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Abstract: We consider a class of nonlinear control synthesis problems where the underlying mathe-
matical models are not explicitly known. We propose a data-driven approach to stabilize the systems
when only sample trajectories of the dynamics are accessible. Our method is built on the density-
function-based stability certificate that is the dual to the Lyapunov function for dynamic systems.
Unlike Lyapunov-based methods, density functions lead to a convex formulation for a joint search of
the control strategy and the stability certificate. This type of convex problem can be solved efficiently
using the machinery of the sum of squares (SOS). For the data-driven part, we exploit the fact that
the duality results in the stability theory can be understood through the lens of Perron–Frobenius
and Koopman operators. This allows us to use data-driven methods to approximate these operators
and combine them with the SOS techniques to establish a convex formulation of control synthesis.
The efficacy of the proposed approach is demonstrated through several examples.

Keywords: nonlinear control; Koopman operator; sum of squares

1. Introduction

The celebrated Lyapunov theory lays the foundation of stability analysis for general
nonlinear dynamical systems. Lyapunov functions provide stability certificates for a
nonlinear system. For a given system, searching for a proper Lyapunov function can often
be formulated as a convex optimization problem, and thus is easy to address. For instance,
for polynomial dynamics, this is achieved through the sum of squares (SOS). Regardless of
its similarity to stability analysis, the problem of nonlinear controller synthesis is much
more challenging. Other than a few special cases such as linear quadratic control problems,
the joint search for Lyapunov stability certificate and control strategy can no longer be cast
as convex optimization problems. This is exacerbated by the fact that in many applications,
the underlying mathematical models are not available. Our objective in this paper is to
establish a principled approach for nonlinear control synthesis when the mathematical
models of the underlying dynamics are not explicitly given.

We provide a systematic approach for data-driven control synthesis for a class of
control-affine nonlinear systems of the form

ẋ = F(x) + G(x)u, (1)

where the state x ∈ Rn and control inputs u ∈ Rm, F represent the open-loop dynamics,
and G(x) = [G1(x), . . . , Gm(x)] constitutes the feedback control loop corresponding to
control inputs u = [u1, . . . , um]>. The objective is to design a state feedback controller
u = u(x) such that the closed-loop system is asymptotically stable. To achieve this
objective, we use density function-based dual stability formulation introduced by Rantzer
for almost everywhere stability analysis and synthesis for nonlinear control systems [1].
Unlike the Lyapunov function-based approach for control design, the co-design problem of
simultaneously finding the density function and almost everywhere stabilizing controller
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can be written as a convex optimization problem. We exploit this convexity property for
data-driven control synthesis. In [2,3], it was shown that the duality between density and
Lyapunov function in the stability theory could be understood using the linear operator
theoretic framework. In particular, the duality between Koopman and Perron–Frobenius
operators is at the heart of the duality in the stability theory. This linear operator theoretic
framework is also exploited for the data-driven control design [4,5].

The recent advances in data-driven approximation of the Koopman operator are used
to discover a data-driven approach for the nonlinear control synthesis. In Koopman theory,
a nonlinear system is lifted to an, albeit infinite-dimensional, linear system. This lifting
can be approximated using data generated from the underlying nonlinear dynamics by
the well-known Extended Dynamic Mode Decomposition (EDMD) algorithm [6]. These
tools have been successfully applied in many domains such as fluid dynamics [7] and
power systems [8,9], to understand the principle components/modes of given nonlinear
dynamics [10]. Recently, Koopman theory has been introduced to the control synthesis
tasks, in the hopes that a controller designed in the lifted space could be easier than that in
the original state space. It turns out to be a challenging problem, since the lifting argument
in the presence of control is no longer valid. Regardless of the progress that has been made
in this direction during the last few years [11–14], a principled data-driven framework for
nonlinear control synthesis is not yet available.

We use the EDMD algorithm combined with the duality results for the data-driven
approximation of the Perron–Frobenius (P-F) operator corresponding to the control sys-
tem. This linear P-F operator for the control system is then used to formulate a convex
optimization problem for control synthesis. This optimization is over polynomials and can
be solved using the SOS solvers. The complexity of the resulting optimization problem
depends on the polynomial basis used to approximate the linear operators. Since control
often does not require high-fidelity models, we expect to construct a reliable controller
using a relatively small number of basis functions. We envision that this method can be
applied to low-dimensional and medium-dimensional dynamical systems (e.g., robotics,
distributedpower-electronics control applications).

Recently, several methods have been developed for control synthesis [15,16]. One
major difference is that [15,16] focus on polynomial dynamics, while our methods ap-
plies to more general systems. Another important difference is that we use a stronger
notion of stability compared with [16]. Another line of research that is related to this
work is optimal control synthesis based on generalized moment problems. One major
difference between [17] and our method is that we use a rational parametrization for the
control strategy.

The rest of the paper is organized as follows. In Section 2, we provide a review on
density function methods, SOS, and Koopman theory; these are the components of our
approach. A stronger notion of stability is discussed in Section 3. Problem formulation and
the details of our method are presented in Section 4. This is followed by several numerical
examples in Section 5, and a short concluding remark in Section 6.

2. Background

Our proposed method for control synthesis utilizes the density function method for
controller design, SOS for polynomial optimization and Koopman theory for data-driven
approximations. Necessary background information on these components is discussed in
this section.

2.1. Density Function Approach for Control Synthesis

Consider a control-affine system (1) with a feedback control strategy u(x). It is well
known that the closed-loop system is asymptotically stable with respect to the origin x = 0
if a Lyapunov function V exists, such that

∂V
∂x

>
(F(x) + G(x)u(x)) < 0, ∀x 6= 0. (2)
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Thus, for the purpose of control synthesis, one seeks a pair (V, u) so that (2) holds.
Note that this inequality is bilinear with respect to V, u and thus the problem is non-convex.
This is a major obstacle preventing the Lyapunov theory from being widely used in control
synthesis. In [1], a dual to Lyapunov’s stability theorem was established.

Theorem 1 ([1]). Given the system ẋ = F(x), where F is continuously differentiable and F(0) = 0,
suppose there exists a nonnegative ρ that is continuously differentiable for x 6= 0 such that
ρ(x)F(x)/|x| is integrable on {x ∈ Rn : |x| ≥ 1} and

[∇ · (ρF)](x) > 0 for almost all x. (3)

Then, for almost all initial states x(0), the trajectory x(t) tends to zero as t→ ∞. Moreover,
if the equilibrium x = 0 is stable, then the conclusion remains valid even if ρ takes negative values.

The density ρ serves as a stability certificate and can be viewed as a dual to the
Lyapunov function [1]. Applying Theorem 1 to the closed-loop system, we arrive at

∇ · (ρ(F + Gu)) > 0 for almost all x. (4)

The control synthesis problem becomes that of searching for a pair (ρ, u) of functions
so that (4) holds. Even though (4) is again bilinear, it becomes linear in terms of (ρ, ρu).
Thus, the density-function-based method for control synthesis is a convex problem.

2.2. Sum of Squares

SOS [18–21] is a powerful technique to solve polynomial optimization with positive
polynomial constraints. Briefly, SOS polynomials are a set of polynomials which can
be described as a non-negative linear combination of a square of polynomials, that is, a
polynomial of the form p = ∑`

i=1 di p2
i , where pi are polynomials and di are non-negative

coefficients. Clearly, SOS is a sufficient condition for the non-negativity of a polynomial.
Hence, SOS relaxation provides a lower bound on the minimization problems of polynomial
optimizations. Using the SOS relaxation, a large class of polynomial optimization problems
with positive constraints can be formulated as SOS optimization:

min
d

w>d s.t. ps(x; d) ∈ Σ[x], pe(x; d) = 0, (5)

where Σ[x] denotes an SOS set, w consists of weighting coefficients, and ps, pe are poly-
nomials with coefficients d. The problem in (5) can be converted into Semidefinite Pro-
gramming (SDP) [19,22]. There are readily available SOS optimization packages, such as
SOSTOOLS [23] and SOSOPT [24] that are designed to solve (5).

2.3. Linear Koopman and Perron–Frobenius Operators

For a dynamical system, ẋ = F(x), there are two different ways of linearly lifting the
finite dimensional nonlinear dynamics from state space to some infinite dimension space of
functions F . They are the Koopman operator and Perron–Frobenius operator. The solution
of system (1) with zero control is denoted by st(x). The definitions of these operators, along
with the corresponding infinitesimal generators, are as follows.

Definition 1 (Koopman Operator). Kt : F → F for dynamical system (1) is defined as

[Kt ϕ](x) = ϕ(st(x)), ϕ ∈ F , t ≥ 0.

The infinitesimal generator for the Koopman operator is

lim
t→0

Kt ϕ− ϕ

t
= F(x) · ∇ϕ(x) =: KF ϕ. (6)
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Definition 2 (Perron–Frobenius Operator). Pt : F → F for dynamical system (1) is defined as

[Ptψ](x) = ψ(s−t(x))
∣∣∣∣∂s−t(x)

∂x

∣∣∣∣, ψ ∈ F , t ≥ 0

where |·| stands for the determinant. The infinitesimal generator for the P-F operator is given by

lim
t→0

Ptψ− ψ

t
= −∇ · (F(x)ψ(x)) =: PFψ. (7)

These two operators are dual to each other, where the duality is expressed as∫
Rn
[Kt ϕ](x)ψ(x)dx =

∫
Rn
[Ptψ](x)ϕ(x)dx. (8)

3. Stabilization with Stronger Notion of Stability

In this section, we present a stronger notion of stability than that in Theorem 1.
Consider the following dynamical system without control:

ẋ = F(x). (9)

Assumption 1. Assume that x = 0 is a locally stable equilibrium point for the system (9) with
a local domain of attraction denoted by N . Let Bδ be the neighborhood of the origin for any given
fixed δ > 0 such that 0 ∈ Bδ ⊂ N . Denote X1 := Rn \ Bδ.

Definition 3 (Almost everywhere uniform stability). The equilibrium point x = 0 satisfying
Assumption 1 is said to be almost everywhere uniform stable with respect to finite measure µ if for
every ε > 0 there exists a time T(ε) such that∫ ∞

T(ε)
µ(At)dt < ε (10)

where
At := {x ∈ Rn : st(x) ∈ A}

for any set A ⊂ X1.

The following theorem from Theorem 13 [3] provides a sufficient condition for almost
everywhere uniform stability.

Theorem 2. The equilibrium point satisfying Assumption 1 is almost everywhere uniform stable
with respect to measure µ with density h if a density function ρ ∈ C1(Rn \ {0},R+) exists that is
integrable over X1 and satisfies

∇ · (F(x)ρ(x)) = h(x). (11)

Definition 4 (Almost everywhere geometric stability). The equilibrium point is said to be
almost everywhere uniformly exponential stable if a positive constant β > 0 exists and for every
ε > 0, a time T(ε) exists, such that ∫ ∞

T(ε)
eβtµ(At) < ε, (12)

where At := {x ∈ Rn : st(x) ∈ A} for any set A ⊂ X1.

Next, we establish a sufficient condition that resembles (11) for geometric stability.
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Theorem 3. The equilibrium point x = 0 for system (9) satisfying Assumption 1 is almost
everywhere stable with geometric decay with respect to measure µ with density h if a density
function ρ(x) ∈ C1(Rn \ {0},R+) exists which is integrable on X1 and satisfies

∇ · (Fρ) = βρ(x) + h (13)

for some positive constant β > 0.

Proof. Equation (13) can be rewritten as

n

∑
i=1

Fi(x)ρxi +∇ · (F(x)−
β

n
x)ρ(x) = h(x). (14)

Since (14) is a first-order PDE, we can use the method of characteristics to obtain a
solution. The characteristic curves are given by the solution of the following ODE:

ẋ(t) = F(x). (15)

Let F̃(x) = F(x)− β
n x, then Equation (14) can be rewritten as

d
dt

ρ(st(x)) + ρ(st(x))∇ · F̃ = h(st(x)), (16)

which is a first-order ODE in the t variable.
The solution to (16) is obtained by multiplying (16) by the integrating factor exp{

∫ t
0 ∇ ·

F̃(sτ(x))dτ}, which points to

d
dt
(ρ(st(x)) exp{

∫ t

0
5 · F̃(sτ(x))dτ}) = exp{

∫ t

0
∇ · F̃(sτ(x))dτ}h(st(x)). (17)

It follows

exp{
∫ t

0
∇ · F̃(sτ(x))dτ}ρ(st(x)) = ρ(s0(x)) +

∫ t

0
exp{

∫ s

0
∇ · F̃(x(τ))dτ}h(ss(x))ds. (18)

In view of | d(st(x))
dx | = exp{

∫ t
0 ∇ · F(sτ(x))dτ} and

exp{
∫ t

0
∇ · F̃(sτ(x))dτ} = exp{−βt} exp{

∫ t

0
∇ · F(sτ(x))dτ}

we obtain

exp{−βt}|d(st(x))
dx

|ρ(st(x)) = ρ(s0(x)) +
∫ t

0
exp{−βτ}|d(sτ(x))

dx
|h(sτ(x))dτ. (19)

Now, using the fact that s0(x) = x, performing change of variable y = st(x) =⇒
s−t(y) = x, by the definition of P-F operator, we establish

ρ(x) = exp{βt}[Ptρ](x) +
∫ t

0
exp{β(t− τ)}[Pt−τh](x)dτ. (20)

Integrating Equation (20) over set A ⊂ X1 yields∫
A

ρ(x)dx =
∫

A
exp{βt}[Ptρ](x)dx +

∫ t

0

∫
A

exp{β(t− τ)}[Pt−τh](x)dxdτ.

It follows that∫
A

ρ(x)dx =
∫

A
exp{βt}[Ptρ](x)dx +

∫ t

0

∫
A

exp{βτ}[Pτh](x)dτ.
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Since the P-F operator preserves positivity and ρ, h are both positive, we have∫ t

0

∫
A

exp{βτ}[Pτh](x)dxdτ <
∫

A
ρ(x)dx < ∞ (21)

for any t > 0. We thus conclude∫ ∞

0
exp{βτ}µ(Aτ)dτ < ∞.

The geometric stability then follows. This completes the proof.

Apparently, condition (13) is stronger than (11). The latter is a special case of the
former when β = 0. Moreover, both of them imply (3) if h > 0 in the region of interest.
Thus, in this work, we seek an efficient algorithm to design a controller for (1) so that the
closed-loop dynamics has geometric stability.

4. Data-Driven Numerical Algorithm for Control Synthesis

In this section, we propose a data-driven framework to solve the stability certificate
in (13) without knowing the models F and G in (1) explicitly. Instead, we assume that
we have access to time-series sample data from (1). The solution provides state feedback
u that globally exponentially stabilizes (1). The core of the framework is two-fold: (i)
we leverage the definition of the infinitesimal P-F generator shown in (7) to approximate
the divergence terms ∇ · (F · ) and ∇ · (Gi · ) in the stability certificate; (ii) we transform
the almost everywhere geometric stability certificate described in Section 3 as an SOS
optimization problem using P-F generators and rational parameterization [25].

4.1. Density Function Approach Reformulation

By (13), to find a geometrically stabilizing controller for (1), it suffices to find a pair
(ρ(x), u(x)) that solves

∇ · (ρ(F + Gu)) = βρ(x) + h. (22)

This is not a convex problem in terms of variable (ρ(x), u(x)), but it is convex in terms
of (ρ(x), ρu(x)).

The above is an infinite dimension problem. To establish an implementable algorithm,
we first construct rational parameterization of density functions described in [25] as

ρ(x) =
a(x)

b(x)α
, ρ(x)u(x) =

c(x)
b(x)α

, (23)

where a and c = [c1, . . . , cm]> are polynomials, b is a positive polynomial (positive for any
x 6= 0), and α is a sufficiently large number such that ρ(x) is integrable over X1. One choice
of b is the quadratic control Lyapunov function corresponding to the linearized dynamics
at the origin [25]. Note that the optimization variables include a and c.

With the parametrization (23), (22) becomes

∇ · [ 1
bα

(Fa + Gc)] =
βa
bα

+ h. (24)

Rearranging the terms and using the fact that h > 0, we establish the SOS condition:

(1 + α)b∇ · (Fa + Gc)− α∇ · (bFa + bGc)− βab > 0. (25)

4.2. Data-Driven Approximation of Linear Operators

For the data-driven approximation of Koopman operators and subsequent P-F op-
erators, we adopt the algorithmic techniques in [12,26,27]. Specifically, we leverage the
numerical algorithm in [27] to directly approximate Koopman generators. For this, we
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first collect time-series data from the dynamical system in (1) by feeding different control
inputs: (i) zero inputs, u = 0, and (ii) unit step inputs, u = ei (ei ∈ Rm denotes unit vectors,
i.e., ith entry of ei is 1, otherwise 0.) for i = 1, . . . , m for a finite time horizon with sampling
stepsize δt in the matrices

Xi =
[
x1, . . . , xTi

]
, Ẋi =

[
ẋ1, . . . , ẋTi

]
, (26)

with i = 0, 1, . . . , m for zero and step control inputs, where Ti are the number of data points
for the ith input case. Time derivatives of the states ẋ can be accurately estimated using nu-
merical algorithms, as shown in [28,29]. Additionally, the pair {x, ẋ} in (26) do not have to
be from a single trajectory; it can be a concatenation of multiple experiment/simulation tra-
jectories.

Next, we construct a polynomial basis vector

Ψ(x) = [ψ1(x), . . . , ψQ(x)]>, (27)

which can be monomials or Legendre/Hermite polynomials. The time derivative of Ψ(x) is

Ψ̇(x, ẋ) = [ψ̇1(x, ẋ), . . . , ψ̇Q(x, ẋ)]>, (28)

where ψ̇k(x, ẋ) = (∇ψk)
>ẋ = ∑n

j=1
∂ψk
∂xj

dxj
dt . Then, the Koopman generator for each input

case denoted by Li can be approximated as

Li = argmin
Li

||Bi −AiLi||F, (29)

where

Ai =
1
Ti

∑Ti
`=1 Ψ(Xi,`)Ψ(Xi,`)

>,

Bi =
1
Ti

∑Ti
`=1 Ψ(Xi,`)Ψ̇(Xi,`, Ẋi,`)

>,

and Xi,` and Ẋi,` denote the `th snapshot of the time-series data in Xi and Ẋi, respectively.
The solution of (29) is explicitly known, Ki = A†

i Bi, where † stands for pseudo-inverse.
With the approximations Li, the Koopman generator for zero input (i = 0) is given by

KF = L0. (30)

In addition, using the linearity of Koopman operator, Koopman generators for each
step inputs (i = 1, . . . , m) are given by

KGi = Li − L0. (31)

The above is one method to estimate KF and KGi . They can also be approximated
jointly by using trajectories subject to arbitrary inputs and solving a single least square
optimization problem.

The P-F generator for vector field F can be written as

−PFψ=∇ · (Fψ)=F · ∇ψ +∇ · Fψ=KFψ +∇ · Fψ. (32)

The divergence of F in (32) can be approximated as

∇ · F = ∇ · [KFx1, . . . ,KFxn]
> ≈ ∇ · (C>x L0Ψ), (33)
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where Cx is a vector of coefficients such that x = C>x Ψ. This can be found easily if Ψ

includes all the first order monomials. Similarly, the divergence of Gi are approximated as

∇ · (Gj) ≈ ∇ · (C>x LiΨ), i = 1, . . . , m. (34)

Using (30)–(34), P-F generators are approximated by

Pi = Li +∇ · (C>x LiΨ)I (35)

with I denoting the identify matrix.

4.3. Convex Control Synthesis: Combining SOS with Koopman

Using approximated infinitesimal P-F generators in (35), the condition (25) reads

(1 + α)b(x)
(
C>a P0Ψ(x) + ∑m

j=1C
>
cj

PjΨ(x)
)

(36)

− α
(
CabP0Ψ(x) + ∑m

j=1C
>
bcj

PjΨ(x)
)
− βa(x)b(x) > 0.

Here, Ca,Ccj ,Cab,Cbcj
denote the coefficients of a(x), cj(x), a(x)b(x), cj(x)b(x), respec-

tively, with respect to the basis Ψ. Thus, our control synthesis problem can be formulated
as a SOS feasibility problem

Find d subject to (36) ∈ Σ[x], C>a Ψ(x) ∈ Σ[x], (37)

where d collects all coefficients of the polynomials a(x) and c(x). The last term in (37)
reflects the constraint, ρ > 0.

Subsequent to solving (37), we can construct the controller by uj(x) = cj(x)/a(x),
j = 1, . . . , m to stabilize the dynamical system (1).

5. Numerical Case Studies

In this section, we provide several numerical examples to illustrate the proposed
method. In particular, the second example is for a non-polynomial dynamical system and
the last example is for a rigid body dynamical system with state dimension 6.

5.1. Van der Pol Oscillator

The dynamics of a Van der Pol Oscillator is [30]

ẋ1 = x2, ẋ2 = (1− x2
1)x2 − x1 + u.

We collect time-series data points for each input case by performing repeated simu-
lations with time spans from 0 to 0.01 s and time step δt = 0.01 s, starting from 2× 104

random initial points in [x1, x2] = [−5, 5]2. The total data points for each input response
case are T0 = 19,952, T1 = 19,958. The polynomial b(x) is chosen as an LQR solution
associated with the linearized system at the origin. The value of α is set to be α = 4.
The optimization variables a(x) and c(x) are polynomials with degrees ranging from 0 to 2
and from 0 to 4, respectively. The basis Ψ(x) is chosen to be Legendre polynomials up to
15th order. Figure 1 shows the results of the control synthesized by following the proposed
method described in Section 4 for β = 0 and β = 1. Clearly, the case with geometric stable
term (β = 1) converges more aggressively to the origin.
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Figure 1. Van der Pol dynamics stabilized by proposed method.

5.2. Non-Polynomial System Example: Inverted Pendulum

The dynamics of a simple two-dimensional inverted pendulum is

ẋ1 = x2, ẋ2 = sinx1 − 0.5x2 + u,

which is non-polynomial due to a sinusoidal function. We collect time-series data points
by performing repeated simulations, from 0 to 0.01 s with time step δt = 0.01 s, starting
from 104 random initial points from [x1, x2] = [−π, π]2. The number of data points
for both input response cases is T0 = T1 = 9989. The value of α is set to be α = 4.
The polynomial b(x) is an LQR solution associated with the linearized system at the origin.
The optimization variables a(x) and c(x) are polynomials with degrees from 0 to 2 and from
0 to 6, respectively. The basis Ψ(x) consists of monomials up to the 10th order. Figure 2
shows the results of the synthesized control for β = 0 and β = 7, demonstrating that
the control solutions from the proposed method can effectively stabilize non-polynomial
dynamical systems, and this is also the case with geometric stable term (β = 7), which can
stabilize the system more aggressively.

Figure 2. Pendulum dynamics stabilized by proposed method.
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5.3. Lorenz System Dynamics

The dynamics of Lorenz attractor is given by [26]

ẋ1 = σ1(x2 − x1),

ẋ2 = x1(σ2 − x3)− x2 + u,

ẋ3 = x1x2 − σ3x3,

where the parameters are set to be σ1 = 10, σ2 = 28, and σ3 = 8
3 . We collect time-series data

points from repeated simulations, from 0 to 0.001 s, with time step δt = 0.001 s, starting
from random initial points in [x1, x2, x3] = [−5× 5]3. The data points collected for all
input cases have T0 = T1 = 9949 snapshots. For the parameters of stability conditions, we
choose α = 4 and b(x) to be the LQR solution for the linearized system. The optimization
variables a(x) and c(x) are polynomials with degrees ranging from 0 to 2 and from 0 to
6, respectively. The basis Ψ(x) consists of Legendre polynomials up to the 10th order.
Figure 3 shows the results of the synthesized controls for β = 0 and β = 3. We can observe
that the chaotic dynamics of the Lorenz attractor is stabilized to the origin by the control
synthesized by our proposed method, and furthermore, the geometric stable term (β = 3)
stabilizes the system more aggressively.

Figure 3. Lorenz dynamics stabilized by proposed method.

5.4. Rigid Body Control

Consider a rigid body system [25]

ω̇ = J−1S(ω)Jω + J−1u,

ψ̇ = H(ψ)ω,
(38)

where the angular velocity vector ω ∈ R3, Rodrigues parameter vector ψ ∈ R3, and control
torque u ∈ R3. The explicit form of the parameters can be found in [25]. The dimension
of the state space is 6. Time-series data points are sampled from repeated simulations
with a time span from 0 to 0.001 s with time step δt = 0.001 s, starting from uniformly
distributed random initial points, [ω>, ψ>] = [−3× 3]6. Each data matrix, X1∼4, Ẋ1∼4
has 9990 snapshots. The value of α is set to be α = 4. The polynomial b is chosen to be
b(x) = |ω + ψ|2 + |ψ|2, which is known to be a CLF of the linearized dynamics of (38)
from [25]. Degrees of a(x) = 1 and cj(x) are chosen to be from 0 to 1 and from 0 to 4,
respectively. Figure 4 shows the trajectories of the states ω1∼3 and ψ1∼3 starting from some
random initial points, stabilized by the proposed method for β = 0 (left) and β = 10 (right).
Clearly, the case with β = 10 has a faster convergence property.
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Figure 4. Rigid body system stabilized by our proposed method.

6. Concluding Remark

A systematic convex optimization-based framework is provided for the data-driven
stabilization of control-affine nonlinear systems. The proposed approach relies on a combi-
nation of SOS optimization methods and recent advances in the data-driven computation
of the Koopman operator. Future research efforts will focus on data-driven optimal control
of the nonlinear system and the robust counterpart of this work by exploiting the sample
complexity of Koopman and P-F operators [31].
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10. Mauroy, A.; Mezić, I. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control
2016, 61, 3356–3369. [CrossRef]
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