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Periodic Solutions in Slowly Varying

Discontinuous Differential Equations:

The Generic Case. Mathematics 2021,

9, 2449. https://doi.org/10.3390/

math9192449

Academic Editor: Denis Borisov

Received: 8 September 2021

Accepted: 27 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering and Mathematics, Marche Polytecnic University, 60121 Ancona, Italy;
battelli@dipmat.univpm.it

2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics,
Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 84248 Bratislava, Slovakia

3 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava, Slovakia
* Correspondence: Michal.Feckan@fmph.uniba.sk
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1. Introduction

In [1] a system like
ẋ = f (x, y)
ẏ = εg(x, y, ε), ε ∈ R (1)

has been considered, where x ∈ R2, ẋ = f (x, y) is Hamiltonian for any y ∈ R and has
a one-parameter family of periodic solutions q(t − θ, y, α) with period T(y, α) being C1

in (y, α). As a matter of fact, in [1], f (x, y) is allowed to depend on ε and t being like
f0(x, y) + ε f1(x, y, t, ε) and it is because of the t dependence of the perturbed equation
that θ has been introduced. Indeed, introducing the variable θ = t mod T, the perturbed
time dependent vector field is reduced to a time independent system on R3 × S1 where
S1 is the unit circle. Then, they answered the following question: do any of these periodic
solutions persist for ε 6= 0? They constructed a vector valued function Mp/q(y, α, θ) that
they called subharmonic Melnikov function which is a measure of the difference between the
starting value and the value of the solution at the time p

q T in a direction transverse to the
unperturbed vector field at the starting point. They proved that periodic solutions of the
perturbed vector field arise near the simple zeros of Mp/q(y, α, θ).

Motivated by [1], in this paper we study Equation (1) in higher dimension and allow-
ing f (x, y) to be more general than Hamiltonian and also discontinuous. As a matter of
fact we assume that

f (x, y) :=
{

f−(x, y) if h(x, y) < 0
f+(x, y) if h(x, y) > 0.

(2)

where x ∈ Rn, y ∈ Rm, all functions here considered (i.e., f±(x, y), g(x, u, ε) and h(x, y))
are C1 in their arguments, and ε ∈ R is a small parameter. In this paper we study a non
degenerate case where the unperturbed discontinuous system ẋ = f (x, y) has a periodic
solution for y = y0 and certain non degenerateness conditions are satisfied. We construct a
Jacobian matrix and show that, if it is invertible, the perturbed system has a unique periodic
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solution near the periodic solution of the unperturbed system. The Jacobian matrix being
invertible does not allow the system to have a smooth family of periodic solution q(t, α, y)
since in this case qα(0, α, y) belongs to its kernel. We plan to consider this more degenerate
case in a forthcoming paper.

We emphasize that the results of this paper easily extend to the case where f±(x, y)
is replaced by f±(x, y, ε) = f0,±(x, y) + ε f1,±(x, y, ε) and f0,±(x, y), f1,±(x, y, ε) are smooth
outside the singularity manifold {h(x, y) = 0}. In this case in the unperturbed system

ẋ = f±(x, η) (3)

the term f±(x, y) has to be replaced by f0,±(x, y). Finally, we observe that our results fit into
a general theory of discontinuous differential equations presented in series of works [2–9].

2. Preliminary Results

We set
Ω± = {(x, y) | ±h(x, y) > 0}
Ω0 = {(x, y) | h(x, y) = 0}.

In the whole paper, given a vector v or a matrix A with vt, (resp. At) we denote the
transpose of v (resp. A).

Let (ξ, η) ∈ Rn ×Rm. We denote with u±(t, ξ, η) the solution of (3) such that u(0) = ξ.
We assume that (x0, y0) ∈ Ω+ exists such that the following conditions hold:

(A1) there exists t1 > 0 such that u+(t1, x0, y0) ∈ Ω0 and u+(t, x0, y0) ∈ Ω+ for 0 ≤ t < t1.
Moreover,

hx(u+(t1, x0, y0), y0) f±(u+(t1, x0, y0), y0) < 0. (4)

(A2) there exists t2 > 0 such that u−(t, u+(t1, x0, y0), y0) ∈ Ω− for 0 < t < t2 and
u−(t2, u+(t1, x0, y0), y0) ∈ Ω0. Moreover,

hx(u−(t2, u+(t1, x0, y0), y0), y0) f±(u−(t2, u+(t1, x0, y0), y0) > 0. (5)

(A3) there exists t3 > 0 such that u+(t, u−(t2, u+(t1, x0, y0), y0), y0) ∈ Ω+ for 0 < t ≤ t3
and u+(t3, u−(t2, u+(t1, x0, y0), y0), y0) = x0.

Remark 1. (i) We may as well consider (x0, y0) ∈ Ω−. As a matter of fact, changing h(x, y) with
−h(x, y) the roles of Ω+ and Ω− are interchanged.

(ii) The first part of condition (A1) is equivalent to h(u+(t, x0, y0), y0) > 0 for 0 ≤ t < t1
and h(u+(t1, x0, y0), y0) = 0. Similarly, the first part of condition (A2) is equivalent to
h(u−(t, u+(t1, x0, y0), y0), y0) < 0 for t1 < t < t2 and h(u−(t1, u+(t1, x0, y0), y0), y0) = 0.
Hence, being u−(t1, u+(t1, x0, y0), y0) = u+(t1, x0, y0), in general we have

hx(u+(t1, x0, y0), y0) f±(u+(t1, x0, y0), y0) ≤ 0. (6)

Similarly,

hx(u−(t2, u+(t1, x0, y0), y0), y0) f±(u−(t2, u+(t1, x0, y0), y0) ≥ 0. (7)
Hence (4) and (5) are stronger than the condition of existence of a continuous, piecewise C1,

solution of the discontinuous equation ẋ = f (x, y0) such that u(t) ∈ Ω+ for 0 ≤ t < t1 or
t2 < t ≤ T, u(t) ∈ Ω− for t1 < t < t2 and u(t1), u(t2) ∈ Ω0. Moreover, they are generic
conditions having the important consequence that we do not need to define the vector field on the
discontinuity manifold Ω0. Indeed, (A1) and (A2) imply transverse intersection of the solution
with the discontinuity manifold Ω0. Heuristically, (4) implies that when a solution in Ω+, hits Ω0,
it immediately leaves Ω0 and enters Ω−. Similarly, condition (5) implies that when a solution in
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Ω− hits Ω0, it immediately leaves Ω0 and enters Ω+. This case is referred to as the transverse
case. More generally, we have a topologically transverse case at t = t1, when

hx(u+(t1, x0, y0), y0) f+(u+(t1, x0, y0), y0) = 0 and
hx(u+(t1, x0, y0), y0) f−(u+(t1, x0, y0), y0) < 0.

Of course there are other important cases arising in the applications. For example, it may
happen that h(u+(t, x0, y0), y0) has a strong minimum at t = t1 and

hx(u+(t1, x0, y0), y0) f−(u+(t1, x0, y0), y0) > 0.

In this case the solution of the discontinuous systems is tangent to Ω0 at u(t1) and belongs
to Ω+ for t 6= t1. This case is referred to as grazing. Another important case arising in the
applications is the sliding case. This happens when the inequalities

hx(u+(t1, x0, y0), y0) f+(u+(t1, x0, y0), y0) < 0 and
hx(u+(t1, x0, y0), y0) f−(u+(t1, x0, y0), y0) > 0.

hold. These conditions force the solution to remain in the discontinuity manifold Ω0 until one of the
two conditions

hx(ū(t, u+(t1, x0, y0), y0) f+(ū(t, u+(t1, x0, y0), y0), y0) = 0 (8)

or
hx(ū(t, u+(t1, x0, y0), y0) f−(ū(t, u+(t1, x0, y0), y0), y0) = 0 (9)

arises first (it is assumed that these two conditions do not happen simultaneously). Here
ū(t, u+(t1, x0, y0), y0) is the solution of a continuous differential equation on Ω0 defined by means
of the Filippov’s method [6] that takes into account the average of f+ and f− at the points of Ω0.
Then, if it is condition (8) that happens first, the solution re-enters into Ω+, while if it is (9) that
happen first, the solution enter into Ω−.

In this paper we focus on the transverse case (A1) and (A2), leaving the other cases to
forthcoming papers. As we have already observed in the transverse case, there is no need to know
the Filippov equation on Ω0.

For simplicity we set t∗ = t1, t∗ = t1 + t2, T = t1 + t2 + t3 and

u(t, x0, y0) :=


u+(t, x0, y0) if 0 ≤ t ≤ t∗
u−(t− t∗, u+(t∗, x0, y0), y0) if t∗ ≤ t ≤ t∗

u+(t− t∗, u−(t∗ − t∗, u+(t∗, x0, y0), y0), y0) if t∗ ≤ t ≤ T

Then using (A3) it is easy to check that

u(T, x0, y0) = x0. (10)

Hence for 0 ≤ t ≤ T, u(t, x0, y0) is a T-periodic solution of Equation (1) with ε = 0,
such that u(t, x0, y0) /∈ Ω0 for all t ∈ [0, T] with t 6= t∗, t∗ and the following hold:

u(t∗, x0, y0), u(t∗, x0, y0) ∈ Ω0
hx(u(t∗, x0, y0), y0) f+(u(t∗, x0, y0), y0) < 0
hx(u(t∗, x0, y0), y0) f−(u(t∗, x0, y0), y0) > 0.

(11)

Now, let B(x0, r) ⊂ Rn be an open ball of radius r centered at x0 and L be a local
hyperplane in Rn passing through x0 and transverse to f+(x0, y0). So

L = {x0}+ {v0}⊥ (12)

where vt
0 f (x0, y0) 6= 0. We have the following
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Lemma 1. Assume (A1)–(A3). Then there exist open balls B(x0, r1) ⊂ Rn, B(y0, r2) ⊂ Rm such
that for any (ξ, η) ∈ B(x0, r1)× B(y0, r2) there exist smooth functions t∗(ξ, η), t∗(ξ, η), T(ξ, η)
and a continuous, piecewise C1 function u(t, ξ, η) such that u(0, ξ, η) = ξ and the following hold:

(i) |t∗(ξ, η)− t∗|+ |t∗(ξ, η)− t∗|+ |T(ξ, η)− T| → 0 as (ξ, η)→ (x0, y0);
(ii) u(t, ξ, η) ∈ Ω+, for 0 ≤ t ≤ t∗(ξ, η), u(t∗(ξ, η), ξ, η) ∈ Ω0 and

hx(u(t∗(ξ, η), ξ, η), η) f±(u(t∗(ξ, η), ξ, η), η) < 0.

(iii) u(t, ξ, η) ∈ Ω−, for t∗(ξ, η) ≤ t ≤ t∗(ξ, η), u(t∗(ξ, η), ξ, η) ∈ Ω0 and

hx(u(t∗(ξ, η), ξ, η), η) f±(u(t∗(ξ, η), ξ, η), η) > 0.

(iv) u(t, ξ, η) ∈ Ω+, for t∗(ξ, η) ≤ t ≤ T(ξ, η), u(T(ξ, η), ξ, η) ∈ L
(v) for 0 ≤ t ≤ T(ξ, η), t 6= t∗(ξ, η), t∗(ξ, η), u(t, ξ, η) satisfies the differential equation

ẋ = f±(x, η), where the signs± are taken accordingly to u(t, ξ, η) ∈ Ω+ or u(t, ξ, η) ∈ Ω−.

Moreover, (ξ, η) 7→ u(t, ξ, η) is a smooth map in the space of piecewise continuous functions and

sup
0≤t≤T(ξ,η)

|u(t, ξ, η)− u(t, x0, y0)| → 0 (13)

as (ξ, η)→ (x0, y0).

Proof. Let ρ1 > 0 and ρ2 > 0 be two, sufficiently small, positive numbers such that
B(x0, ρ1)× B(y0, ρ2) ⊂ Ω+. For (ξ, η) ∈ B(x0, ρ1)× B(y0, ρ2) we consider the equation

h(u+(t, ξ, η), η) = 0, (ξ, η) ∈ B(x0, ρ1)× B(x0, ρ2),

whose left-hand side vanish at t = t∗, ξ = x0, η = y0. Moreover, the derivative with respect
to t of the left hand side at ξ = x0, η = y0 is

hx(u+(t, x0, y)), y0)u̇+(t, x0, y0) = hx(u+(t, x0, y0), y0) f+(u+(t, x0, y0), y0).

According to (A1), possibly changing ρ1 and ρ2, from the Implicit Function Theorem,
it follows the existence of a smooth function t∗(ξ, η) such that

t∗(x0, y0) = t∗

and
h(u+(t∗(ξ, η), ξ, η), η) = 0.

Next, since u(t∗(ξ, η), ξ, η) → u(t∗, x0, y0) as (ξ, η) → (x0, y0) it follows by
continuity that

hx(u+(t∗(ξ, η), ξ, η), η) f±(u+(t∗(ξ, η), ξ, η), η) ≤ −δ < 0.

for some δ > 0, uniformly with respect to (ξ, η) ∈ B(x0, ρ1)× B(x0, ρ2). Hence (ii) holds
with u(t, ξ, η) = u+(t, ξ, η), for 0 ≤ t ≤ t∗(ξ, η).

Then we see that σ > 0 exists such that, for t∗(ξ, η) − σ ≤ t < t∗(ξ, η), we have
h(u+(t, ξ, η), η), η) > 0. Using the continuous dependence on the data we also see that

sup
0≤t≤t∗(ξ,η)

|u+(t, ξ, η)− u(t, x0, y0)| → 0

as (ξ, η)→ (x0, y0) and then
h(u+(t, ξ, η), η), η) > 0
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for 0 ≤ t ≤ t∗(ξ, η)− σ. Hence (i) holds. Now, consider the solution û−(t, ξ, η) of the
equation

ẋ = f−(x, η)
x(t∗(ξ, η)) = u+(t∗(ξ, η), ξ, η).

Note that, using the previous notation, we have

û−(t, ξ, η) = u−(t− t∗(ξ, η), u+(t∗(ξ, η), ξ, η), η).

Note also that

û−(t, x0, y0) = u−(t− t∗, u+(t∗, x0, y0), y0) = u(t, x0, y0) (14)

for any t∗ ≤ t ≤ t∗.
It follows from the continuous dependence on the data that û−(t, ξ, η) tends to

u(t, x0, y0), as (ξ, η) → (x0, y0) together with its t-derivative, uniformly with respect
to t in compact intervals such as [t∗ − σ, t∗ + σ], with σ > 0 sufficiently small. Next we
consider the equation

h(û−(t, ξ, η), η) = 0, (ξ, η) ∈ B(x0, ρ1)× B(x0, ρ2),

in a neighborhood of t∗. From (11)–(14) we get h(û−(t∗, x0, y0), y0) = 0 and

hx(û−(t∗, x0, y0), y0)
∂û−
∂t

(t, x0, y0) > 0.

Then, the Implicit Function Theorem and an argument similar to the above imply
that ρ1 > 0, ρ2 > 0 and a smooth function t∗(ξ, η), with (ξ, η) ∈ B(x0, ρ1) × B(x0, ρ2)
exist such that t∗(x0, y0) = t∗ and (iii) holds with u(t, ξ, η) = û−(t, ξ, η) = u−(t −
t∗(ξ, η), u+(t∗(ξ, η), ξ, η), η), t∗(ξ, η) ≤ t ≤ t∗(ξ, η). Moreover, by continuity,

sup
t∗(ξ,η)≤t≤t∗(ξ,η)

|u(t, ξ, η)− u(t, x0, y0)| → 0

Another argument of similar nature shows that iv) holds. Since all pieces of u(t, ξ, η)
in the intervals [0, t∗(ξ, η)), (t∗(ξ, η), t∗(ξ, η)) and (t∗(ξ, η), T(ξ, η)] consist of solutions of
equation ẋ = f±(x, η), it is easy to see that v) holds. The last conclusion follows from

sup0≤t≤t∗(ξ,η) |u+(t, ξ, η)− u+(t, x0, y0)| → 0
supt∗(ξ,η)≤t≤t∗(ξ,η) |u+(t, ξ, η)− u+(t, x0, y0)| → 0
supt∗(ξ,η)≤t≤T(ξ,η) |u+(t, ξ, η)− u+(t, x0, y0)| → 0

as (ξ, η)→ (x0, y0).

Note that for t ∈ [0, T(ξ, η)] it results u(t, ξ, η) ∈ Ω− if t∗(ξ, η) < t < t∗(ξ, η),
u(t, ξ, η) ∈ Ω0 if t = t∗(ξ, η) or t = t∗(ξ, η) and u(t, ξ, η) ∈ Ω+ otherwise.

We set
T̄ := sup{T(ξ, η) | (ξ, η) ∈ B(x0, r1)× B(y0, r2)}.

We assume conditions (A1)–(A3) hold. We know that u(t, x0, y0) is a T-periodic
solution of Equation (1) with ε = 0:

ẋ = f (x, η) :=
{

f−(x, η) if h(x, η) < 0
f+(x, η, ) if h(x, η) > 0.

(15)

Now, does this periodic, piecewise continuous solution persist when ε 6= 0? We have
the following
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Theorem 1. Suppose (A1)–(A3) hold. Then there exist open balls B(x0, r1) ⊂ Rn, B(y0, r2) ⊂ Rm

and ε̄ > 0 such that for (ξ, η) ∈ B(x0, r1)× B(x0, r2) and |ε| ≤ ε0 there exist smooth functions
t∗(ξ, η, ε), t∗(ξ, η, ε), T(ξ, η, ε) and continuous, piecewise C1 functions x(t, ξ, η, ε), y(t, ξ, η, ε)
such that x(0, ξ, η, ε) = ξ, y(0, ξ, η, ε) = η and the following hold:

(i) |t∗(ξ, η, ε) − t∗(ξ, η)| + |t∗(ξ, η, ε) − t∗(ξ, η)| + |T(ξ, η, ε) − T(ξ, η)| → 0 as ε → 0
uniformly in (ξ, η) ∈ B(x0, r1)× B(x0, r2);

(ii) (x(t∗(ξ, η, ε), ξ, η, ε), y(t∗(ξ, η, ε), ξ, η, ε)) ∈ Ω0, (x(t, ξ, η, ε), y(t, ξ, η, ε)) ∈ Ω+, for 0 ≤
t < t∗(ξ, η, ε) and

hx(u(t∗(ξ, η, ε), ξ, η), η) f±(u(t∗(ξ, η, ε), ξ, η), η) < 0;

(iii) (x(t∗(ξ, η, ε), ξ, η, ε), y(t∗(ξ, η, ε), ξ, η, ε)) ∈ Ω0, (x(t, ξ, η, ε), y(t, ξ, η, ε)) ∈ Ω−, for
t∗(ξ, η, ε) < t < t∗(ξ, η, ε) and

hx(x(t∗(ξ, η, ε), ξ, η), η) f±(x(t∗(ξ, η, ε), ξ, η), η) > 0;

(iv) (x(t, ξ, η, ε), y(t, ξ, η, ε)) ∈ Ω+, for t∗(ξ, η, ε) < t ≤ T(ξ, η, ε) and
x(T(ξ, η, ε), ξ, η, ε) ∈ L;

(v) y(t, ξ, η, ε) ∈ B(y0, r2) for any 0 ≤ t ≤ T(ξ, η, ε);
(vi) for 0 ≤ t ≤ T(ξ, η, ε), t 6= t∗(ξ, η, ε), t∗(ξ, η, ε), (x(t, ξ, η, ε), y(t, ξ, η, ε)) satisfies the

differential Equation (1), where the signs ± are taken accordingly to x(t, ξ, η, ε) ∈ Ω+ or
x(t, ξ, η, ε) ∈ Ω−.

Moreover, (ξ, η, ε) 7→ (x(t, ξ, η, ε), y(t, ξ, η, ε)) is a smooth map in the space of piecewise
continuous functions and

sup
0≤t≤T∗(ξ,η,ε)

|x(t, ξ, η, ε)− u(t, ξ, η)|+ |y(t, ξ, η, ε)− η| → 0

as ε→ 0, uniformly with respect to (ξ, η) ∈ B(x0, r1)× B(x0, r2).

Proof. Let r1, r2 be sufficiently small so that B(x0, r1)× B(y0, r2) ⊂ Ω+. For 0 ≤ t ≤ t∗ + 1
and (ξ, η) ∈ B(x0, r1)× B(y0, r2), let (x1

+(t, ξ, η, ε), y1
+(t, ξ, η, ε)) be the solution of

ẋ = f+(x, y), x(0) = ξ
ẏ = εg(x, y, ε), y(0) = η.

(16)

From the continuous dependence of the data we see that

sup0≤t≤t∗+1 |x1
+(t, ξ, η, ε)− u+(t, ξ, η)| = O(ε)

sup0≤t≤t∗+1 |y1
+(t, ξ, η, ε)− η| = O(ε)

(17)

as ε → 0. So, taking ε sufficiently small we get y1
+(t, ξ, η, ε) ∈ B(y0, r2) for 0 ≤ t ≤ T̄ + 1.

As a consequence there exists a unique t∗(ξ, η, ε) such that

|t∗(ξ, η, ε)− t∗(ξ, η)| = O(ε),
h(x1

+(t∗(ξ, η, ε), ξ, η, ε), y1
+(t∗(ξ, η, ε), ξ, η, ε)) = 0,

hx(x1
+(t∗(ξ, η, ε), ξ, η, ε), y1

+(t∗(ξ, η, ε), ξ, η, ε))ẋ+(t∗(ξ, η, ε), ξ, η, ε) < 0.
(18)

By the Implicit Function Theorem t∗(ξ, η, ε) is a smooth function of (ξ, η, ε). More-
over, from the last inequality in (18) we see that ii) holds and then x1

+(t, ξ, η, ε) intersects
transversally Ω0 at the point x1

+(t∗(ξ, η, ε), ξ, η, ε).
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Repeating the above argument we see that, for t∗ − 1 ≤ t ≤ t∗ + 1, the equation

ẋ = f−(x, y)
ẏ = εg(x, y)
x(t∗(ξ, η, ε)) = x1

+(t∗(ξ, η, ε), ξ, η, ε)
y(t∗(ξ, η, ε)) = y1

+(t∗(ξ, η, ε), ξ, η, ε)

has a solution (x−(t, ξ, η, ε), y−(t, ξ, η, ε)) such that

supt∗−1≤t≤t∗+1 |x−(t, ξ, η, ε)− u−(t, ξ, y+(t∗(ξ, η, ε), ξ, η, ε))| = O(ε)

supt∗−1≤t≤t∗+1 |y−(t, ξ, η, ε)− y1
+(t∗(ξ, η, ε), ξ, η, ε)| = O(ε)

from which we also get, using (17)

supt∗−1≤t≤t∗+1 |x−(t, ξ, η, ε)− u−(t, ξ, η)| = O(ε)

supt∗−1≤t≤t∗+1 |y−(t, ξ, η, ε)− η| = O(ε)
(19)

Moreover, by the Implicit function Theorem, there exists t∗(ξ, η, ε) such that

|t∗(ξ, η, ε)− t∗(ξ, η)| = O(ε)
h(x−(t∗(ξ, η, ε), ξ, η, ε), y−(t∗(ξ, η, ε), ξ, η, ε)) = 0

(20)

and
hx(x−(t∗(ξ, η, ε), ξ, η, ε), y−(t∗(ξ, η, ε), ξ, η, ε))ẋ−(t∗(ξ, η, ε), ξ, η, ε) > 0.

Hence (iii) holds, i.e., at the point (x−(t∗(ξ, η, ε), ξ, η, ε), y−(t∗(ξ, η, ε), ξ, η, ε)) ∈ Ω0,
f+(x, y) points inward Ω+. Finally, by a similar argument we show that equation

ẋ = f+(x, y)
ẏ = εg(x, y)
x(t∗(ξ, η, ε)) = x−(t∗(ξ, η, ε), ξ, η, ε)
y(t∗(ξ, η, ε)) = y−(t∗(ξ, η, ε), ξ, η, ε)

has a solution (x2
+(t, ξ, η, ε), y2

+(t, ξ, η, ε)) such that

supt∗−1≤t≤T̄+1 |x2
+(t, ξ, η, ε)− u+(t, ξ, y2

+(t
∗(ξ, η, ε), ξ, η, ε))| = O(ε)

supt∗−1≤t≤T̄+1 |y2
+(t, ξ, η, ε)− y−(t∗(ξ, η, ε), ξ, η, ε)| = O(ε)

from which we also get, using (17)

supt∗−1≤t≤T̄+1 |x2
+(t, ξ, η, ε)− u+(t, ξ, η)| = O(ε)

supt∗−1≤t≤T̄+1 |y2
+(t, ξ, η, ε)− η| = O(ε).

(21)

Moreover, there exists T(ξ, η, ε) such that

|T(ξ, η, ε)− T(ξ, η)| = O(ε)
x+(T(ξ, η, ε), ξ, η, ε) ∈ L.

(22)

We set

x(t, ξ, η, ε) =


x1
+(t, ξ, η, ε) if 0 ≤ t ≤ t∗(ξ, η, ε)

x−(t, ξ, η, ε) if t∗(ξ, η, ε) ≤ t ≤ t∗(ξ, η, ε)
x2
+(t, ξ, η, ε) if t∗(ξ, η, ε) ≤ t ≤ T(ξ, η, ε)
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and similarly

y(t, ξ, η, ε) =


y1
+(t, ξ, η, ε) if 0 ≤ t ≤ t∗(ξ, η, ε)

y−(t, ξ, η, ε) if t∗(ξ, η, ε) ≤ t ≤ t∗(ξ, η, ε)
y2
+(t, ξ, η, ε) if t∗(ξ, η, ε) ≤ t ≤ T(ξ, η, ε)

From Equations (17), (19) and (21) we see that (i)–(vi) hold. In particular

sup0≤t≤T(ξ,η,ε) |x(t, ξ, η, ε)− u(t, ξ, η)| = O(ε)

sup0≤t≤T(ξ,η,ε) |y(t, ξ, η, ε)− η| = O(ε).
(23)

So, for any ε sufficiently small, say |ε| ≤ ε̄, we have y(t, ξ, η, ε) ∈ B(y0, r2).

3. Periodic Solutions

In this section we prove a theorem concerning the existence of a periodic solution
(x(t, ε), y(t, ε)) of system (1) such that

sup
0≤t≤T

|x(t, ε)− u(t, x0, y0)|+ |y(t, ε)− y0| → 0 as ε→ 0.

For (ξ, η) ∈ L × Rm let T(ξ, η, ε), t∗(ξ, η, ε), t∗(ξ, η, ε) be the Cr functions whose
existence is stated in Theorem 1. We set

J11 =
∫ T

0
fx(u(t, x0, y0), y0)uξ(t, x0, y0)dt + f (x0, y0)Tξ(x0, y0)

+[ f+(u(t∗, x0, y0), y0)− f−(u(t∗, x0, y0), y0))]
∂t∗
∂ξ (x0, y0)

+[ f−(u(t∗, x0, y0), y0)− f+(u(t∗, x0, y0), y0)]
∂t∗
∂ξ (x0, y0))

J12 =
∫ T

0
fx(u(t, x0, y0), y0)uη(t, x0, y0) + fy(u(t, x0, y0), y0)dt + f (x0, y0)Tη(x0, y0)

+[ f+(u(t∗, x0, y0), y0)− f−(u(t∗, x0, y0), y0))]
∂t∗
∂η (x0, y0)

+[ f−(u(t∗, x0, y0), y0)− f+(u(t∗, x0, y0), y0)]
∂t∗
∂η (x0, y0))

J21 =
∫ T

0
gx(u(t, x0, y0), y0, 0)uξ(t, x0, y0)dt + g(x0, y0, 0)Tξ(x0, y0)

J22 =
∫ T

0
gx(u(t, x0, y0), y0, 0)uη(t, x0, y0) + gy(u(t, x0, y0), y0, 0)dt

+g(x0, y0, 0)Tη(x0, y0)

Note that the derivatives in the previous formulae are the derivatives of the restrictions
of the various functions to (ξ, η) ∈ L×Rm. For example, Tξ(ξ, η) denotes the derivative of
T : L×Rm → R and similarly for the other derivatives with respect to ξ.

We prove the following

Theorem 2. Suppose that (A1)–(A3) hold and that∫ T

0
g(u(t, x0, y0), y0, 0)dt = 0. (24)

Suppose, further, that the linear map J : Tx0 L×Rm → Rn ×Rm:

J :
(

ξ
η

)
7→
(

J11ξ + J12η
J21ξ + J22η

)
, ξ ∈ Tx0 L, η ∈ Rm,
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has maximum rank (= n + m− 1). Then there exists ε0 > 0 such that for |ε| < ε0 system (1) has
a unique periodic solution (x(t, ε), y(t, ε)) of period T(ε) such that

lim
ε→0

T(ε) = T (25)

and such that

sup
0≤t≤T

|x(t, ε)− u(t, x0, y0)|+ |y(t, ε)− y0| → 0 as ε→ 0. (26)

Moreover, the map ε 7→ (x(t, ε), y(t, ε)) into the space of bounded functions is Cr−1.

Remark 2. (i) J : Tx0 L×Rm → Rn ×Rm defines a (n + m)× (n + m− 1) matrix. However, it
will be seen during the proof of Theorem 2 that

J : Tx0 L×Rm → Tx0 L×Rm. (27)

although this does not result immediately. This is why we made the assumption on the rank. By the
way, because of (27) the assumption is equivalent to the fact that J : Tx0 L×Rm → Tx0 L×Rm is
an isomorphism. Note, also, that Tx0 L = {v0}⊥.

(ii) Condition (24) is a 0-average condition for g(u(t, ξ, η), η, 0) at (x0, y0) and implies that
yε(t, x0, y0, 0) is a T-periodic solution of

v̇ = g(u(t, x0, y0), y0, 0).

Note that (24) corresponds to Mp/q
3 (I0, θ0, z0) = 0 with p = q in ([1], Theorem 3.1) where

the authors search for subharmonic periodic solutions. Here, we do not have to take into account
the extra parameter θ because of the autonomous character of Equation (1). Note, also, that,
differentiating ẏε(t, x0, y0) = g(u(t, x0, y0), y0, 0) with respect to t, we get

ÿε(t, x0, y0) = gx(u(t, x0, y0), y0, 0)u̇(t, x0, y0)

and then∫ T

0
gx(u(t, x0, y0), y0, 0) f (u(t, x0, y0), y0)dt = ẏε(T, x0, y0)− ẏε(0, x0, y0) = 0.

Proof. Let B(x0, r1), B(y0, r2) be as in Theorem 1. To obtain a periodic solution of
Equation (1) we solve the system

x(T(ξ, η, ε), ξ, η, ε)− ξ = 0
y(T(ξ, η, ε), ξ, η, ε)− η = 0

(28)

for (ξ, η) ∈ (B1 ∩ L)× B2 where B1 × B2 ⊂ B(x0, r1)× B(y0, r2) is a small neighborhood
of (x0, y0). When ε = 0 the second equation in (28) reads η = η and is satisfied for any
η ∈ B(y0, r2). So we replace (28) with

x(T(ξ, η, ε), ξ, η, ε)− ξ = 0
ε−1[y(T(ξ, η, ε), ξ, η, ε)− η] = 0.

(29)

Since y(t, ξ, η, 0) = η, the function{
ε−1[y(T(ξ, η, ε), ξ, η, ε)− η] if ε 6= 0
yε(T(ξ, η), ξ, η, 0) if ε = 0
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is Cr−1 in B(x0, ρ1)× B(x0, ρ2)×]−]ε̄, ε̄[. Then, when ε = 0 (29) reads:

u(T(ξ, η), ξ, η)− ξ = 0
yε(T(ξ, η), ξ, η, 0) = 0

(30)

where (ξ, η) ∈ L×Rm and T(ξ, η) = T(ξ, η, 0), because x(t, ξ, η, 0) = u(t, ξ, η). From (10) it
follows that equation u(T(ξ, η), ξ, η)− ξ = 0 has the solution (ξ, η) = (x0, y0). Next, since

ẏε(t, ξ, η, 0) = g(u(t, ξ, η), η, 0), yε(0, ξ, η, 0) = 0

we get

yε(T(ξ, η), ξ, η, 0) =
∫ T(ξ,η)

0
g(u(t, ξ, η), η, 0)dt. (31)

From (24) we conclude that Equation (30) has the solution (ξ, η) = (x0, y0). Recall
that T = T(x0, y0).

We now compute the Jacobian matrix J(x0, y0) of the left-hand side of Equation (30) at
(x0, y0). We know that u(t, ξ, η) satisfies the integral equation

u(t, ξ, η) = ξ +
∫ t

0
f (u(t, ξ, η), η)dt. (32)

and that u(T(ξ, η), ξ, η)− ξ ∈ { f (x0, y0)}⊥. More explicitly, taking into account the defini-
tion of f (x, y):

u(T(ξ, η), ξ, η)− ξ =
∫ t∗(ξ,η)

0
f+(u(t, ξ, η), η)dt+∫ t∗(ξ,η)

t∗(ξ,η)
f−(u(t, ξ, η), η)dt +

∫ T(ξ,η)

t∗(ξ,η)
f+(u(t, ξ, η), η)dt ∈ { f (x0, y0}⊥.

Differentiating, we get

∂

∂ξ
[u(T(ξ, η), ξ, η)− ξ] =

f+(u(t∗(ξ, η), ξ, η), η)
∂t∗
∂ξ

(ξ, η) +
∫ t∗(ξ,η)

0
f+,x(u(t, ξ, η), η)uξ(t, ξ, η)dt

+ f−(u(t∗(ξ, η), ξ, η), η)
∂t∗

∂ξ
(ξ, η)− f−(u(t∗(ξ, η), ξ, η), η)

∂t∗
∂ξ

(ξ, η)

+
∫ t∗(ξ,η)

t∗(ξ,η)
f−,x(u(t, ξ, η), η)uξ(t, ξ, η)dt

+ f+(u(T(ξ, η), ξ, η), η))Tξ(ξ, η)− f+(u(t∗(ξ, η), ξ, η), η))
∂t∗

∂ξ
(ξ, η)

+
∫ T(ξ,η)

t∗(ξ,η)
f+,x(u(t, ξ, η), η)uξ(t, ξ, η)dt =

f+(u(T(ξ, η), ξ, η), η)Tξ(ξ, η) +
∫ T(ξ,η)

0
fx(u(t, ξ, η), η)uξ(t, ξ, η)dt

+[ f+(u(t∗(ξ, η), ξ, η), η)− f−(u(t∗(ξ, η), ξ, η), η)]
∂t∗
∂ξ

(ξ, η)

+[ f−(u(t∗(ξ, η), ξ, η), η)− f+(u(t∗(ξ, η), ξ, η), η)]
∂t∗

∂ξ
(ξ, η).

where

fx(ξ, η) =

{
f+,x(ξ, η) if (ξ, η) ∈ Ω+

f−,x(ξ, η) if (ξ, η) ∈ Ω−.
(33)

So, using u(T, x0, y0) = x0, f+(x0, y0) = f (x0, y0):

∂

∂ξ
[u(T(ξ, η), ξ, η)− ξ]ξ=x0,η=y0 = J11.
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Similarly we have:

∂

∂η
[u(T(ξ, η), ξ, η)− ξ] = f+(u(T(ξ, η), ξ, η), η)Tη(ξ, η)

+
∫ T(ξ,η)

0
fx(u(t, ξ, η), η)uη(t, ξ, η) + fy(u(t, ξ, η), η)dt

+[ f+(u(t∗(ξ, η), ξ, η), η)− f−(u(t∗(ξ, η), ξ, η), η)] ∂t∗
∂η (ξ, η)

+[ f−(u(t∗(ξ, η), ξ, η), η)− f+(u(t∗(ξ, η), ξ, η), η)] ∂t∗
∂η (ξ, η).

and hence
∂

∂η
[u(T(ξ, η), ξ, η)− ξ]ξ=x0,η=y0 = J12.

Next, using (31) we get

∂
∂ξ yε(T(ξ, η), ξ, η, 0) = g(u(T(ξ, η), ξ, η), η, 0)Tξ(ξ, η)

+
∫ T(ξ,η)

0
gx(u(t, ξ, η), η, 0)uξ(t, ξ, η)dt

∂
∂η yε(T(ξ, η), ξ, η, 0) = g(u(T(ξ, η), ξ, η), η, 0)Tη(ξ, η)

+
∫ T(ξ,η)

0
gx(u(t, ξ, η), η, 0)uη(t, ξ, η) + gy(u(t, ξ, η), η, 0)dt

hence

J(x0, y0) =

(
J11 J12
J21 J22

)
.

Since u(T(ξ, η), ξ, η)− ξ ∈ { f (x0, y0)}⊥ we see that

J11ξ + J12η ∈ { f (x0, y0)}⊥

for any (ξ, η) ∈ { f (x0, y0)}⊥×Rm. Hence the assumption of the rank of J(x0, y0) is equiva-
lent to the fact that J(x0, y0) : { f (x0, y0)}⊥ ×Rm → { f (x0, y0)}⊥ ×Rm is an isomorphism.
From the Implicit Function Theorem it follows then the existence of ε0 > 0 such that for
|ε| < ε0 and ε 6= 0, there exist ξ = ξ(ε), η = η(ε) such that

x(T(ξ(ε), η(ε), ε), ξ(ε), η(ε), ε)− ξ(ε) = 0
y(T(ξ(ε), η(ε), ε), ξ(ε), η(ε), ε)− η(ε) = 0

Setting T(ε) = T(ξ(ε), η(ε), ε), x(t, ε) = x(t, ξ(ε), η(ε), ε), y(t, ε) = y(t, ξ(ε), η(ε), ε)
and recalling that x(0, ξ(ε), η(ε), ε) = ξ(ε) = 0 and y(0ξ(ε), η(ε), ε) = η(ε) we see that
x(t, ε), y(t, ε)) is a T(ε) periodic solution of Equation (1). (25) and (26) follow from (23),
(13), and (i) of Lemma 1.

Remark 3. (i) Note that, since u(T(ξ, η), ξ, η) ∈ L = {x0}+ {v0}⊥, we have

vt
0[u(T(ξ, η), ξ, η)− x0] = 0.

Hence differentiating with respect to ξ and η:

vt
0[u̇(T(ξ, η), ξ, η)Tξ(ξ, η) + uξ(T(ξ, η), ξ, η)] = 0

vt
0[u̇(T(ξ, η), ξ, η)Tη(ξ, η) + uη(T(ξ, η), ξ, η)] = 0

(34)

and then (
Tξ(x0, y0)
Tη(x0, y0)

)
= − 1

vt
0 f (x0, y0)

(
vt

0uξ(T, x0, y0)
vt

0uη(T, x0, y0)

)
. (35)

(ii) Suppose the following condition holds.
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(A) The linear maps J11 : {v0}⊥ → {v0}⊥ and J : {v0}⊥ × Rm → {v0}⊥ × Rm are both
invertible.

For ξ ∈ L ∩ B(x0, r1), η ∈ B(y0, r2), consider the function Φ(ξ, η) = u(T(ξ, η), ξ, η)− ξ.
From (10) we get Φ(x0, y0) = 0; moreover,

Φξ(x0, y0) = J11.

Hence there exists r1, r2 > 0 and a unique function ū : B(y0, r2)→ B(x0, r1) ∩ L such that
ū(y0) = x0 and

Φ(ū(y), y) = u(T(ū(y), y), ū(y), y)− ū(y) = 0.

For any y ∈ B(y0, r2) the function u(t, ū(y), y) is then a T(ū(y), y)-periodic solution of the
discontinuous equation ẋ = f (x, y). Next, suppose also that (24) holds, that is the equation

Ψ(y) :=
∫ T(ū(y),y)

0
g(u(t, ū(y), y), y, 0)dt = 0 (36)

has the solution y = y0. We have

Ψ′(y0) = J21ū′(y0) + J22.

We prove that Ψ′(y0) is invertible. Indeed, suppose that y 6= 0 exists such that Ψ′(y0)y = 0.
Then

J
(

ū′(y0)y
y

)
=

(
J11 J12
J21 J22

)(
ū′(y0)y

y

)
=

(
[J11ū′(y0) + J12]y

0

)
=

(
[Φξ(x0, y0)ū′(y0) + Φη(x0, y0)]y

0

)
=

(
0
0

)
contradicting the fact that J is invertible. Note that, since ū : Rm → L, we get ū′(y0) :
Rm → {v0}⊥. So, if (A) holds, besides (A1)–(A3), we conclude that Equation (30) has the
unique solution (x0, y0) and the Jacobian matrix at this point is invertible. Thus the conclusion
of Theorem 2 holds. In this case the invertibility of J11 implies the existence of a family of periodic
solution to the unperturbed equation ẋ = f (x, y); however, the invertibility of J implies that only
one of these solutions persists for the perturbed equation.

An Example

In this subsection we give an example of application of Theorem 2. The system we
consider is 

ẋ1 =
[

x1 +
1
2 (sgn(x2)− 1)a

]
y + x2

ẋ2 = −
[

x1 +
1
2 (sgn(x2)− 1)a

]
+ yx2

ẏ = εg(x, y, ε)

(37)

or, in matrix form: 
ẋ =


A(y)x if x2 > 0

A(y)
(

x−
(

a
0

))
if x2 < 0

ẏ = εg(x, y, ε)

(38)

where a > 0 and

A(y) =
(

y 1
−1 y

)
, x =

(
x1
x2

)
, y, ε ∈ R.

Note that
Ω± = {(x1, x2)| ± x2 > 0}

that is h(x, y) = x2. Let a > 0. We prove the following result
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Proposition 1. For any η ∈ R, η > 0 there exists a unique 2π-periodic solution of

ẋ =


A(η)x if x2 > 0

A(η)

(
x−

(
a
0

))
if x2 < 0

(39)

given by

û(t, η) =



ξ0(η)eηt
(

sin t
cos t

)
for 0 ≤ t ≤ π

2(
a
0

)
+ ξ0(η)eη(t−π)

(
sin t
cos t

)
for π

2 ≤ t ≤ 3
2 π

ξ0(η)

(
sin t
cos t

)
eη(t−2π) for 3

2 π ≤ t ≤ 2π

(40)

where
ξ0(η) =

a
2 sinh(π

2 η)
.

Moreover, suppose that y0 > 0 exists such that the function

G(η) :=
∫ 2π

0
g(û(t, η), η, 0)dt

has a simple zero at η = y0. Then there exists ε0 > 0 such that for |ε| < ε0 there exist T(ε) such
that limε→0 |T(ε)− 2π| = 0 and Equation (38) has a unique, piecewise smooth, T(ε)-periodic
solution (x(t, ε), y(t, ε)), intersecting transversally the discontinuity line x2 = 0 and such that

lim
ε→0

sup
0≤t≤2π

{|x(t, ε)− u(t, ξ0(y0), y0)|+ |y(t, ε)− y0|} = 0.

Proof. Note that the assumption on G(η) means that∫ 2π

0
g(û(t, y0), y0, 0)dt = 0 (41)

and ∫ 2π

0
gx(û(t, y0), y0, 0)ûη(t, y0) + gy(û(t, y0), y0, 0)dt 6= 0. (42)

For any ξ ∈ R, ξ > 0, we consider the point (0, ξ) ∈ R2 and set L = span{e2}, where
e2 =

(
0
1

)
. Note that, for any η ∈ R, L is a transverse hyperplane in R2 to

f+((0, ξ), η) = ξ

(
1
η

)
.

We prove that, for |η − y0| sufficiently small, assumptions (A1)–(A3) are satisfied at
the point (ξ0(η), η).

To this end we first describe the solutions u(t, ξ, η) = (u1(t, ξ, η), u2(t, ξ, η)) of the
unperturbed Equation (39) when η ∈ Ia, |η − y0| ≤ σy0, 0 < σ < 1, and (0, ξ) ∈ L ∩Ω+

such that |ξ − ξ0(η)| is sufficiently small. We have

u(t, ξ, η) = eA(η)t
(

0
ξ

)
= ξeηt

(
sin t
cos t

)
(43)
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for all t ≥ 0 as long as cos t > 0, that is for all 0 ≤ t ≤ π
2 . As h(x, y) = x2 we get:

hx(x, y) f+(x, y) = 〈
(

0
1

)
, A(y)x〉 = yx2 − x1

hx(x, y) f−(x, y) = 〈
(

0
1

)
, A(y)

(
x1 − a

x2

)
〉 = yx2 + a− x1

So
hx(x, y) f+(x, y) < 0⇔ yx2 − x1 < 0
hx(x, y) f−(x, y) < 0⇔ yx2 + a− x1 < 0

(44)

Being a > 0 both conditions are satisfied if a < x1 − yx2. Since u(π
2 , ξ, η) = ξe

π
2 η

(
1
0

)
we see that

hx

(
u
(π

2
, ξ, η

)
, η
)

f±
(

u
(π

2
, ξ, η

)
, η
)
< 0⇔ ξ > ae−

π
2 η

Since ξ0(η) > ae−
π
2 η , (44) is satisfied provided |ξ − ξ0(η)| is sufficiently small. Indeed

let |ξ − ξ0(η)| < δ. Then ξ − ae−
π
2 η > ξ0(η)− ae−

π
2 η − δ = ae−πη

2 sinh π
2 η
− δ. So ξ − ae−

π
2 η > 0

if 0 < δ < δ0(η) := ae−πη

2 sinh π
2 η

. Note

ae−π(η)(1+σ)y0

2 sinh π
2 (η)(1 + σ)y0

≤ δ0(η) ≤
ae−π(η)(1−σ)y0

2 sinh π
2 (η)(1− σ)y0

for |η − y0| ≤ σy0. Next, for t ≥ π
2 , u(t, ξ, η) =

(
u1(t,ξ,η)
u2(t,ξ,η)

)
solves the equation:

ẋ = A(η)

(
x−

(
a
0

))
x(π

2 ) = ξe
π
2 η

(
1
0

)
until u2(t, ξ, η) = 0. Hence:

u(t, ξ, η) =

(
a
0

)
+ eη(t− π

2 )

(
cos(t− π

2 ) sin(t− π
2 )

− sin(t− π
2 ) cos(t− π

2 )

)(
ξe

π
2 η − a

0

)
=

(
a
0

)
+ eηt

(
ξ − ae−

π
2 η
)(sin t

cos t

)
.

(45)

Note that u2(t, ξ, η) = (ξ − ae−
π
2 η)eηt cos t and then, since ξ > ae−

π
2 η , (45) holds for

π
2 ≤ t ≤ 3

2 π. Moreover,

u( 3
2 π, ξ, η) =

(
a
0

)
− e

3
2 πη

(
ξ − ae−

π
2 η

0

)
=

(
a(1 + eπη)− ξe

3
2 πη

0

)
.

Arguing as before, we see that hx(x, y) f±(x, y) > 0 holds if and only if yx2 − x1 > 0
and when x = u( 3

2 π, ξ, η), y = η this last condition is equivalent to

a(1 + eηπ)− ξe
3
2 πη < 0

i.e.,
ξ > ae−

π
2 η(1 + e−πη). (46)

It is easily seen that

ξ0(η)− ae−
π
2 η(1 + e−πη) =

ae−2πη

2 sinh π
2 η

> 0.
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Hence, if |ξ − ξ0(η)| < δ we get

ξ − ae−
π
2 η(1 + e−πη) >

ae−2πη

2 sinh π
2 η
− δ > 0

for δ < δ1(η) := ae−2πη

2 sinh π
2 η

. Thus

hx

(
u
(

3
2

π, ξ, η

)
, η

)
f±

(
u
(

3
2

π, ξ, η

)
, η

)
> 0

provided |ξ − ξ0(η)| is sufficiently small. Note that condition (46) implies ξ > ae−
π
2 η and

hence (ii) and (iii) of Lemma 1 hold. So for |ξ − ξ0(η)| < ae−2πη

2 sinh π
2 η

, and |η − y0| ≤ σy0, (46)

holds and then u(t, ξ, η), ξ ∈ L ∩Ω+, intersect transversally the negative x1 axis at the
point (

a(1 + eηπ)− ξe
3
2 πη

0

)
.

Next, for t ≥ 3
2 π, u(t, ξ, η) solves the equation:

ẋ = A(y)x

x( 3
2 π) =

(
a(1 + eηπ)− ξe

3
2 πη

0

)

for all t > 3
2 π such that u(t, ξ, η) ∈ Ω+. Hence

u(t, ξ, η) = e(t−
3
2 π)η

(
cos(t− 3

2 π) sin(t− 3
2 π)

− sin(t− 3
2 π) cos(t− 3

2 π)

)(
a(1 + eηπ)− ξe

3
2 πη

0

)
= [a(1 + eηπ)− ξe

3
2 πη ]e(t−

3
2 π)η

(
− sin t
− cos t

)
= [ξ − a(1 + e−ηπ)e−

π
2 η ]et

(
sin t
cos t

)
So:

u2(t, ξ, η) = [ξ − a(1 + e−ηπ)e−
π
2 η ]et cos t > 0

for 3
2 π ≤ t ≤ 5

2 π, since ξ > ae−
π
2 η(1 + e−πη). Collecting all together, we see that, for

|η − y0| ≤ σy0 and |ξ − ξ0(η)| sufficiently small

u(t, ξ, η) =



ξeηt
(

sin t
cos t

)
for 0 ≤ t ≤ π

2(
a
0

)
+ eηt

(
ξ − ae−

π
2 η
)(sin t

cos t

)
for π

2 ≤ t ≤ 3
2 π[

ξ − a(1 + e−ηπ)e−
π
2 η
]
eηt
(

sin t
cos t

)
for 3

2 π ≤ t ≤ 5
2 π.

(47)

Note that

u(2π, ξ, η) =
[
ξ − a(1 + e−πη)e−

π
2 η
]
e2πη

(
0
1

)
(48)

hence T(ξ, η) = 2π for any (ξ, η) ∈ L × R with |ξ − ξ0(η)| sufficiently small and
|η − y0| ≤ σy0. We obtain a 2π-periodic solution of Equation (39) if and only if
ξ = u(2π, ξ, η) that is if and only if

ξ =
[
ξ − a(1 + e−πη)e−ηt∗

]
e2πη
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and this holds if and only if (e2πη − 1)ξ = ae2πη(1 + e−ηπ)e−
π
2 η or

ξ =
ae−

π
2 η

1− e−πη =
a

2 sinh
(

π
2 η
) = ξ0(η).

Note that

ξ >
ae−

π
2 η

1− e−πη ⇔ |u(2π, ξ, η)| > ξ

and

ξ <
ae−

π
2 η

1− e−πη ⇔ |u(2π, ξ, η)| < ξ.

Hence, for |η − y0| ≤ σy0, Equation (38) has the unique (up to time translation)
unstable 2π-periodic solution:

u(t, ξ0(η), η) =



ξ0(η)eηt
(

sin t
cos t

)
for 0 ≤ t ≤ π

2(
a
0

)
+ ξ0(η)eη(t−π)

(
sin t
cos t

)
for π

2 ≤ t ≤ 3
2 π

ξ0(η)

(
sin t
cos t

)
eη(t−2π) for 3

2 π ≤ t ≤ 2π.

For any η > 0, |η − y0| ≤ σy0 we have then a unique (unstable) 2π-periodic solution
of Equation (37), (or (38)) and we have seen that (A1)–(A3) are satisfied. Note that

u(t, ξ0(η), η) = û(t, η) (49)

hence ∫ 2π

0
g(u(t, x0, y0), y0, 0)dt = 0,

where x0 = ξ0(y0), because of (41). Hence (24) in Theorem 2 is satisfied.

Next we compute the matrix J(x0, y0). Recall that L = {e1}⊥ where e1 =
(

1
0

)
.

With reference to Lemma 1 we also have

t∗(ξ, η) =
π

2
, t∗(ξ, η) =

3
2

π, T(ξ, η) = 2π

so
∂t∗
∂ξ

(ξ, η) =
∂t∗
∂η

(ξ, η) =
∂t∗

∂ξ
(ξ, η) =

∂t∗

∂η
(ξ, η) =

∂T
∂ξ

(ξ, η) =
∂T
∂η

(ξ, η) = 0

and

J11(x0, y0) =
∫ 2π

0
A(y0)uξ(t, x0, y0)dt

J12(x0, y0) =
∫ 2π

0
A(y0)uη(t, x0, y0) + fy(u(t, x0, y0), y0)dt

J21(x0, y0) =
∫ 2π

0
gx(u(t, x0, y0), y0, 0)uξ(t, x0, y0)dt

J22(x0, y0) =
∫ 2π

0
gx(u(t, x0, y0), y0, 0)uη(t, x0, y0) + gy(u(t, x0, y0), y0, 0)dt.

(50)

Now differentiating (47) with respect to ξ we get

uξ(t, x0, y0) = eηt
(

sin t
cos t

)
. (51)
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Similarly:

uη(t, x0, y0) =



tx0ey0t
(

sin t
cos t

)
for 0 ≤ t ≤ π

2

x0ey0(t−π)
[
t + π

2 (e
πy0 − 1)

](sin t
cos t

)
for π

2 ≤ t ≤ 3
2 π

x0ey0(t−2π)
[
t + π

2 (e
πy0 − 1)(eπy0 + 3)

](sin t
cos t

)
for 3

2 π ≤ t ≤ 2π

(52)

So we get, after some algebra:

J11 =
∫ 2π

0
A(y0)uξ(t, x0, y0)dt =

∫ 2π

0
ey0t
(

y0 sin t + cos t
y0 cos t− sin t

)
dt = (e2πy0 − 1)

(
0
1

)
and similarly

∫ 2π

0
uη(t, x0, y0)dt =

∫ π
2

0
tx0ey0t

(
sin t
cos t

)
dt

+
∫ 3

2 π

π
2

x0ey0(t−π)
[
t +

π

2
(eπy0 − 1)

](sin t
cos t

)
dt

+
∫ 2π

3
2 π

x0ey0(t−2π)
[
t +

π

2
(eπy0 − 1)(eπy0 + 3)

](sin t
cos t

)
dt

=
∫ π

2

0
tx0ey0t

(
sin t
cos t

)
dt−

∫ π
2

− π
2

x0ey0t
[
t +

π

2
(eπy0 + 1)

](sin t
cos t

)
dt

+
∫ 0

− π
2

x0ey0t
[
t +

π

2
(eπy0 + 1)2

](sin t
cos t

)
dt

=
π

2
x0(eπy0 + 1)2

∫ 0

− π
2

ey0t
(

sin t
cos t

)
dt− π

2
x0(eπy0 + 1)

∫ π
2

− π
2

ey0t
(

sin t
cos t

)
dt

=
π

2
x0(eπy0 + 1)

[
(eπy0 + 1)

∫ 0

− π
2

ey0t
(

sin t
cos t

)
dt−

∫ π
2

− π
2

ey0t
(

sin t
cos t

)
dt
]

=
π

2
x0(eπy0 + 1)

[
eπy0 + 1
y2

0 + 1

(
y0e−

π
2 y0 − 1

e−
π
2 y0 + y0

)
− 1

y2
0 + 1

(
y0e

π
2 y0 + y0e−

π
2 y0

e
π
2 y0 + e−

π
2 y0

)]
=

π

2
x0

eπy0 + 1
y2

0 + 1

(
−(eπy0 + 1)
y0(eπy0 + 1)

)
=

π

2
x0

(eπy0 + 1)2

y2
0 + 1

(
−1
y0

)
Moreover, it is easy to check that

fy(x, y) =


x if x2 > 0

x−
(

a
0

)
if x2 < 0

from which it easily follows that:

∫ 2π

0
fy(u(t, x0, y0), y0)dt =

(
0
0

)
.

So

J12 =
∫ 2π

0
A(y0)uη(t, x0, y0)dt =

π

2
x0(eπy0 + 1)2

(
0
1

)
.
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Note that, according to Remark 2, both J11(x0, y0) and J12(x0, y0) belong to Tx0 L. Next

J21(x0, y0) =
∫ 2π

0
ey0tgx(u(t, x0, y0), y0, 0)

(
sin t
cos t

)
dt

J22(x0, y0) =
∫ 2π

0
gx(u(t, x0, y0), y0, 0)uη(t, x0, y0) + gy(u(t, x0, y0), y0, 0)dt

We can simplify the expression for J22(x0, y0). Differentiating (49) with respect to η at
η = y0 we get

uξ(t, x0, y0)ξ
′
0(y0) + uη(t, x0, y0) = ûη(t, y0)

so

J22(x0, y0)

=
∫ 2π

0
gx(û(t, y0), y0, 0)[ûη(t, y0)− uξ(t, x0, y0)ξ

′
0(y0)] + gy(û(t, y0), y0, 0)dt

=
∫ 2π

0
gx(û(t, y0), y0, 0)ûη(t, y0) + gy(û(t, y0), y0, 0)dt− J21(x0, y0)ξ

′
0(y0).

Hence we see that the conditions of Theorem 2 are satisfied if and only if the matrix eπy0 − 1 π
2 x0(eπy0 + 1)

J21(x0, y0)
∫ 2π

0
gx(û(t, y0), y0, 0)ûη(t, y0) + gy(û(t, y0), y0, 0)dt− J21(x0, y0)ξ

′
0(y0)

 (53)

is invertible. Noting that

J12

J11
=

π

2
x0

eπy0 + 1
eπy0 − 1

=
π

2
a

2 sinh π
2 y0

cosh π
2

sinh π
2 y0

=
aπ

4
cosh π

2

sinh2 π
2 y0

and

ξ ′0(y0) = −
aπ

4
cosh π

2 y0

sinh2 π
2 y0

we see that

det
(

eπy0 − 1 π
2 x0(eπy0 + 1)

J21(x0, y0) −J21(x0, y0)ξ
′
0(y0)

)
= 0

and then the matrix in (53) is invertible if and only if eπy0 − 1 0∫ 2π

0
ey0tgx(û(t, y0), y0, 0)

(
sin t
cos t

)
dt

∫ 2π

0
gx(û(t, y0), y0, 0)ûη(t, y0) + gy(û(t, y0), y0, 0)dt


that is if and only if (42) holds. The conclusion follows from Theorem 2.

As a concrete example we consider g(x, y, ε) = `(y)tx, where `(y) = `1(y)e1 + `2(y)e2.
We have ∫ 2π

0
gx(û(t, y0), y0, 0)ûη(t, y0) + gy(û(t, y0), y0, 0)dt

=
∫ 2π

0
`(y0)

tûη(t, y0) + `′(y0)
tû(t, y0)dt.



Mathematics 2021, 9, 2449 19 of 21

Now ∫ 2π

0
ûη(t, y0) =

∫ π
2

0
[ξ ′0(y0) + tξ0(y0)]ey0t

(
sin t
cos t

)
dt

+
∫ 3

2 π

π
2

[ξ ′0(y0) + (t− π)ξ0(y0)]ey0(t−π)

(
sin t
cos t

)
dt

+
∫ 2π

3
2 π

[ξ ′0(y0) + (t− 2π)ξ0(y0)]ey0(t−2π)

(
sin t
cos t

)
dt

=
∫ π

2

0
[ξ ′0(y0) + tξ0(y0)]ey0t

(
sin t
cos t

)
dt

−
∫ π

2

− π
2

[ξ ′0(y0) + tξ0(y0)]ey0t
(

sin t
cos t

)
dt

+
∫ 0

− π
2

[ξ ′0(y0) + tξ0(y0)]ey0t
(

sin t
cos t

)
dt = 0

and ∫ 2π

0
û(t, y0) =

∫ π
2

0
ξ0(y0)ey0t

(
sin t
cos t

)
dt +

( aπ

0

)
+
∫ 3

2 π

π
2

ξ0(y0)ey0(t−π)

(
sin t
cos t

)
dt

+
∫ 2π

3
2 π

ξ0(y0)ey0(t−2π)

(
sin t
cos t

)
dt =

( aπ

0

)
Hence, when g(x, y, ε) = `t(y)x, the conclusion of Proposition 1 holds if the function

〈`(y), e1〉 has a simple zero at y = y0 that is

`1(y0) = 0, `′1(y0) 6= 0. (54)

Now we take a concrete form of (37)
ẋ1 =

[
x1 +

1
2 (sgn(x2)− 1)

]
y + x2

ẋ2 = −
[

x1 +
1
2 (sgn(x2)− 1)

]
+ yx2

ẏ = ε((y− 1)x1 + yx2)

(55)

so a = 1 and g(x, y, ε) = (y − 1)x1 + yx2. Since `1(y) = y − 1, (54) holds for y0 = 1.
The unperturbed system of (55) has a form ẋ1 =

[
x1 +

1
2 (sgn(x2)− 1)

]
+ x2

ẋ2 = −
[

x1 +
1
2 (sgn(x2)− 1)

]
+ x2

(56)

with periodic solution (40) for η = 1, ξ0(1) = 1
2 sinh( π

2 )
∼= 0.217269 and with vector plot on

Figures 1 and 2.

0.2 0.4 0.6 0.8 1.0
x1

-0.3

-0.2
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0.1

0.2

0.3

x2

Figure 1. Periodic solution of (56).
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-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

x1

x
2

Figure 2. Vector plot of (56).

The periodic solution of (55) with ε = 0.01 is presented in Figures 3–6.

0.2 0.4 0.6 0.8 1.0
x1

-0.3

-0.2
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0.1

0.2

0.3

x2

Figure 3. (x1(t), x2(t)) component of periodic solution of (55) with ε = 0.01.
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Figure 4. y(t) component of periodic solution of (55) with ε = 0.01.
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Figure 5. x1(t) component of periodic solution of (55) with ε = 0.01.
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Figure 6. x2(t) component of periodic solution of (55) with ε = 0.01.

4. Discussion

In this paper we study a persistence of periodic solutions of perturbed slowly varying
discontinuous differential equations for a non degenerate case where the unperturbed
discontinuous system (3) has a periodic solution for y = y0 and certain non degenerateness
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conditions are satisfied. We construct a Jacobian matrix and show that, if it is invertible
then the perturbed system has a unique periodic solution near the periodic solution of the
unperturbed system. We plan to consider a more degenerate case in a forthcoming paper
when (3) has a smooth family of periodic solutions.
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