. mathematics

Article

Cohomologies of n-Lie Algebras with Derivations

Qinxiu Sun * and Zhixiang Wu 2

check for

updates
Citation: Sun, Q,; Wu, Z.
Cohomologies of n-Lie Algebras with
Derivations. Mathematics 2021, 9, 2452.
https:/ /doi.org/10.3390/
math9192452

Academic Editor: Mancho Manev

Received: 12 July 2021
Accepted: 28 September 2021
Published: 2 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, Zhejiang University of Science and Technology, Hangzhou 310023, China
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China; wzx@zju.edu.cn
*  Correspondence: 112012@zust.edu.cn

2

Abstract: The goal of this paper is to study cohomological theory of n-Lie algebras with derivations.
We define the representation of an n-LieDer pair and consider its cohomology. Likewise, we verify
that a cohomology of an n-LieDer pair could be derived from the cohomology of associated LeibDer
pair. Furthermore, we discuss the (n — 1)-order deformations and the Nijenhuis operator of n-LieDer
pairs. The central extensions of n-LieDer pairs are also investigated in terms of the first cohomology
groups with coefficients in the trivial representation.
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1. Introduction

The notion of n-Lie algebras was introduced by Filippov [1] in 1985. It is the algebraic
structure corresponding to Nambu mechanics [2-4]. If n = 2, then we get Lie algebra
structure. Nanmbu'’s used 3-Lie algebras to describe simultaneous classical dynamics of
three particles in [3]. Takhtajan [5] systematically developed a foundemental theory of
n-Poisson or Nambu—Poisson manifolds, and established a connection between Nambu
mechanics and Filippov algebras. Numerous works have been devoted to various aspects
of n-Lie algebras in both mathematics and physics, see [6-14] and their references.

The method of deformation is ubiquitous in mathematics and physics. Gerstenhaber
developed a deformation theory of associative algebras in [15,16]. Subsequently, Nijenhuis
and Richardson generalized it to Lie algebras in [17,18]. Both associative algebras and
Lie algebras are algebras over some quadratic operads. Balavoine [19] investigated a
deformation theory of quadratic operads. Cohomology and deformation of n-Lie algebras
have been studied from several directions. In [7], central trivial extensions and infinitesimal
deformations are considered. The two-order deformations of 3-Lie algebras are discussed
in [1]. In general, (n — 1)-order deformations of n-Lie algebras were studied in [12],
meanwhile, Nijenhuis operators were obtained from a trivial deformation.

A Nijenhuis algebra is a nonunitary associative algebra A with a linear endomorphism
N satisfying the Nijenhuis equation: N(x)N(y) = N(N(x)y +xN(y)) + N?(xy),Vx,y € A,
where N is called a Nijenhuis operator. The concept of a Nijenhuis operator on a Lie
algebra originated from the important concept of a Nijenhuis tensor that was introduced
by Nijenhuis [20] in the study of pseudo-complex manifolds in the 1950s and was related
to the well-known concepts of the Schouten—Nijenhuis bracket, the Frolicher-Nijenhuis
bracket [21], and the Nijenhuis-Richardson bracket. Nijenhuis operators on a Lie algebra
appeared in a more general study of Poisson-Nijenhuis manifolds [22] and in the context of
the classical Yang—Baxter equation [23,24]. A Nijenhuis operator on a Lie algebra is related
to its deformation. Nijenhuis operators on n-Lie algebras have been studied in [12]. They
can be used to construct a deformation of n-Lie algebras. As a generalization of the classical
Yang-Baxter equation (CYBE) on Lie algebras [25], the O-operator provides a solution of
the CYBE on a Lie algebra [26]. The O-operator on Lie algebras was generalized to n-Lie
algebras in [12].

Mathematics 2021, 9, 2452. https:/ /doi.org/10.3390/math9192452

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9192452
https://doi.org/10.3390/math9192452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9192452
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9192452?type=check_update&version=2

Mathematics 2021, 9, 2452

20f 17

Deformations of algebras are described by cohomology groups. Derivations of al-
gebras are also controlled by a cohomological group. Derivations are a basic concept in
homotopy Lie algebras [27], deformation formulas [28] and differential Galois theory [29].
They are of vital importance to control theories and gauge theories in quantum field the-
ory [30,31]. In [32,33], the authors study algebras with derivations, which are a kind of
homotopy algebra, from the operadic point of view. Lie algebras with derivations are usu-
ally called LieDer pairs. Recently, LieDer pairs have been studied from the cohomological
point of view. Extensions and deformations of LieDer pairs are considered in [34]. These
results have been extended to associative algebras with derivations [35], Leibniz algebras
with derivations [36] and Pre-Lie algebras with derivations [4].

Inspired by the previous works, we would like to investigate the cohomological theory
of n-Lie algebras with derivations.

The paper is organized as follows. In Section 2, we introduce the notion of an n-LieDer
pair (g, ¢4) and its representation (V, ¢y ). In Section 3, we consider the cohomology theory
of n-LieDer pairs. The relation between the cohomogy of n-LieDer pair and associated
LeibDer pair is also characterized. In Section 4, we study (n — 1)-order deformations of
n-LieDer pairs. We also describe the notions of a Nijenhuis operator and an O-operator
on n-LieDer pair (g, ¢g4). Moreover, we show that (V, ¢y ) becomes an n-LieDer pair and
(9, @q) is a representation of (V, ¢y ). Finally, we discuss central extensions of an n-LieDer
pair in terms of the first cohomology group with coefficients in its trivial representation.

Unless otherwise specified, all vector spaces, linear maps, and tensor products are
studied over an algebraically closed field k.

2. n-LieDer Pair and Representation

In this section, we introduce the concept of n-LieDer pairs and representations of an
n-LieDer pair. An n-LieDer pair is an n-Lie algebra with a derivation, namely, we have
the following

Definition 1. A derivation of an n-Lie algebra g is a linear map ¢4 : g — g satisfying

n
Pglx, - xn] =Y [x1, X1, @g(xi), Xig1, - - X
i=1
forany x; € g. Suppose that ¢ is a derivation of an n-Lie algebra g. Then we call the datum
(9, ¢g) an n-LieDer pair.
For any n-Lie algebra g, L = A"~ g is a Leibniz algebra with Leibniz bracket [, ¢ given by

n—1
(XY= Y yi Ay A Ayimt Alxn X, Xaot, Vil AYist A AYnca
i=1
forall X = xy Axpg A+ Axp_qyand Y = y1 Aya A - - - Ayy_1. Furthermore, if (g, ¢g) is an
n-LieDer pair, then (L, 1) is a LeibDer pair (see [36]), where

n—1
pr=Y I®RI® - RI0p,[® -1
i=1 ~
i—1
and I is the identity endomorphism of g.
A representation of an n-Lie algebra g consists of a vector space V together with a linear map

p: AN""lg —s ¢l(V) such that

p(X)p(Y) —p(Y)o(X) = p([X, Y]F)
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and

p(xr A== Axpa Ay, -+ Yaul)
=Y (=D o(yi A AYica AYipa A AY)p(xn A Ao AYj).

forall X,Y € A" lgand x;,y; € g.
Next, we give the definition of representations of an n-LieDer pair.

Definition 2. Let (g, ¢4) be an n-LieDer pair and (V, p) be a representation of the n-Lie algebra
g. Suppose @y is an endomorphism of V. Then (V,p, v ) is called a representation of (g, ¢g) if
pvp(X) = p9g(X)) +p(X)gv, ©)
forany X = (x1,x2,- -+, X,_1) € N""lg, where
n—1
p((PQ(X)) = Z p(xleZr Yy (Pg(xi)fxi+1/ Yy xn—l)'
i=1
Suppose (V, @v ) is a representation of an n-LieDer pair (g, pq) and V* := Hom(V, k) is the
dual space of V. Define p* : N""1g — gl(V*) and ¢}, : V* — V* via
(" (X)u”,0) = = (p(X)v,u”), @y (u)(y) = u(ev(y)) €

for any u* € V*, v € Vand X € A'lg respectively. Then V* can be endowed with a
representation of the n-LieDer pair (g, pg), as follows.

Proposition 1. Let (V, p, v ) be a representation of an n-LieDer pair (g, ¢g). Then (V*,p*, —@3,)
is also a representation of (g, @g).

Proof. We only need to check that (1) holds for p* and —¢,. In fact, forany u* € V*, v € V
and X € A" lg, in view of (1) and (2), we have

(—ppp" (X )u ,0) + (" (X)ppu™,v) — (0" (9q(X))u*,v)
= (" (X)u*, ovo) — (p(X)v, pyu*) + (p(@g(X))ov, u*)
= (u",p(X) <pvv> (pvp(X)o,u™) + (p(@g (X))o, u")

o]

It follows that
—9vp"(X) = 0" (9a(X)) =" (X) -
Hence (V*, p*, —¢7,) is also a representation of (g, ¢g). [

Example 1. Let (g, ¢q) be an n-LieDer pair and define linear map ad : \""'g — gl(g) by

ad(X)(y) = [X,y] forany X € AN"lg, y € g. Then (g,ad, ¢4) is a representation and
(g%, —ad*, —@}) is a dual representation.

Similar to the trivial extension of a Lie algebra by its representation, we can check the
following proposition.
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Proposition 2. Let (V,p, py) be a representation of n-LieDer pair (g, ¢q). Given operations
[, lp: AN (g V) — gV by
n .
(X1 -+ 01, Xn+0n)o = [x1,- - Xulg + Y (1) Tp(x1, -, Xiq, Xig1, -+ Xn)0;
i=1

and g+ @y :g®V — g®V by

(9g + ov)(x +v) = @4(x) + @v(v).

Then (g ® V, g + @v) is an n-LieDer pair.

Suppose that A, A’ are 3-Lie algebras, and p : N2A — gl(A") and ¢ : N2A" — gl(A) are
two linear mappings. Recall that (A, A’,p, 0) is said to be a matched pair of 3-Lie algebras [37] if
(A, p) is a representation of A and (A, 0) is a representation of A" and satisfying the following:

Q(ﬂbﬂz)[xhxz, x3] = [Q(ﬂbﬂz)xhxz, xs] + [x1,Q(ﬂ1,ﬂ2)x2, xs] + [x1,x2,Q(ﬂ1,ﬂ2)x3],

—0(p(x1,x2)a1,a2)x3 = —0(p(x1, x3)a2,31)X2 + 0(p(x2, X3)a2,a1)x1 — [x1, X2, 0(a1,82)X3],
lo(a1, a2)x1, X2, x3] = 0(a1, a2)[x1, X2, x3] + 0(p(x1, X2)a1, a2) x1 + (a1, p(x2, X3)a2)x1,
p(x1,x2)[a1, a2, a3) = [p(x1, x2)a1, a2, a3] + [a1, p(x1, x2) a2, a5] + [a1, a2, p(x1, x2)a3],
—p(o(ar, a2)x1,x2)a3 = —p(0(a1,a3)xz, x1)az + p(0(az, a3)xz, x1)ay — [ay, a2, p(x1, x2)az),
[o(x1,x2)a1, a2, a3] = p(x1,x2)[a1, a2, a3] + p(e(a1, a2)x1, x2)a1 + p(x1, 0(a2, a3)x2) a1
forany x1,x2,x3 € Aand ay,a3,a3 € A’. Then, there is a 3-Lie algebra structure on A ® A’ given
by
(X1 +a1,x2+az,x3 +a3] = [x1,x2,%3] +0(a1,a2)x3 + (a3, a1)x2 + 0(az,a3)x1
+[a1, a2, a3] + p(x1, x2)a3 + p(x3, x1)a2 + p(x2, x3)a1.
Then we have the following result.
Proposition 3. Let (A, ¢4) and (A’, ¢ 41) be two 3-LieDer pairs such that (A, A’,p,0) is a
matched pair of 3-Lie algebras with p : N>A — gl(A") and ¢ : N>A’ — gI(A). Furthermore,
if (A',p, @ar) is a representation of 3-LieDer pair (A, ¢ 4) and (A, 0, ¢ ) is a representation of
3-LieDer pair (A, ¢ a1). Define
(pa+oa)(x+a) =pa(x)+ @al(a)

foranyx,y € A,a,b € A'. Then (A® A’, p o + ¢ ar) is a 3-LieDer pair with We call (A, A’, 9 o, ¢ a1,
0, 0) the matched pair of 3-LieDer pairs.

Proof. It is straightforward. [

3. Cohomology of n-LieDer Pair

In this section, we will define the cohomology of an n-LieDer pair with coefficients
in its representation. For this purpose, let us recall the cohomology of Leibniz algebras
and LeibDer pairs in [19,36,38]. Let (V,p", oR) be a representation of a Leibniz alge-
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bra [, and C]’i H(LV) = Hom(I¥?, V) for any p > 0, the p-cochains group. Suppose
1 o
d: Cp oib(HV) — Cf;ib([, V) is given by
(df) (X1,~ T xp+l)

p )
= Y (=) oM (a) f(xn, o xis, Xina, s Xpen) + (= D)P R (xpp0) f (1, -+ xp)
i=1

+ Y (D Xy Xt Xt (X X X, Xpg)
1<i<j<p+1

for any xq,x, - -, xp+1 € . Then d is a coboundary operator and cohomological groups of
[ with coefficients in V is determined by the coboundary operator d.
Next recall the definition of the cohomology of LeibDer pairs. Let (p,V, (pv) be a

representation of a LeibDer pair (I, ¢;) and C/ (LV).

— P
) LelbDer( V)= CLeib<[’ V) % L b
Define a linear map ¢ : CLeib<[’ V) — CLeib (LV) by

Ofp(x1®---®xp)
p

Y fr(x @ @0 @ pulxe) @ X @ @ %)

k=1

—pvfp(x1 @ @xp)

+1
for x; € . Then oy : CieibDer([’ V) — CieibDer([’ V), ofp, 8p-1) — (dfp,dgp-1+
(=1)Pdfp), is a coboundary operator.
Finally, let us recall the cohomology of n-Lie algebras. Let g be an n-Lie algebra and

L = A" !g be the associated Leibniz algebra. Suppose that (p, V) is a representation of g,
the space CZ—Li e(g, V) of p-cochains (p > 0) is the set of multilinear maps of the form

f:ANPLAg—V,

1 .
and the coboundary operator d : CZ—Lie<g’ V) — CZJ—rLie(g’ V) is as follows:

(df)(Xll Ty Xp—i—l/z)
= 2 (_1)1/[(Xlr Yy Xil o X1, [Xir Xk]Fr X1, Xerl/Z)

1<i<k<p+1
p+1 ptl . .
+ Z Xl/ rX'r ttYy Xp+1/ [Xilz]) + Z (*1>1+1P(Xi)f(xlr Yy Xi/ ttYy Xp+l/z)
i=1
- kg 1k 1 k
Z )T p+1’ p+1" X X X5 2) f(X e Xp, X0,

forall X; = (x},x%,--,x/" ') € Land z € g.
Based on the previous cohomologies, we introduce a cohomology of an n-LieDer pair

(9, ¢q)- Let (V, p, v) be a representation of n-LieDer pair (g, ¢q) and

p p p—1
C" ioper(®@ V) :=Cl [ (8, V) xCP 1. (s, V),
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O(fp)(X18X®---

which is called the p-cochain group. Define a map ¢ : CZ Liel®V) — CP Lie(® V) by

Sfp(X1® - ®X,®2)

p n—1 . .
X190 9% 109,(x) 07 @ 0T @ Xy - ©Xp ©2)
P k k p

k=1 i=1

—ovfp(Xi®- - @ Xp@2).

Then we have the following.

Theorem 1. The map dg4 C —ch (g, V) given by

—LieDer (g, ) n—LieDer

ag(fp/gpfl) = (dfp,dgp,l + (_1)p+l5fp)/

is a coboundary operator, that is, dg - dg = 0.

Proof. By direct calculation, we get the required result. [

By Theorem 1, we can obtain cohomological groups of (g, ¢4) with the coefficients
in (p,V, 9y). It is well-know that any n-LieDer pair (g, ¢4) associates a LeibDer pair
(L = A"1g,¢1). Then it has the cohomology of the LeibDer pair (L = A" 1g,¢). Are
there some relations between these two cohomologies? Suppose that CZ —LieDer(g’ 9)

(resp. CLelbDer(L’L)) is the set of p-cochains of n-LieDer pair (resp. LeibDer pair).
+1

Define © : CZ—Lie(g’g) — C{eib(L,L) as follows. For p = 0, fo € C2—Lie(g’g) and

X1=xj@x2® o el,

o) = T oxte  ox o o ox

Ifp>0,f, € CZfLie(g’g) and X; = xl-1 ®xiz® eexlel,

1

n—1 )
® Xpi1) = ;x}m@x,%ﬂ@ QXL O (X1 ©X @ @ Xy @ X)) © - @A
1=

With these notations, we have an important result. However, let us prove the following
result first.

+1 .
Theorem 2. The linear map © : C LzeDer(g’ g) — CZeszer(L’ L) given by

O(f,g) = (©f,0g) for any (f,g) € C" ;. 1..(3,9)

is a cochain map, that is, 9430 = ©9dy.
Proof. For any (f,,&p-1) € CZ—LieDer( g,9), we get

agé(fpfgp—l) = ag(®fp/ ®gp—1) = (d®fp/ d®8p—1 + (_1)p+15®fp)
and
G)aL(fpfgpfl) = (Odfy, ©dg, 1 + (‘UpH@fop)-

See ref. [13] (Theorem 3), we only need to check that 6@ = @/. In fact, for the case of
p = 0, itis clear. When p > 1, forany Xy, X5, -+, Xp41 €L, fp € CZ—Lie(g’G)’
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0O(fp)(X1 @ Xo ® -+ ® Xpi1)
1n—1

Ofp)(X1®X® X, 103X @pg(x))® - @x" 1 ® X
1

' ®XP+1) —oO(fp) (X1 @ X ® -+ ® Xpy1)

=
+

I

—
-

I

] wa ®

ZZx,},H@- R[N 00X 10X O © gqg(x])
j=1 k=1

®

O T OXi® X ®x,)OXT ®- - ©x]

e
1 K
+Zk2k# Y1 ® RO (X1 @Xp® @ Xy @y @ ® pg(x p+1)
71 k=R

®- ®xp+1+2x+1® ®xp+1®fp(X1®X2® ®Xp®(pg(p+l)

j+1 j—1 j j+1
X1 p+1 Z 12#]( Xpp1 @ QX1 ® (l’g(xp+1)®xp+1 Q- xp+1
k=1j=1,j

X -

k k-+1
Vfp(X1 @ X2 @+ ©Xp@xpyq) QX ® - @A — prH@ @ x5]

e fp(X1 @ X @ @X,@xp )@@ Q1)

P T a0t e hexe oXoxede: @)

i=1j=1 k=1
®"'®x?71®xi+l®"'®Xp®x1;+1)®x§il1®"'®x?;;%
n—1

1 i—1 i+1
+gxp-‘rl@“'®x]p+1®f}7(X1®X2®' @ Xy @ gg(x p+1)®x]p+1®' F® X,
]:

n—1
Y 5 ® @ 00 fp(X1 90X @0 X, @) @ X @ 0x
k=1
On the other hand,
O(fp)(X1®Xo @+ ® Xpy1)

n . .
Z:x;,H@. @ L 06(f)(Xi0X® - ©X,0x,,) @t @ a0

n—1 p n—1 .
sz}m@' RN fp(X10X @ ®X 1 @R ORR @ gg(x))
—1j=1

1k

1
x]+

® ®...®XZ—1®XI(+1®...®Xp®x;+1)®x;tll®...®xz—1

— ‘ i1 1
Z; Xy ® - p+1®fp(X1®X2® @ Xp ® gg(xp 1)) @1, ® @)
1

—llx}g® @l e fp(X10X®- - @ Xy @x, ) O ©- - @ X
1=
Hence, ® = 60 and thus ©9; = 0,0. O

The following corollary gives another proof of Theorem 1.

Corollary 1. Ifa% =0, then 829 =0.
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[, 9" (X ®2)

Proof. In view of ©9; = 9,0, we have ©®93 = 9,00y = 90,0 = 0. O

Let LP(g) = Hom(AP*'L @ g,9), MP(L) = Hom(L®W 1), L), L . o (g) = LP(g)

n

xLP~1(g), and MEeibDer(L) = MP(L) x MP~1(L). In the light of [13], we know that both

M(L) = @3 ,MP(L) and L(g) = @} LP(g) have graded Lie algebra structures, we denote
’.fhem by [, ]L and [, "t r.espectinely. In view of [36], M| aippDer(L) = @;C;OMieibDer(L)
is a graded Lie algebra with the Lie algebra structure

ptq ( )

q
L)® MLeibDer(L) - MLeibDer L

¢ ”L : MIlieibDer(
given by
[(fp1,8p), Fgr1, 801" = (psrs fgal" 8o fea]" + (COP [fpi1, 89))-

Define the linear map
nL . 1P q ptq
[ Ln—LieDer(G) ® Ln—LieDer(g) - Ln—LieDer(L)
by
[(fpr180), (Fa1 8™ = (st fga]™ [8ps fga]™ + (F 1P [fp1, 8)™)-

Then we have the following.
Proposition 4. [[, ]|} (@ ® @) = 0[[, |]*.
Proof. It can be induced directly from Corollary 1 and [13] (Lemma 1). O

From the previous proposition, we obtain the following theorem immediately.

Theorem 3. L, 1i.pp(8) = (GB;‘J:OLZ_LieDer(g), [[, 1]"%) is a graded Lie algebra. Its Maurer—
Cartan elements are n-LieDer pair (g, ¢g).

Proof. According to Proposition 4, (L, [ ieper(9), [, ]]"F) is a graded Lie algebra.
1
Forany (71,¢) € L. 1. .per(9),

(7, 9), (7, @)1t = ([, 7)™, [, @)™ + [, 9]"").

So (7, @) is a Maurer—Cartan element if and only if [, 7]** = 0 and 2[r, ¢]"" = 0. In
the light of [13], [rr, 1]"L = 0 if and only if (g, 77) is an n-Lie algebra.
At the same time, forany X ® z € L ® g, suppose X = x1 ® - - - ® x,,_1, we get

= [m, (p]"L(x1 R QR ®2)

n

Y m(x1 @ @p(x) @ @xy1 @2) + (X @+ - ® Xy @ @(2))
i=1

—pnt(x1® - @ xy_1 ®2).

It follows that (77, ¢) is a Maurer—Cartan element if and only if (77, ¢) is an n-LieDer
pair. O

Let (g, 77, ¢g4) be an n-LieDer pair. Define the linear map

TP p+1
Imog) * Ly LieDer® — L LieDer(9)
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by
O(r,p) (fp+1,89)) = (7T, 9g), (Fy+1,8p) 1",
then d(,; ,19(r,9,) = 0. Hence, we get the following.

Proposition 5. (L, 1i.per(9), ([, ]]"L,a(n,%)) is a differential graded Lie algebra.

4. Deformation of n-LieDer Pairs

In the next two sections, we give some applications of the cohomology of an n-LieDer
pair. In this section we use it to study the deformation of n-Lie Der pairs. First of all, let us
introduce the deformations of an n-LieDer pair.

Let (g,[,- - |g, ¢g) be an n-LieDer pair. Denote 7to(x1, X2, - - -, Xp) = [X1, X2, - -, Xn]q-
Let r; : A"g — g be skew-symmetric multilinear maps and linear maps ¢; : g — g for any
0 <i < n— 1. Consider the space g[[t]] of formal power series in ¢ with coefficients in g
and a family of linear maps:

n—1
nt(‘xll X2, ", xn) = 2 tnn'i(X1,X2, Yy xn)/ (3)
i=0
and
n—1
pe(x) = ) " gi(x), )
i=0

where @g = ¢g.

If all (g[[t]], 7t, ¢¢) are n-LieDer pairs, we say that (7r;, ;) (i =0,1,- - -,n — 1) generate
an (n — 1)-order deformation of the n-LieDer pair (g,[,- - -, ]g, ¢4). We also denote by
[x1,%2, -, Xn|t = (X1, %2, -+, xy). Forany X, Y € A" 1g, in the next proposition, we use
mi(X,-) oY € A" 1gto denote the element

n—1
7T]'(X, ) oY = 2 Vi AYia A ﬂj(X,yi) ANYiz1 N NYp_q.
i=1
Proposition 6. (7, ;) (i = 0,1,---,n — 1) generate an (n — 1)-order deformation of the n-

LieDer pair (g, [, - -, |q, ¢q) if and only if the following holds for any i,j,k = 0,1, - -,n — 1 and
Zi+j:k 7'1.'1‘71']' =0, and

Y (g - (YT g ol) =0, 5)
i+j=k i=1
where ;71 : AN'lg@ A" g A g — gis given by
mii(X, Y, z) = mi(mi(X, ) oY, z) — mi(X, t;(Y, ) + (Y, (X, 2)). (6)
Proof. (g, 7t;, ¢¢) is an n-LieDer pair if and only if
(X, (Y, z)) = m(m(X, ) o Y, z) + (Y, (X, 2))
and

n
g =Yy m(IQ - @eRIR---QI). @)
i=1

In the light of [12] (Proposition 1]), we only need to check that (7) is equivalent to (5).
Combining (4) and (7), we achieve that (5) holds. Hence, we get the results. [
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Corollary 2. If (7t;, ¢;) (i = 0,1, --,n — 1) generate an (n — 1)-order deformation of the n-
LieDer pair (g,[,- -, |q, @g), then (711, ¢1) is a one-cocycle of the n-LieDer pair (g,[,-- -, 1g, ¢g)
with the coefficients in the adjoint representation (g,ad, @g).

Proof. For any (711, ¢1) € Ci—LieDer(g’g) = Hom(L ® g,g) x Hom(g, g),

dg (711, ¢1) = (d7ry, dey + 67mp).

For k =1, (6) is equivalent to d7ry = 0, and d¢, + d711 = 0 is equivalent to (5). So the
conclusion holds. [

Definition 3. An (n — 1)-order deformation of the n-LieDer pair (g, [, - -, |g, @g) is said to be
trivial if there is a linear map N : g — g such that Ty = I + tN (V t) satisfies

Tipg = @g Tt
and

Telx1, x2, - -+ Xnt = [Tex1, Texg, - - -, Texn) g

Similarly to the case of n-Lie algebra [12], we can define the Nijenhuis operator of an
n-LieDer pair.

Definition 4. Let (g,[,- -+, |q, ¢g) be an n-LieDer pair. A linear map N : g — g is called a
Nijenhuis operator if the following holds:

Neg = ¢gN

and

[Nx1, Nxp, -+, Naylg = N([x1,x2, - - -, ] 1)

forany xq,x3,- - -, X € g, where

[X1,.X'2, Ty xn]anl == 2 [ Yy inl’ Yy in,l_ll o ] - N[xll X2, " '/xny]ijiz-

i1 <ip<--<iy_q

Definition 5. Let (g,[,- -, |g, ¢g) be an n-LieDer pair and (V, p, pv) be its representation. A
linear map T : V. — g is called an O-operator if it satisfies:

Toy = ¢gT

and
(_1)niip(Tvlr Tty Tvi—lr Tvi-‘rl/ Y Tvn)vi)

=

[Tvy, Tvg, - - -, Toy)g = T(

1

Il
-

forany vy,v9,- -, vy € V.
Using the above concepts, we can define some new n-LieDer pairs.
Proposition 7. Let (V,p, py) be a representation of n-LieDer pair (g, ,- -, |g, ¢g) and T :
V — g be an O-operator. Then (V,[- -, |1, ¢v) is an n-LieDer pair, where
n

[01,- . ',Z)nh" = Z(—l)niip(Tvl,- ty, Tvi—lr Tl)i+1,- ty, T'Un)'()i. (8)
i=1
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Proof. We only need to check that ¢y is a derivation of V. In fact, according to (1) and (8),
we have

q)V[ul,' : ',Mn]T
n

Z(—l)nfiP(Tulr o, Tuj—q, Tujyq, - - -, Tun)u;
i=1

I
s}
<

(=1)" " @vo(Tuy, - - -, Tu;_q, Ty, - -, Tt

I

I
—

n

(=" (p( Y Tur,- -, Tug_1, g Tug, Tuy1, - -+, Tt )1t;
k=T i

+o(Tuq, - - -, Tuj—q, Tujyq, - - -, Tun) v (u;)),

|
=

Il
-

and

n

Z[ul/‘ tty (Pv(ul)/ te '/u?’l]T

i=1

n n k

= Z( Z (_1)7’1_ p(Tul/ tt Yy Tui*l/ Tq)V(ui)r Tui+l/ Tty Tu?’l)uk
i=1 k=1k#i
+(=1)""o(Tuy, - - -, Tu;_1, Tujrq, - - -, Tun) @y (1;)).
Therefore,

M-

(PV[”L‘ : ',Mn]T = [Mll' Ty (Pv(ui),' : ',Mn]T,

i=1

that is, ¢y is a derivation of V. O

Similarly to the case of an n-Lie algebra [12], we have the following.

Proposition 8. Let (V,p, ¢y) a representation of an n-LieDer pair (g,[,- - -, |q, ¢q). Then,
a linear map T : V. — g is an O-operator operator if and only if T : gV — g & V with
T(x + u) = Tu is a Nijenhuis operator on semidirect product (g &V, g + v ).

Let o1 : A"~V — ¢l(g) be a linear map given by

or(u, -+ uy—1)(x)
n—1 .
= [Tull Yy Tun—l/ .X'] =T Z (—1)n_1P(Tu1, Tty Tui*ll TuiJrl/ Yy Tun_],X)Mi. (9)
i=1

Then (g, or) is a representation of (V, |- - -, |1) by Proposition 8. Furthermore, we
have the following result.

Proposition 9. Let T : V — g be an O-operator of n-LieDer pair (g, p4) with representation
(V,p,9v). Then (g, 01, ¢g) is a representation of n-LieDer pair (V,[,- -+, |1, ¢v).
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Proof. In view of (1) and (9), for any x € gand uy,uy,---,,u,—1 € V, we have

¢gQT(”11 Up, =y, Uy— 1)

= (Pg([Tulr‘ t Yy Tunfll 2 TM], ',Tui_1, Tui+1/' Ty Tunfll X)MZ‘)
n—1
= Z [Tulr Yy Tuiflr GDg Tuir Tui+l/ Yy Tun—l/ .X] + [Tull Yy Tun—ll (Pg(x)]
i=1
=T Z §0VP Tul/ Tty Tui*l/ Tui+l/ Tty Tu}’l—lrx)ui
= - Z Z 71 ITP Tull Tty Tui*l/ Tui+1/ Yy GDQT(uk)/ ttty Tu?l*l/x)ui
i=1 k=1k#i

=
—_

- 4 (_1)n_iTP(Tu1/ trty Tui*l/ Tui+1/ ct Yy Tun—ll G”gx)uz‘

I
_ =

3
|

- (_1)niiTp(Tulr ttty Tui*l/ Tui+1/ ttty Tunfll X)Q"V(ui)
1

and
n—1
Z QT(ull Uz, -, (PV( ) ul+1/ Tty unfl)x + QT(ul/ Uz, -+, unfl)(ng
i=1
n—1
= 2 [TM], Tul 1s T(PV( ) Tul-‘rl/ Yy Tunflf X]
i=1
n—=1 n-1 ‘
- (_1)11— TP(T”L Tul 1, Tq)V( ) Tu1+1r t Y Tun—li .X')Mk
i=1 k=1,k#i
n—1 .
=2 (=D)""Tp(Tuy, - -+, Tuj—1, Tuj1, -+, Tug—1, %) @y (14;)
i=1
n—1 )
+[TM1, Yy Tun—l/ (Pgﬂ - Z (—1)n_lTP(Tu1/ Yy Tui*l/ TuiJrl/ tt Yy Tun—lr q)gx)ui'
i=1
Hence,

n—1
(PQQT(ull o ~,,Lln,1) = Z QT(ulIMZI c /¢V( ) ul-‘rl/ Tty unfl) + QT(u1/u2/ Yy unfl)(PE‘
i=1
O

Finally, in this section, let us study the cohomology of the new n-LieDer pair (V, [, - -
-, |1, pv) with coefficients in the representation (g, o, ¢4). Suppose that L(V) = A""1V is
the associated Leibniz algebra. Then the space Cf; —Lie(v’ g) of p-cochains (p > 0) is the

set of multilinear maps of the form f : APL(V) AV — g, and the coboundary operator
+1 D
d: CZ_Lie(V,g) — Cz_Lie(V,g) is given by:
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(df)(ull T up+1/ ZU)
— Z (_1)lf<u1,"'/l:li,"'/kal’ [Ul’uk}FIuk+1/'",UP+1,w)

1<i<k<p+1
p+1 p+1 . ~
+ 2 fUy, - Uiy Up g, (U wlp) + Y (1) op(Un) f(Un, -+, Uiy -+, Upya, w)
i=1
+p—k 1 2 k-1 | k+1 k
Z ) (”p+1’up+1" B S LS T p+1’w)f(u1" T uP’”p+1)’

forall U; = (u},u?,---,ul" ') € L(V)andw € V.

1

Define a map ¢ : CZ—Lie(V’g) — CZ—Lie(V’g) by
dpp(Uh @ - - - @ Uy @ w)
Y Y op(h® - 0Ua@eru)ou @ @ul T @ Uy - 9l 9 w)
—@gpp(Uh @ - - - @ Up @ w).

Now we are ready to define cohomology of the n-LieDer pair (V, [, -, |1, ¢v) with
coefficients in the representation (g, 07, ¢4). Denote the set of p-cochains (p > 0) by

-1
Cs —LieDer(V’ g) = CZ Lle(V, g) X CZ —Lie(v’ g), and the coboundary operator

oy : CP c’”

+
n—LieDer ( v, g) —LieDer ( v, g)

is given by
y (¢p, I/Jp—l) = (d‘i’p/dlpp—l + (_1)p+154’p)~

Denote by H*_;,.(V,g) the cohomology group of this cochain complex, which is
called the cohomology of the n-LieDer pair (V,[,- - -, |1, ¢v) with coefficients in the
representation (g, o1, ¢g)-

We calculate the 0-cocycle.

For any ¢ € Hom(V, g), dy(¢) = (dp, —d¢). By direct computation,

d(p)(uy, - - uy_1,w)
= —¢([ur, - up—1,wlr) +or(ur, - - - up—1)p(w)
n—1
+ Y (=) For(ur, - vy, g, U1, W) (1)
k=1
= _(P([ulr sy Up—1, ZU]T) + [TM], Yy Tun,1,¢(W)]
n—1 )
=T Z (71)n_ZP(Tu1/ Yy Tui*l/ Tui+1r Yy Tun—ll 4)(‘6()))1/!1
i=1
n—1 ¢
+ Z (_1)}’1— ([TM], Tty Tui*l/ Tui+1/ Yy Tui’l—l/ Twr 4)(14]()]
k=1
n—1

=T . (_1)n_iP(Tu1/ Tty Tui—l/ Tui-‘rl/ Yy Tui’lfl/ Twr(P(uk))ui)

and
op(w) = pov(w) — pgp(w)

for any u;, w € V.
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It follows that ¢ € Hom(V, g) is a 0-cocycle if and only

7(17([”1/' T Up—1,W ]T) + [Tul/' ty Tun—1r¢(w)]

=T Z TM],' Ty Tui*l/ Tui+1r' ty Tun—1/¢(w))ui
Z ([Tuy, - -+, Tui_q, Tujp, - - -, Tuy—1, Tw, ¢(uy)]
"i

p(Tur, -+, Tuj, Tujt, - -, Tug—1, Tw, ¢(ux) u;)
= 0
and
PPV = @g¢.
Clearly, O-operator T : V — g on n-LieDer pair (g, ¢4) associated to the representa-

tion (V, p, py) satisfying the above conditions. Hence, we have the following conclusion.

Proposition 10. The O-operator T : V. — g on n-LieDer pair (g, ¢q) associated with the
representation (V, p, v ) is a 0-cocycle of the cochain complex CZ LieDer(V/9)-

5. Central Extension of n-LieDer Pairs

In this section, we use the result in Section 3 to describe the central extension of an
n-LieDer pair. First of all, let us define a central extension of an n-LieDer pair.

Definition 6. Let (g, ¢4) be an n-LieDer pair, ) = kc be a vector space with basis {c}, x : g — b,
and g* be the dual of g. Suppose that @y, : b — b are linear maps and ¢ € \"~1g* A g* is a skew
symmetric n-linear map. Let § := g ® b and pg(x +ac) = ¢g(x) + x(x) +agy(c) forany x € g
and a € k. Then the n-LieDer pair (§, ¢g) is called a central extension of (g, ¢q) if
[flleI. X ]g - [xl/xZI' 'y n]g +¢(X1,x2,' . '/xn)cl
and
[fl/ fZ/ Y xﬂ‘.’fllc]g =0

forall x; € g, where X; = x; +a;c, (i=1,2,---,n) for some a; € k.
Remark 1. x(x;) + a;py(c) can be identified with A(x;)c, where A : g — k is a linear map.

Proposition 11. With above notations, (§, ¢g) is an n-LieDer pair if and only if (¢, x) is a
1-cocycle with coefficients in the trivial representation (b, @y ).

Proof. On the one hand, (§, [, - -, |§) is an n-Lie algebra if and only if
n
[x~1/ f2/ Yy xn~71/ [y~1/ y~2/ ty y'rl ﬁ = yll y~2/ Tty yi~—1/ [fll er Yy X;{Ll, y~i]ﬁ/ yiji-l/ Tty Vn]g
i=1
In fact,
(1, %2, %01, [V, V2, - - Vnlsla

[fller Yy xn~—1r [}/1,}/2/ o ‘/yn]g + l)b(ylrer o /yn)c]g
= [xl/xZI o Xp—1s [y1/y2, o '/yn]g]g + lp(xl/x2/ o Xn—1, [yllyZ/ t '/yn]g)c
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and

M:

Vi, 2, - yisa, 81, %2, -+ X1, Vila, Vit - - 0 Y

I
—

W, %2, Y1, (X, %2, Xn—1,Yilg + P(X1, X2, -+, X1, Yi)C, Vi1, - - Ynlg

I
M:

Il
-

I
™=

[yl/yZ/ Y Yi—1, [X1, X2,y xn—llyi]g/yiJrl/ t 'ryn]g

lp(yllyZI o '/yi—ll [xlr X2,y xnfllyi}g/yi-‘r]/ o ‘/yn)C-
So (§,[,---, |g) is an n-Lie algebra if and only if

™=

llJ(xlfxz,' C Xn—1, []/1/]/2/' : '/yn]g) = 1IJ(]/1/]/2/' o Yi-1, [lexz,' : '/xn—llyi]g/]/iJrl/' : '/]/n)- (10)

I
—_

At the same time, @3 is a derivation of § if and only if

1=

4)@([351/ fZ/ Yy fn}g) = [flle/ Yy xi:1/ q)g(fl)/ Yy xn}ﬁy

1

By direct calculation,

q)g([fl/fZI' : /fn]g)
@5([x1, %2, -+, xnlg + P(x1, %2, - - -, x5)C
= @g([x1,x2, -, xnlg) + x([x1,Xx2,- -, Xnlg) + P(x1, %2, - -, xn) @y (C),

and

M-

I
—

(€1, %2, -+, %1, 95(Xi), - - -, Xl

[xlleI tt Yy xi_], (Pg(xi)/ Tty xn]g + lp(xll X2, '/xi—l/ (Pg(xi)/ Tty x}’l>c'

|
™=

Il
_

Therefore, @ is a derivation of § if and only if

Y(xy, x0, xim1, @g(x), -+ - xn) = xX([x1, %20, -+ Xnlg) + P(x1, X2, - -, X)) @y (11)

On the other hand, for any (¢, x) € Hom(L ® g, h) x Hom(g, ), (¢, x) is a one-cocycle
if and only if
(¢, x) = (dy,dx +d¢) =0,

thatis, forevery X@ Y ®z € LR L®g,

dp(X®Y ®z)

= —P(XY]r®z)—9p(Y®[X,z]g) + p(X®[Y,z]4)

= Y@ QY 1®[x, X1, Yilg Ui @ OYp1 ®2)
P11 ® - @ Yn-1® [x1,%2, -, ®Xy—1 @ 2g)
(1@ @ xp1 @ [y1, 2, QYp—1 ® 2]g)

|
=

(12)

7
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and
(d + (~1)209) (X ©2)
X))+ T @ ® 1 ® gg(x) @+ D 01 2)
i=1

FP(x1 @ @ X1 @ Pg(z)) — PyP(x1 @+ - Q@ Xp—1 ®2)
n—1

= —x(x, o oxp1,2lg) + (@ @ %1 Q@ @g(x) @+ @ X1 R 2)
i=1

+P(X1 @ QX1 ® @g(2)) — PpP(¥1 Q- - - R X1 @ 2)
= 0. (13)

In the light of (12) and (13), (¢, x) is a 1-cocycle if and only if (10) and (11) hold. Hence,
we get the conclusion. [

Author Contributions: Writing—review and editing, Q.S.; supervision and revision, Z.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
11871421; No. 11401530) and the Natural Science Foundation of Zhejiang Province of China (No.
LY19A010001).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Filippov, V.T. n-Lie algebras. Sib. Math. ]. 1985, 26, 126-140. [CrossRef]

2. Gautheron, P. Simple facts concerning Nambu algebras. Commun. Math. Phys. 1998, 195, 417-434. [CrossRef]

3. Nambu, Y. Generalized Hamiltonian dynamics. Phys. Rev. 1973, D7, 2405-2412. [CrossRef]

4. Sun, Q.X.; Wu, Z. Representation and cohomology of Pre-Lie algebras with derivations. arXiv 2019, arXiv:1902.07360..

5. Takhtajan, L. On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 1993, 160, 295-315. [CrossRef]

6. Arfa, A,; Fraj, N.B.; Makhlouf, A. Cohomology and deformations of n-Lie algebra morphisms. |. Geom. Phys. 2018, 132, 64-74.
[CrossRef]

7. De Azc’arraga, ].A.; Izquierdo, ].M. n-ary algebras: A review with applications. J. Phys. A 2010, 43, 293001. [CrossRef]

8.  De Azc’arraga, ].A.; Izquierdo, ]. M. Cohomology of Filippov algebras and an analogue of Whitehead’s lemma. J. Phys. Conf. Ser.
2019, 175, 012001. [CrossRef]

9.  Ammar, E; Mabrouk, S.; Makhlouf, A. Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras. J.
Geom. Phys. 2011, 61, 1898-1913. [CrossRef]

10. Bai, R; Li, Y. Extensions of n-Hom Lie-algebras. Front. Math. China 2015, 10, 511-522. [CrossRef]

11. Bai, R; Song, G.; Zhang, Y. On classification of n-Lie algebras. Front. Math. China 2011, 6, 581-606. [CrossRef]

12.  Liu,J.; Sheng, Y,; Zhou, Y.; Bai, C. Nijenhuis operators on n-Lie algebras. Commun. Theor. Phys. 2016, 65, 659-670. [CrossRef]

13. Rotkiewicz, M. Cohomology ring of n-Lie algebras. Extr. Math. 2005, 20, 219-232.

14. Song, L.; Tang, R. Chomologies, deformations and extensions of n-Hom-Lie algebras. J. Geom. Phys. 2019, 14, 65-78. [CrossRef]

15.  Gerstenhaber, M. The cohomology structure of an associative ring. Ann. Math. 1963, 78, 267-288. [CrossRef]

16. Gerstenhaber, M. On the deformation of rings and algebras. Ann. Math. 1964, 79, 59-103. [CrossRef]

17.  Nijenhuis, A.; Richardson, R. Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 1966, 72, 1-29.
[CrossRef]

18. Nijenhuis, A.; Richardson, R. Commutative algebra cohomology and deformations of Lie and associative algebras. J. Algebra
1968, 9, 42-105. [CrossRef]

19. Balavoine, D. Deformation of algebras over a quadratic operad. Contemp. Math. 1997, 202, 207-234.

20. Nijenhuis, A. X;,_1-forming sets of eigenvectors. Indag. Math. 1951, 54, 200-212. [CrossRef]

21. Frolicher, A.; Nijenhuis, A. Theory of vector valued differential forms: Part I. derivations in the graded ring of differential forms.
Indag. Math. 1956, 59, 338-350. [CrossRef]

22.  Kosmann-Schwarzbach, Y.; Magri, F. Poisson-Nijenhuis structures. Ann. Inst. Henri. Poincaré 1990, 53, 35-81.


http://doi.org/10.1007/BF00969110
http://dx.doi.org/10.1007/s002200050396
http://dx.doi.org/10.1103/PhysRevD.7.2405
http://dx.doi.org/10.1007/BF02103278
http://dx.doi.org/10.1016/j.geomphys.2018.05.010
http://dx.doi.org/10.1088/1751-8113/43/29/293001
http://dx.doi.org/10.1088/1742-6596/175/1/012001
http://dx.doi.org/10.1016/j.geomphys.2011.04.022
http://dx.doi.org/10.1007/s11464-014-0372-8
http://dx.doi.org/10.1007/s11464-011-0107-z
http://dx.doi.org/10.1088/0253-6102/65/6/659
http://dx.doi.org/10.1016/j.geomphys.2019.03.003
http://dx.doi.org/10.2307/1970343
http://dx.doi.org/10.2307/1970484
http://dx.doi.org/10.1090/S0002-9904-1966-11401-5
http://dx.doi.org/10.1016/0021-8693(68)90004-5
http://dx.doi.org/10.1016/S1385-7258(51)50028-8
http://dx.doi.org/10.1016/S1385-7258(56)50046-7

Mathematics 2021, 9, 2452 17 of 17

23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.

Golubchik, LI.Z.; Sokolov, V.V. One more type of classical Yang-Baxter equation. Funct. Anal. Appl. 2000, 34, 296-298. [CrossRef]
Golubchik, I.I.Z.; Sokolov, V.V. Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras. J.
Nonlinear Math. Phys. 2000, 7, 184-197. [CrossRef]

Kupershmidt, B.A. What a classical r-matrix really is? |. Nonlinear Math. Phys. 1999, 6, 448—488. [CrossRef]

Bai, C. A unified algebraic approach to the classical Yang-Baxter equation. J. Phys. A 2007, 40, 11073-11082. [CrossRef]
Voronov, T. Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 2005, 202, 133-153. [CrossRef]

Coll, VE,; Gerstenhaber, M.; Giaquinto, A. An explicit deformation formula with noncommuting derivations. Ring theory 1989
(Ramat Gan and Jerusalem, 1988/1989). Israel Math. Conf. Proc. 1989, 1, 396—403.

Magid, A.R. Lectures on Differential Galois Theory, University Lecture Series 7; American Mathematical Society: Providence, RI,
USA, 1994

Ayala, V,; Kizil, E.; de Azevedo Tribuzy, I. On an algorithm for finding derivations of Lie algebras. Proyecciones 2012, 31, 81-90.
[CrossRef]

Ayala, V,; Tirao, J. Linear control systems on Lie groups and controllability. In Differential Geometry and Control; Proceedings of
Symposia in Pure Mathematics Volume 64; American Mathematical Society: Providence, RI, USA, 1999; pp. 47-64.

Doubek, M.; Lada, T. Homotopy derivations. J. Homotopy Relat. Struct. 2016, 11, 599-630. [CrossRef]

Loday, J.L. On the operad of associative algebras with derivation. Georgian Math. ]. 2010, 17, 347-372. [CrossRef]

Tang, R.; Fregier, Y.; Sheng, Y. Cohomologies of a Lie algebra with a derivation and applications. J. Algebra 2019, 534, 65-99.
[CrossRef]

Das, A.; Mandal, A. Extensions, deformations and categorifications of AssDer pairs. arXiv 2020, arXiv:2002.11415.

Das, A. Leibniz algebras with derivations. arXiv 2020, arXiv:2003.07392.

Bai, C.; Guo, L.; Sheng, Y. Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras. Adv. Theor. Math.
Phys. 2016, 23, 27-74. [CrossRef]

Fialowski, A.; Mandal, A. Leibniz algebra deformations of a Lie algebra. . Math. Phys. 2008, 49, 093511. [CrossRef]


http://dx.doi.org/10.1023/A:1004113508705
http://dx.doi.org/10.2991/jnmp.2000.7.2.8
http://dx.doi.org/10.2991/jnmp.1999.6.4.5
http://dx.doi.org/10.1088/1751-8113/40/36/007
http://dx.doi.org/10.1016/j.jpaa.2005.01.010
http://dx.doi.org/10.4067/S0716-09172012000100008
http://dx.doi.org/10.1007/s40062-015-0118-7
http://dx.doi.org/10.1515/gmj.2010.010
http://dx.doi.org/10.1016/j.jalgebra.2019.06.007
http://dx.doi.org/10.4310/ATMP.2019.v23.n1.a2
http://dx.doi.org/10.1063/1.2981562

	Introduction
	n-LieDer Pair and Representation
	Cohomology of n-LieDer Pair
	Deformation of n-LieDer Pairs
	Central Extension of n-LieDer Pairs
	References

