umin(pmin)m+1,

where umin =min
i ∈ N

ui. The equality ρi (x, y) = ρx will have place when ui = umin, and

p0
i0

(
xi0 , yi0

)
= p0

i1

(
xi1 , yi1

)
= . . . = p0

im

(
xim , yim

)
= pmin. Note that the boundedness

pi(x, y) also implies that it is positively defined. �

Proposition 3. Adding structure W = 〈G (S, E), T〉 to the system does not increase the risk, i.e.,
∀S = {s1, . . . , sn} ∀V 6= ∅, T ⊆ S ρW (x, y) ≤ ρ (x, y), where ρW(x, y) =∑n

i=1 ρi (x, y), and
ρ(x, y) =∑n

i=1 ρ0
i (x, y).

Proof. First, we note that the perimeter T ⊆ S must include vertices from each connected
component of the graph G (S, E). Indeed, if it does not, then there is a vertex si ∈ S in the
graph for which there is no simple path ending with a vertex from the perimeter T ⊆ S.
Such a vertex is unattainable for the Attacker, which means pi (x, y) = 0, and contradicts
the property (3).

Consider the case when the set of edges is empty, i.e., G (S, E) = G (S, ∅). Then,
T = S and, according to the definition of the local risk functions, ρ〈G (S, ∅), S〉(x, y) =
∑n

i=1 uipi(x, y) =∑n
i=1 uip0

i (xi, yi).
Now, we assume that E 6= ∅. If the perimeter T coincides with the set of all vertices S,

then ρ〈G (S, E), S〉(x, y) =∑n
i=1 uip0

i (xi, yi) = ρ〈G (S, ∅), S〉(x, y). If T ⊂ S, then, according to
the proposition 1, for each vertex sj ∈ S\T, there is the following local risk function:

ρj(x, y) = uip0
j0

(
xj0 , yj0

)
p0

j1

(
xj1 , yj1

)
· . . . · p0

jm−1

(
xjm−1

, yjm−1

)
p0

jm

(
xjm , yjm

)
(7)
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where sj0 ∈ T, sj1 , . . . , sjm = sj ∈ S\T, p0
jm

(
xjm , yjm

)
= p0

j

(
xj, yj

)
. Since all the

multipliers in the right part of the expression, except the first one, do not exceed 1, then
ρj(x, y) ≤ uip0

j

(
xj, yj

)
∀j ∈ N : sj ∈ S\T, and therefore,

ρ〈G (S, E), T〉(x, y) =
n

∑
i=1

uipi (x, y) ≤
n

∑
i=1

uip0
i (x, y) = ρ〈G (S, ∅), S〉(x, y) (8)

The proof is complete. �

3. The Problem of the Optimal Placement of System Elements within a
Given Structure

Consider a complex system consisting of a finite set of elements S = {s1, . . . , si, . . . ,
sn}, i ∈ N = {1, . . . , n}. Let us introduce some unilaterally connected graph G (V, E), where
V is a set of n vertices, and a subset of k ≤ n vertices T ⊆ V, which we will consider as a
perimeter. The problem is to construct such a mapping S→ T that the integral risk ρ (x, y)
is minimal. Note that such mapping will be one-to-one.

Let us consider the solution for the simplest chain structure.

Definition 1. Given the graph G
(

V = {v1, . . . , vm}, E = { (v i, vi+1)}m−1
i=1

)
, m ∈ N, and

the perimeter T = {v1}. Then, we say that the tuple Wm = 〈G (V, E), T〉 sets a simple chain structure
of length m.

Definition 2. Consider the one-to-one mapping M−1: S→ V\{vn+1, . . . , vm}, S = {s1, . . . , sn},
n ≤ m: ∀i ≤ n ∃j ≤ n: vj = M−1 (si) as the placement of elements S in the structure Wm. The
corresponding inverse map M: V→ S will be called the projection of the structure W onto the set of
elements S.

In the future, if n and m are equal, we will omit the lower index of the structure’s
notation, except in cases when we need to emphasize the length of the specified structure.

For an arbitrary given placement M−1: S→ V\{vn+1, . . . , vm}, we can calculate the
value of the integral risk:

ρ
(

S, W, M−1
)
=

n

∑
i=1

ρM (vi)
(9)

where ρM (vi)
is the local risk value for the element M (vi). Now, let us state the problem

of minimizing the integral risk. The problem consists in finding a set of placements that
achieve the integral risk minimum value ρmin:

Mmin = argmin
M−1

ρ
(

S, W, M−1
)

: ρmin =
n

∑
i=1

ρM (vi)
∀M−1 ∈ Mmin (10)

Definition 3. Given simple chain structure W. Suppose that for any placements M−1, K−1 and
any such indices p, q, k, l, p < q, k > l, that si = M (vp) = K (vk), sj = M (vq) = K (vl), there is
inequality p (S, W, M−1) ≤ p (S, W, K−1) (p (S, W, M−1) ≥ p (S, W, K−1)). Then, we will say
that the nodes si, sj ∈ S, i, j ∈ N, and i 6= j are non-strictly ordered in the local risk ascending
(descending) order and write si � sj (si �

⋂
sj).

First, let us assume that all elements S = {s1, s2, . . . , sn} of the considered sys-
tem are equivalent, i.e., u1 = u2 = . . . = un = umax, and their probabilities of a suc-
cessful attack do not depend on the quantity of resources allocated by the players, i.e.,
∀i, p0

i (xi, yi) = p0
i , 0 < p0

i ≤ 1.
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Given a simple chain structure Wn, for an arbitrary given placement M−1: S→ V, the
value of the integral risk should be calculated as follows:

ρM =
n

∑
i=1

ρM (vi)
=

n

∑
i=1

umax · pM (vi)
= umax ·

n

∑
i=1

pM(vi)
(11)

Consider that n = 2, S = {s1, s2}, p0
1 < p0

2, and a simple chain structure W2 is given.
Note that the local risk function value for the element corresponding to the vertex v2 will be
equal to ρ2 = umax · p0

1p0
2, regardless of the selected placement. Thus, it is enough to select

a node to map to v1. Since p0
1 < p0

2, umax(p0
1 + p0

1p0
2
)
< umax(p0

2+p0
1p0

2
)
, the element s1

must be mapped at the vertex v1.

Proposition 4. Suppose that for N = {1, . . . , n}, S = {s1, . . . , sn}, p0
1 < . . . < p0

n, the
optimal placement of the system’s elements in a simple chain structure Wn+1 is M−1: S → V:
si = M (vi) ∀i ∈ N, i.e., such that the element numbers coincide with the vertex numbers. Then,
for any such system of (n + 1) elements S′ = S ∪ {sn+1} that p0

1 < . . . < p0
n < p0

n+1, the
placement M−1 is also optimal.

Proof. Note that the expressions for the integral risk have the same number of sum-
mands, and the first one includes 1 multiplier, the second one has 2 of them, and the
n-th has n multipliers. Since all the multipliers are the probabilities of a successful attack,
they cannot exceed 1. Note that the summands in the same positions in the expressions
should be in ascending order, and under the selected numbering, this ordering sets the
lexicographic order.

Choose an arbitrary index value 1 < j ≤ n. We then map the (n + 1)-th element to
vertex vj and show that the value of the integral risk is greater than if we had mapped the
above element to vertex vn+1. Let us write the expression of integral risk ρj for the case
when (n + 1)-th element is mapped to the j-th vertex:

ρj = umax ·
(

p0
1 + p0

1p0
2 + . . . + p0

1p0
2 · . . . · p0

j−1 + p0
1 · . . . · p0

j−1p0
n+1 + . . . + p0

1 · . . . · p0
j−1p0

n+1p0
j p0

j+1 · . . . · p0
n

)
(12)

Now, we write the expression of the integral risk pn+1 for the case when the (n + 1)-th
element is mapped to the (n + 1)-th vertex:

ρn+1 = umax ·
(

p0
1 + p0

1p0
2 + . . . + p0

1p0
2 · . . . · p0

j−1 + p0
1 · . . . · p0

j−1p0
j + . . . + p0

1 · . . . · p0
j−1p0

j p0
j+1 · . . . · p0

np0
n+1

)
(13)

Both expressions have the same number of summands. Let us compare them in pairs.
The first (j − 1) summands in both expressions are the same. Let us write in general form
the expressions for the summands with the number j ≤ i ≤ n for the first and second
cases, respectively:

p0
1 · . . . · p0

j−1p0
n+1p0

j p0
j+1 · . . . · p0

i−1 (14)

p0
1 · . . . · p0

j−1p0
j p0

j+1 · . . . · p0
i−1p0

i (15)

The number of multipliers in the form of both summands is the same, the multipliers
themselves are also the same, except for p0

n+1 and p0
i , which are only in (14) and (15),

respectively. However, p0
i < p0

n+1, and therefore, each summand in the expression for
the integral risk ρn+1 with the number i ≥ j will be less than the summand with the same
number in the expression for the integral risk ρj.

Since we chose N arbitrarily, the statement is proved by mathematical induction. �

Now, let us assume that the expected damage and the probability of a successful attack
could be different for the non-matching elements of the considered system but still do not
depend on the quantity of resources distributed by the Defender and the Attacker.
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Given n = 2, S = {s1, s2} and a simple chain structure W2. The integral risk expressions
for two possible placements of system elements at the W2 vertices are shown in Table 2.

Table 2. The integral risk expressions for two possible placements of system elements in W2 structure.

v1 v2 ρ=
n
∑
i=1

uipi

1 s1 s2 u1p0
1 + u2p0

1p0
2

2 s2 s1 u2p0
2 + u1p0

1p0
2

Subtract the expression of the integral risk in the second line from the expression in
the first line and give similar summands. We then obtain:

D = u1p0
1 + u2p0

1p0
2 − u2p0

2 − u1p0
1p0

2 = u1p0
1

(
1 − p0

2

)
+ u2p0

2
(
p0

1 − 1
)
=

= u1p0
1

(
1 − p0

2

)
− u2p0

2

(
1 − p0

1

) (16)

If u1
u2

<
p0

2(1 − p0
1)

p0
1(1 − p0

2)
, then D < 0, and the optimal placement is in the first line of the

Table 2. If u1
u2

>
p0

2(1 − p0
1)

p0
1(1 − p0

2)
, then D > 0, and the optimal placement is specified in the

second line of the table. Finally, at u1
u2

=
p0

2(1 − p0
1)

p0
1(1 − p0

2)
both placements give the same integral

risk value.

Proposition 5 (ordering criterion). Let N = {1, . . . , n}, S = {s1, . . . , sn}. ∀i ∈ N\{n} si � si+1

⇔ ui
ui+1

≤ p0
i+1(1 − p0

i )
p0

i (1 − p0
i+1)

; si �
⋂

si+1 ⇔ ui
ui+1

≥ p0
i+1(1 − p0

i )
p0

i (1 − p0
i+1)

.

Proof. The criterion validity directly follows from the above example. �

Proposition 6 (ordering criterion transitivity). Let N = {1, . . . , n}, S = {s1, . . . , sn}. ∀i, j,
k ∈ N: i < j < k si � sj � sk =⇒ si � sk.

Proof. Let us rewrite the proposition in the algebraic form:

ui ≤
ujp0

j

(
1 − p0

i

)
p0

i

(
1 − p0

j

) , uj ≤
ukp0

k

(
1 − p0

j

)
p0

j

(
1 − p0

k

) (17)

We must prove that

ui ≤
ukp0

k

(
1 − p0

i

)
p0

i

(
1 − p0

k

) (18)

Note that

ui ≤
ujp0

j

(
1 − p0

i

)
p0

i

(
1 − p0

j

) ≤
ukp0

k

(
1 − p0

j

)
p0

j

(
1 − p0

i

)
p0

j

(
1 − p0

k

)
p0

i

(
1 − p0

j

) =
ukp0

k

(
1 − p0

i

)
p0

i

(
1 − p0

k

) (19)

which was to be proved. �

Proposition 7. Consider N = {1, . . . , n}, S = {s1, . . . , sn}, s1 � s2 � · · · � sn and a simple chain
structure Wn = 〈G (S, E), T〉. Then, the placement M−1: S→ V: si = M (vi) ∀i ∈ N minimizes the
integral risk, i.e., ρ (S, W, M−1) = ρmin.
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Proof. from the opposite. Let us assume that there are such numbers i, j ∈ N, i 6= j that the
integral risk will decrease if the element si is placed to the vertex vj. There are two possible
options:

1. i > j. Then, when one moves the element si from the vertex vi to vj, there will be a
shift in the range of vertices from vj to vi. That is, the element sj will move to the
vertex vj+1, sj+1 to vj+2, and so on, up to the element si−1. The last one will occupy the
vacated vertex vi.

2. i < j. Then, when one moves the element si from the vertex vi to vj there will be a shift
in the range of vertices from vi to vj. That is, the element si+1 will move to the vertex
vi, si+2 to vi+1, and so on, until the element sj, which will take the vacant vertex vj−1.

Consider the first option. Denote the values of the integral risk ρj and write an
expression for the resulting placement of elements:

ρj = u1p0
1 + u2p0

1p0
2 + . . . + uj−1p0

1 · . . . · p0
j−1 + uip0

1 · . . . · p0
j−1p0

i + ujp0
1 · . . . · p0

j−1p0
i p0

j + . . .
. . . + ui−1p0

1 · . . . · p0
j−1p0

i p0
j · . . . · p0

i−1 + ui+1p0
1 · . . . · p0

j−1p0
i p0

j · . . . · p0
i−1p0

i+1 + . . . + unp0
1 · . . . · p0

n
(20)

The expression for the integral risk of the original placement in turn is as follows:

ρ0 = u1p0
1 + u2p0

1p0
2 + . . . + uj−1p0

1 · . . . · p0
j−1 + ujp0

1 · . . . · p0
j−1p0

j + . . .
. . . + ui−1p0

1 · . . . · p0
j−1p0

j · . . . · p0
i−1 + uip0

1 · . . . · p0
i + ui+1p0

1 · . . . · p0
j−1p0

j · . . . · p0
i−1p0

i p0
i+1 + . . . + unp0

1 · . . . · p0
n

(21)

Note that the sums u1p0
1 + u2p0

1p0
2 + . . . + uj−1p0

1 · . . . · p0
j−1 and ui+1p0

1 · . . . · p0
j−1p0

j ·
. . . · p0

i−1p0
i p0

i+1 + . . . + unp0
1 · . . . · p0

n occur in both expressions. According to our assump-
tion of risk decreasing under such a permutation, we must prove that pj < p0. To realize
this, we compare only the different parts of the expressions of these quantities. Let us write
them out separately:

ρ̃
j
j = uip0

1 · . . . · p0
j−1p0

i + ujp0
1 · . . . · p0

j−1p0
i p0

j + . . . + ui−1p0
1 · . . . · p0

j−1p0
i p0

j · . . . · p0
i−1 (22)

ρ̃
j
0= ujp0

1 · . . . · p0
j−1p0

j + . . . + ui−1p0
1 · . . . · p0

j−1p0
j · . . . · p0

i−1 + uip0
1 · . . . · p0

i (23)

Let us rewrite ρ̃
j
j in the following form:

ρ̃
j
j = p0

1 · . . . · p0
j−1

(
uip0

i + ujp0
i p0

j

)
+ . . . + ui−1p0

1 · . . . · p0
j−1p0

i p0
j · . . . · p0

i−1 (24)

Given to the fact that i > j and the transitivity of the risk increase ratio, we obtain
si �

⋂
sj, and therefore, uip0

i + ujp0
i p0

j ≥ ujp0
j + uip0

i p0
j . This means that if one swaps the

elements si and sj, that is, maps the element si to the vertex vj+1, and the element sj back to
the vertex vj (where it was from the beginning), the risk will not increase. Thus:

ρ̃
j
j ≥ ujp0

1 · . . . · p0
j−1p0

j + uip0
1 · . . . · p0

j−1p0
j p0

i + . . . + ui−1p0
1 · . . . · p0

j−1p0
j p0

i · . . . · p0
i−1 (25)

Now, to prove that pj < p0, we should compare expressions ρ̃
j+1
j and ρ̃

j+1
0 with a

smaller number of summands:

ρ̃
j+1
j = uip0

1 · . . . · p0
j p0

i + uj+1p0
1 · . . . · p0

j p0
i p0

j+1+ . . .+ u0
i−1p0

i · . . . · p0
j p0

i p0
j+1 · . . . · p0

i−1 (26)

ρ̃
j+1
0 = ujp0

1 · . . . · p0
j−1p0

j + . . .+ ui−1p0
1 · . . . · p0

j−1p0
j · . . . · p0

i−1 + uip0
1 · . . . · p0

i (27)

It is easy to see that si �
⋂

sj+1, si �
⋂

sj+2, . . . si �
⋂

si−1. Therefore, we can also
swap the corresponding pairs of elements without increasing the system’s integral risk. In
the final iteration, we compare the following expressions:

ρ̃i−1
j = uip0

1 · . . . · p0
i−2p0

i + ui−1p0
1 · . . . · p0

i−2p0
i p0

i−1 (28)

ρ̃i−1
0 = ui−1p0

1 · . . . · p0
i−2p0

i−1 + uip0
1 · . . . · p0

i−2p0
i−1p0

i (29)
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Since ρ̃i−1
j = p0

1 · . . . · p0
i−2
(
uip0

i + ui−1p0
i p0

i−1
)
, and ρ̃i−1

0 = p0
1 · . . . · p0

i−2(
ui−1p0

i−1 + uip0
i−1p0

i
)
, then, since si �

⋂
si−1, ρ̃i−1

0 ≤ ρ̃i−1
j and, consequently,

p0 ≤ pj, our assumption is incorrect.
For the second option, when i < j, the proof is very similar. �

4. Conclusions

This paper considers the problem of optimal placement of elements of the protected
system within a given structure of the expected attack. We generalized the concept of a
local risk function to account for structural effects and solved the problem for a simple
chain attack structure.

The key feature of this approach is that the local risks of the system elements are
functionally independent. In other words, when considering each element of the protected
system in isolation, its local risk does not depend on the quantity of resources allocated to
its elements by the Defender and Attacker. Simultaneously, the integral risk of the system
varies with the mapping of its elements to the attack structure.

In real-world tasks, the Defender rarely can choose the placement of elements in the
structure. Nevertheless, it can apply the proposed approach to consider the information
about the structure of a possible attack when solving the problem of allocating resources
within the classic Defender–Attacker and Defender–Attacker–Defender models.

We plan to further expand the proposed approach in order to examine more complex
structures, such as trees or cycles.
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