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Abstract: This article mainly focuses on the utilization of shadowed type-2 fuzzy systems used
to achieve the goal of dynamically adapting the parameters of two already known algorithms
in the literature: the harmony search and the differential evolution algorithms. It has already
been established that type-2 fuzzy logic enhances the performance of metaheuristics by enabling
parameter adaptation; however, the utilization of fuzzy logic results in an increased execution
time. For this reason, in this article, the shadowed type-2 fuzzy approach is put forward as a way
of reducing execution time, while maintaining the good results that the complete type-2 fuzzy
model produces. The harmony search and differential evolution algorithms with shadowed type-2
parameter adaptations were applied to the problem of optimally designing fuzzy controllers. The
simulations were performed with the controllers working in an ideal situation, and then with a real
situation under different noise levels in order to reach a conclusion regarding the performance of
each of the algorithms that were applied.

Keywords: shadowed type-2 fuzzy systems; harmony search; differential evolution algorithm

1. Introduction

Nowadays, is becoming more common to find new algorithms that are developed
based on the behavior of nature, which can offer computational solutions to complex
optimization problems. In this work, two algorithms based on two different approaches
are considered: the harmony search (HS) and the differential evolution (DE) algorithms,
which have already been compared in previous studies using different types of fuzzy
systems and for different problems, both for control and mathematical functions. Some of
the studies that have considered these two algorithms together are the following: the first
discussed the optimal design of fuzzy systems using differential evolution and harmony
search algorithms with dynamic parameter adaptations [1]. The next study considered
shadowed type-2 fuzzy systems for dynamic parameter adaptation in the harmony search
and differential evolution algorithms [2]. Additionally, a comparative study demonstrating
fuzzy controller optimization using the bee colony, differential evolution, and harmony
search algorithms was presented in [3], and a high-speed interval type-2 fuzzy system
approach for dynamic parameter adaptation in metaheuristics was outlined in [4].

The above-mentioned works all use fuzzy logic, which was first proposed in 1965
by Lotfi Zadeh and was immediately shown to be an important tool for the control of
industrial systems and processes. In addition to the previously mentioned studies, fuzzy
logic can also be applied in other areas to obtain better results, such as in industry, medicine,
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and system control, just to mention a few. These are some of the works in which the use of
fuzzy logic can be appreciated, but the evolution of fuzzy logic is very broad, and today,
there is recent research in which dynamic fractional-order models are obtained based on
an extension of general type-2 fuzzy systems, which are called interval type-3 fuzzy logic
systems (IT3FLSs) [5]. These are also some of the most recent works in the literature in
which the use of fuzzy logic has been put forward as an option for optimizing traditional
problems, for example: an efficient type-2 fuzzy method for parameter adaptation in HS
for optimally designing fuzzy controllers is presented in [6], an optimization of type-2
fuzzy controllers utilizing the galactic swarm and firefly algorithms is described in [7], the
optimal parameter estimation of a silicon solar cell using fuzzy systems is described in [8],
the application of soft computing to calculate medicine dose during patient treatment
is shown in [9], a mathematical approach to identify coronavirus disease (COVID-19)
using a fuzzy logic inference system is shown in [10], a fuzzy approach for preanesthetic
operation risk evaluation in laparoscopic cholecystectomy is demonstrated in [11], fuzzy
logic for estimating medicine imports can be seen in [12], the optimization of storage costs
in maintenance for industry is presented in [13], an approach for job scheduling with a
multi-criteria-based method is described in [14], an approach for supply chain management
utilizing a fuzzy rule-based maturity model is shown in [15], the determination of the
difficulty level for a garment model with a fuzzy logic method is presented in [16], and
simulated annealing to locate electric charging situations with the implementation of
interval type-2 fuzzy sets is presented in [17].

However, each of the metaheuristic algorithms that are used in this work have also
had a great impact and have evolved separately in different areas of opportunity. First, we
mention some recent research studies where the harmony search algorithm has been used:
a differential HS algorithm for multi-objective optimal power flow is presented in [18],
multilevel thresholding for image segmentation using the HS algorithm is described in [19],
a hybrid HS algorithm for social network contact for COVID-19 tracing is shown in [20],
a review of the HS algorithm in clustering problems is shown in [21], a hybrid of the
HS algorithm and evolutionary approach for the process of feature selection is presented
in [22], a neural-network-adaptive dynamical HS algorithm to approximate the flying
rocks resulting from blasting is shown in [23], a selective harmonic elimination in output
voltage levels in modular converters using a differential HS algorithm is shown in [24], a
quasi-oppositional HS algorithm for ad hoc and sensor networks is presented in [25], a
self-adaptive global-best HS algorithm-based airflow control is described in [26], a multi-
population HS approach for the detection of high-order interactions is described in [27], the
selection of features for the detection of colon cancer using clustering and a modification
of the HS algorithm is shown in [28], feature selection with improved HS binary for
data classification is described in [29], a multi-objective HS algorithm for the optimal
expansion and planning of distribution systems is presented in [30], a hybrid HS algorithm
for achieving an efficient healthcare framework for kidney disease is described in [31],
an optimal steel frame design using an HS algorithm is described in [32], a discrete HS
algorithm for a flexible job shop scheduling problem with multiple objectives is presented
in [33], and a similarity hybrid harmony search algorithm for the Team Orienteering
problem is presented in [34].

Below, we mention some works in which the DE algorithm has been used: a DE
algorithm with wavelet functions and a novel mutation approach for optimization is
presented in [35], an enhanced DE algorithm and its application in an optimization problem
is shown in [36], the prediction of the velocity of a nanofluid convective flow by the DE
algorithm in conjunction with a fuzzy system is presented in [37], a hybrid slime mold
algorithm with a DE algorithm for optimization is described in [38], the optimization of
operating rules in multi-reservoir hydropower generation with an adaptive DE algorithm is
described in [39], the optimization of quantum cloning circuit parameters with an adaptive
DE algorithm is shown in [40], an enhanced quantum-inspired DE algorithm for deep
belief networks is described in [41], an enhanced multi-operator DE algorithm for solving
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unconstrained problems is shown in [42], the optimal design of fuzzy controllers based
on a DE algorithm with parameter adaptation utilizing fuzzy systems (of the type-2 and
type-1 form) is presented in [43], and the accelerated DE algorithm with novel proposed
operators for multi-damage detection in plate structures is described in [44].

It has already been established in previous works that type-2 fuzzy enhancements can
help augment performance in metaheuristics by enabling dynamic parameter adaptation
during execution. However, the utilization of fuzzy logic in parameter adaptation results
in an increased execution time for the metaheuristic. For this reason, in this article, the
shadowed type-2 fuzzy approach is proposed as a way of reducing execution time, while
maintaining the good results of the complete type-2 fuzzy model in parameter adaptation.
In summary, the most important contribution of this paper is the shadowed fuzzy approach
proposed as a way to efficiently achieve parameter adaptation in HS and DE, and also
the comparison of their performance in optimizing fuzzy controllers. Thus, in this paper,
the objective of the work is the application of shadowed type-2 fuzzy systems as an ap-
proximation method of the type-2 general fuzzy systems modeled with the representation
of α planes applied to the adjustment of parameters of the HS and DE algorithm. The
main difference with respect to existing works is that the shadowed type-2 fuzzy inference
system approach only requires two α-planes to model the general type-2 fuzzy inference
systems, and another important contribution of the use of shadowed type-2 fuzzy systems
is that the computational cost is much lower, and therefore, it is very feasible that they can
be applied in real-life problems.

The rest of the article is organized as follows. Section 2 outlines the basic constructs of
type-2 shadowed sets theory, Section 3 briefly describes the main concepts of metaheuristics,
Section 4 outlines the proposed shadowed parameter adaptation approach, Section 5
summarizes the optimized controller and the achieved results, and Section 6 puts forward
the conclusions and possible lines of future research.

2. Type-2 Fuzzy Systems and Shadowed Sets

Fuzzy logic has evolved over the years; it started with what is known as type-1 fuzzy
logic in 1965 [45], and its main objective was to model the vagueness of the real world,
as well as to use mathematical models to represent human knowledge. Subsequently,
it was followed by what is now called type-2 fuzzy logic, which allows the handling of
uncertainty, and to model a type-2 fuzzy set, Equation (1) is used:

˜̃A = {
(
(x, u),µÃ(x)

)
|∀x ∈ X, ∀u ∈ Ju

x ⊆ [0, 1]} (1)

In the literature, there are some alternative ways to model type-2 fuzzy logic, such as
geometric approximation [46] and representations using vertical slices [47] and horizontal
slices [48]. In this work, the main idea is focused on the use of generalized type-2 fuzzy
modeling through the representation of α planes. Equation (2) represents the process by
which the secondary axis of a generalized type-2 fuzzy system is discretized in several α
planes. Each α plane can be calculated as an interval type-2 fuzzy system [49] and thus with
the union of each plane α, the modeling of a generalized type-2 fuzzy system is obtained,
expressed in Equation (3).

Ãα = {((x, u), α)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2)

˜̃A = ∪Ãα (3)

The shadowed type-2 fuzzy inference system [50] arises in order to reduce the compu-
tational cost generated by the use of α-planes. This work focuses on the use of shadowed
type-2 fuzzy inference systems with only two optimal α-planes. To define the precision of
the use of the optimal α-planes, the theory proposed by Pedrycz is used [51].
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Equation (4) describes the intervals used to understand the definition of the shadowed
sets, which consist of performing two α-cuts on a type-1 fuzzy set; the values are defined
in the variables α and β, as shown below:

SµA(x) =


1, i f µA(x) ≥ α

0, i f µA(x) ≤ β

[0, 1], i f α ≤ µA(x) ≥ β
(4)

Equation (5) was proposed in the literature by Pedrycz, in which certain optimal
values are established for α and β, and the expression describes three regions, which are
contained in [0, 1] and their names are included in the equation.

elevated area(α,β)(µA) + reduced area(α,β)(µA) = shadowed area(α,β)(µA) (5)

An image depiction of Equation (5) is illustrated in Figure 1.

Figure 1. Shadowed set representation.

Based on Equation (6), the optimal values of α and β are obtained, and this requires
an optimization process to be able to determine these values.

V(α, β) =

∣∣∣∣∣∣
∫

x∈Ar

µA(x)dx +
∫

x∈Ae

(1− µA(x))dx−
∫

x∈S

dx

∣∣∣∣∣∣ (6)

This proposed shadowed type-2 FIS methodology is used for the dynamic adaptation
of parameters of the metaheuristic algorithms in order to optimize the results obtained in
the problem to be used. A modification to the shadowed type-2 fuzzy inference system
(FIS) was made by Linda and Manic [52], who indicated that the secondary axis of the
generalized type-2 fuzzy system uses the shadowed sets to find the optimal α and β values,
and thus use those values to find the α planes.

Trapezoidal ST2 MF

There are different types of membership functions that can be utilized in fuzzy systems.
In this work, a decision was made, based on simplicity, to use the Trapezoidal (TrapG)
membership function, in which the main characteristic is that it resembles the trapezoidal
GT2 membership function, which is composed of a Gaussian-type function as a secondary
membership function. Equation (7) contains the parameter values that were used for
the membership function, and Figure 2 illustrates the graphical representation of the
membership function.
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Figure 2. Trapezoidal ST2 membership function.

TrapG ST2 MF =



∝o


µO =

µt(x) + µ
t
(x)

2
− 1.449

∣∣∣∣∣µt(x)− µ
t
(x)

10

∣∣∣∣∣
µ

O
=

µt(x) + µ
t
(x)

2
+ 1.449

∣∣∣∣∣µt(x)− µ
t
(x)

10

∣∣∣∣∣
∝l


µI =

µt(x) + µ
t
(x)

2
− 0.9282

∣∣∣∣∣µt(x)− µ
t
(x)

10

∣∣∣∣∣
µ

I
=

µt(x) + µ
t
(x)

2
+ 0.9282

∣∣∣∣∣µt(x)− µ
t
(x)

10

∣∣∣∣∣

(7)

With the goal of analyzing the importance of implementing a shadowed fuzzy logic
system to solve real problems, the following Table 1 highlights some interesting works that
use some implementation or variants of type-2 fuzzy logic systems.

Table 1. Outline of some interesting works based on type-2 fuzzy logic systems improvements.

Recent
Studies/Authors Method Used Objective of the Article Study Case Meta-Heuristics Used

Proposed Method Shadowed Type-2
Fuzzy Systems

Find optimal parameters in the
studied algorithms.

Fuzzy controllers:
Cruise control

Harmony Search and
Differential Evolution

Castillo O.
et al. [2]

Shadowed type-2
fuzzy systems

Find an optimal parameters of the
studied algorithms. Fuzzy controller: DC motor Harmony Search and

Differential Evolution

Mohammadzadeh,
A. et al. [5] Type-3 Fuzzy Control

Find an optimal dynamic model in
a period of time short and the
control signal is designed based on
this model.

Nonlinear systems:
DC motors Not Applied

Bernal, E. et al. [7] Type-2 Fuzzy
Logic System

Finding the best method that
generates an optimal vector of
values for the
membership function.

Fuzzy controller: path
tracking of an autonomous
mobile robot

firefly algorithm and
galactic swarm
optimization

Türk, S. [17] Interval type-2 Fuzzy Sets

Find the best configuration of the
parameters of the interval type-2
membership functions for locating
the electric charging stations.

Applied to a real-world
public transport problem Not Applied

Ochoa, P.
et al. [43]

Interval Type-2 Fuzzy
Logic System

Find an optimal parameters of the
algorithms studied. Fuzzy controllers Differential Evolution

Algorithm
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Table 1. Cont.

Recent
Studies/Authors Method Used Objective of the Article Study Case Meta-Heuristics Used

Wagner, C.
et al. [47]

General Type-2 Fuzzy
Logic Systems Based
on zSlices

Reduction in the computational time
with high levels of uncertainties.

Fuzzy controller: a
two-wheeled mobile robot Not Applied

Mendel, J.M.
et al. [49]

Alpha-Plane
Representation for Type-2
Fuzzy Sets

Find the precision to forecast
noise-corrupted measurements.

Time series: a chaotic
Mackey-Glass Not Applied

Pedrycz, W. [50] Shadowed Sets
Demonstrate how shadowed sets
help in problems in data
interpretation in fuzzy clustering.

Fuzzy clustering Not Applied

Wijayasekara, D.
et al. [52].

Shadowed Type-2 Fuzzy
Logic Systems

Outlines a novel concept of
shadowed type-2 fuzzy logic
systems (ST2 FLS).

Explanation of
important theory Not Applied

3. Metaheuristic Algorithms

At the present time, the use of metaheuristic algorithms for solving problems in
different areas is very common, these algorithms are used is in order to optimize the results
of the problems in which they are used. For this work, two algorithms are presented
as well as their main operating characteristics and the equations involved in each of the
algorithms for its implementation. The algorithms are: harmony search [53] and differential
evolution [54]. Figure 3 illustrates the implementation in the control problem with the
proposed use of shadowed type-2 fuzzy logic systems.

Figure 3. Proposed method.

3.1. Harmony Search Algorithm

In the recent state of the art, there is a large number of metaheuristics, but this research
focuses on the study of an algorithm that was created by Zong Woo Geem in 2001 [55]. In
particular, this algorithm was inspired by musical composition imitating the behavior of an
orchestra, and it has been implemented in its mathematical form using Equations (8)–(10)
for the resolution of different problems in the real world.

HMR ∈ [0, 1] (8)

Xnew = Xold + bp (2 rand− 1)
PArate = PLower limit + PRange ∗ rand

(9)

Where PRange = PUpper Limit − PLower Limit (10)
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Using the HMR parameter, the HS algorithm performs memory consideration if
0 ≤ rand ≤ HMR and random selection if HMR ≤ rand ≤ 1. Based on the PArate pa-
rameter, HS performs pitch adjustment if 0 ≤ rand ≤ PArate and no change is made if
PArate ≤ rand ≤ 1. The memory consideration has the following meaning: Xnew comes
from HM. The random selection has the following meaning: Xnew comes from the total
value range. The pitch adjustment has the following meaning: Xnew is further tweaked by
adding delta (a small positive or negative value; if we want to use bp, we have to establish
it first) once Xnew is obtained from the memory consideration.

3.2. Differential Evolution Algorithm

Differential evolution [56] has been utilized in different optimization areas, and this
work is no exception; the algorithm is relatively simple and only consists of four stages in
its development.

Population initialization is the first step to start the DE algorithm, which is composed
of N-dimensional vectors and is defined by Equations (11)–(16):

Px,g =
(
xi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (11)

xi,g =
(
xj,i,g

)
, j = 0, 1, . . . , D− 1 (12)

Pv,g =
(
vi,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (13)

vi,g =
(
vj,i,g

)
, j = 0, 1, . . . , D− 1 (14)

Pu,g =
(
ui,g
)
, i = 0, 1, . . . , Np− 1, g = 0, 1, . . . , gmax (15)

ui,g =
(
uj,i,g

)
, j = 0, 1, . . . , D− 1 (16)

After creating the vectors with which the algorithm starts to work, we have to define
the search space in which these vectors have an upper limit and a lower limit; this will
depend on the problem to be used. This process is called initialization, and this is defined
by Equation (17):

xj,i,0 = randj(0, 1)·
(
bj,U − bj,L

)
+ bj,L (17)

More specifically, the differential mutation adds a random component to DE and the
following equation illustrates how to mix three different vectors chosen randomly to create
a mutant vector; this is shown in Equation (18):

vi,g = xr0,g + F·
(
xr1,g − xr2,g

)
(18)

To complement the effect of the differential mutation search strategy, DE also uses
uniform crossover. More specifically, DE crosses each vector with a mutant vector defined
by Equation (19):

ui,g = uj,i,g

{
vj,i,g i f

(
randj(0, 1) ≤ Cr or j = jrand

)
xj,i,g otherwise

(19)

The next step in the algorithm is to make the selection; in this process, a comparison
is made between the mutated vector and the objective function. Equation (20) shows the
selection process:

xi,g+1 =

{
ui,g i f f

(
ui,g
)
≤ f

(
xi,g
)

xi,g otherwise
(20)

The stopping criterion for the algorithm can occur when an optimal solution is found
or when the termination criteria specified at the beginning of the algorithm are satisfied.

4. Dynamic Parameter Adaptation

For the present work, the two abovementioned algorithms (HS and DE) were con-
sidered for the dynamic parameter adaptation. A fuzzy system was designed and imple-
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mented for each of the algorithms, since each algorithm has a specific parameter to be
dynamically moved.

The structure of the fuzzy systems was formed by one input and one output, and the
specifications for each of the algorithms are separately shown below.

For the use of the HS algorithm, the iterations represent the input to the fuzzy system
and the output is PArate, while for the DE algorithm, the generations represent the input,
while Cr (crossover) represents the output.

The input of each of the fuzzy systems is calculated using Equation (21), where
Current Test represents the current iteration or generation in the algorithm, which is
divided by the maximum number of iterations or generations, which is called Maximum
number of tests.

Test =
Current Test

Maximum number o f tests
(21)

Equations (22) and (23) express the outputs of each of the HS and DE algorithms, respectively.

PArate =
∑rPArate

i=1 µPArate
i (PArate1i)

∑rPArate
i=1 µPArate

i
(22)

PArate symbolizes the pitch adjustment; rPArate symbolizes the number of rules of
the shadowed type-2 system that correspond to PArate; PArate1i symbolizes the output
result for rule i with respect to PArate; µPArate

i is the membership function of rule i that
corresponds to PArate.

Cr =
∑rCr

i=1 µCr
i (Cr1i)

∑rCr
i=1 µCr

i
(23)

where Cr is the crossover; rCr is the number of rules of the shadowed type-2 system that
correspond to Cr; Cr1i is the output result for rule i that corresponds to Cr; µCr

i is the
membership function of rule i that corresponds to Cr.

The combination of the shadowed type-2 system with the HS algorithm is called
ST2FHS2 in the simulations carried out in this work, and the combination of the shadowed
type-2 system with the DE algorithm is called ST2FDE2.

Each fuzzy system has a structure of one input and one output. In this case, the
input was composed of three membership functions as well as the output. The graphical
representation of the input and output can be seen in Figures 4 and 5, respectively. The
names of each of the membership functions are: Basic, Intermediate and Advanced, and
are represented in Figure 6.

Figure 4. Linguistic input parameter membership functions.
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Figure 5. Linguistic output parameter membership functions.

Figure 6. Fuzzy rules for both methods.

5. Controllers Optimization

Feedback control problems are very popular for testing the performance of an algo-
rithm; therefore, this article uses a control case that is widely used in proportional integral
(PI) and proportional integral derivative (PID) controllers, and the implementation in
this work was carried out in a type-1 fuzzy controller, with the goal of validating the
performance of the two proposed methods.

5.1. Methodology for Controller Optimization

This section explains in detail the implementation of a type-1 fuzzy controller to the
cruise control system model. The cruise control controller is made up of trapezoidal and
triangular membership functions, both at its two inputs and at its output. Equations (24)
and (25) show the mathematical basis for the construction of each of these membership
functions. In Table 2, the parameter values assigned to each linguistic variable inputs and
the output are presented.

trapezoidalm f (x; a, b, c, d) = max(min(
x− a
b− a

, 1,
d− x
d− c

), 0) (24)

triangularm f (x; a, b, c) = max(min(
x− a
b− a

,
c− x
c− b

), 0) (25)
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Table 2. Type-1 fuzzy system parameter values.

Input Err

MF a b c d
−V −1 −1 −0.5 0
ZV −0.5 0 0.5 −−−
+V 0 0.5 1 1

Input Change Err

E− −1 −1 −0.4 −0.1
E−M −0.4 −0.2 0 −−−

ZE −0.01 0 0.10 −−−
E+M 0 0.2 0.4 −−−
E+ 0.1 0.4 1 1

Output Voltage

D −1 −1 −0.6 −0.09
D+ −0.4 −0.2 0 −−−
M −0.1 0 0.1 −−−
A+ 0 0.2 0.4 −−−
A 0.09 0.6 1 1

The structure of the type-1 fuzzy system for the controller is presented in Figure 7, the
rules are presented in Table 3, and the control surface can be seen in Figure 8.

Figure 7. General structure of the type-1 fuzzy system.

Figure 8. Cruise control surface.
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Table 3. Fuzzy rules for the cruise control controller.

Rules
Inputs Output

Err Change Err Voltage

1 −V E D
2 −V ZE D
3 −V E+ D+
4 Zv E A+
5 ZV E+ D+
6 +V E A+
7 +V ZE A
8 +V E+ A
9 ZV ZE M
10 −V EM D
11 ZV EM A+
12 +V EM A
13 +V E+M A
14 ZV E+M D+
15 −V E+M D

The two methods proposed in this article were implemented to carry out the optimiza-
tion of the values of the membership functions of the type-1 fuzzy system implemented in
the cruise control controller. In order to calculate the RMSE error of control, Equation (26)
is used.

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (26)

Figure 9 depicts the individuals in each of the membership functions of the cruise
control controller.

Figure 9. Representation of the individuals for the cruise controller.

The type-1 system implemented for this controller contains a total of 45 points, where
25 points are fixed and 20 are optimized with each proposed method. The limits of the
values for each linguistic variable for each input and output are illustrated in Table 4.
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Table 4. Limitations of the linguistic values for the cruise controller.

Err Change Err Voltage

−V E− D
a0 = b0 = −1
−1 < c0 < −0.5

d0 = 0

a0 = b0 = −1
−1 < c0 < −0.4

d0 = −0.1

a0 = b0 = −1
−1 < c0 < −0.6

d0 = −0.09
E −M D+

−1 < a1 < −0.1 −1 < a1 < −0.4
b1 = −0.2 b1 = −0.2
−0.1 < c1 < 0 −0.2 < c1 < 0

ZV ZE M
−1 < a1 < 0 −0.09 < a2 < 0 −0.1 < a2 < 0

b1 = 0 b2 = 0 b2 = 0
0 < c1 < 1 0 < c2 < 0.10 0 < c2 < 0.1

E+M
0 < a3 < 0.10

b3 = 0.2
0.1 < c3 < 1

A+
0 < a3 < 0.1

b3 = 0.2
0.09 < c3 < 1

+V E+ A
a2 = 0 a4 = 0.1 a4 = 0.09

0 < b2 < 0.5 0.2 < b4 < 0.4 0.2 < b4 < 0.6
c2 = d2 = 1 c4 = d4 = 1 c4 = d4 = 1

5.2. Cruise Control

Many modern vehicles have a feedback control system, the automatic cruise control
system, which is a relatively simple device. The aim of the cruise control system to maintain
a constant speed of the vehicle without being affected by external perturbations, such as the
slope of the road or changes in the wind. To fulfill the main objective of the controller, the
vehicle speed must be measured, comparing it with the reference speed and then adjusting
the throttle based on a control strategy. Figure 10 represents the model of the vehicle
dynamics, where the vehicle mass is actuated by a control force. For this controller, the
parameters of the system are represented in Table 5.

Figure 10. Cruise controller representation.

Table 5. The system parameters of the cruise controller.

Parameter Description Value

m Vehicle mass 1000 kg
b Damping coefficient 50 N·s/m
r Reference speed 10 m/s
u Force on the vehicle 500 N

5.3. Experiments

To check the performance of the proposed methods, a type-1 fuzzy system was
implemented to a feedback control problem. In this case, the control problem is called
cruise control. The main goal of this controller is to maintain a constant speed of 10 m/s in
the vehicle regardless of the disturbances that may arise. All the experimentation in this
work was developed in MATLAB [57].

Experiments were carried out without applying noise to the controller and applying
a Gaussian noise of 0.5 percent, which represents 50 percent of the noise in the controller.
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The results obtained for the ST2FHS2 and ST2FDE2 methods are shown in Tables 6 and 7,
respectively. In these tables, the values that are analyzed (the minimum, maximum, average
and standard deviation obtained from each method in 30 experiments) are presented. Just
as the Z-value shown in Equation (27), which was obtained by performing the test statistic
Z-test, the values of the parameters used in this test were as follows: level of significance
0.05, for all Z-values lower than −1.645.

Z =

(
X1 − X2

)
− (µ1 − µ2)√

σ2
1 /n1 + σ2

2 /n2

(27)

Table 6. Results for the ST2FHS2 method.

Method HS-FLC without
Noise

ST2FHS2-FLC
without Noise

HS- FLC with
Noise

ST2FHS2-FLC
FLC with Noise

Best 5.98× 10−1 6.60× 10−2 3.58× 10−1 4.43× 10−2

Worst 9.17× 10+0 9.19× 10+0 6.64× 10+0 6.29× 10+0

Average 4.64× 10+0 3.36× 10+0 4.40× 10+0 3.58× 10+0

Std. 3.25× 10+0 2.29× 10+0 1.84× 10+0 1.85× 10+0

Z-value −1.7634 −1.7213

Table 7. Results for the ST2FDE2 method.

Method DE- FLC without
Noise

ST2FDE2-FLC
without Noise

DE -FLC with
Noise

ST2FDE2 -FLC
with Noise

Best 9.28× 10−1 7.59× 10−2 3.00× 10−1 7.05× 10−2

Worst 5.17× 10+0 1.76× 10+0 5.13× 10+0 1.15× 10+0

Average 6.04× 10+0 5.46× 10+0 5.11× 10+0 4.15× 10+0

Std. 1.36× 10+0 6.79× 10−1 6.79× 10−1 1.45× 10−1

Z-value −2.0899 −7.5732

Figure 11 shows the best simulation obtained with the HS and ST2FHS2 methods
without noise in the controller and Figure 12 presents the best surface obtained from each
of the aforementioned methods.

Figure 11. Comparison of the results obtained optimizing controller cruise control without noise:
(a) using the HS method and (b) using the proposed ST2FHS2 method.
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Figure 12. Comparison of the surface obtained optimizing controller cruise control without noise:
(a) using the HS method and (b) using the proposed ST2FHS2 method.

Figure 13 shows the best simulation obtained with the HS and ST2FHS2 methods with
noise in the controller and Figure 14 presents the best surface obtained from each of the
aforementioned methods.

Figure 13. Comparison of the results obtained optimizing controller cruise control with noise:
(a) using the HS method and (b) using the proposed ST2FHS2 method.
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Figure 14. Comparison of the surface obtained optimizing controller cruise control with noise:
(a) using the HS method and (b) using the proposed ST2FHS2 method.

The yellow lines in Figures 11 and 13 indicate the controller reference and the pink
line indicates the value obtained from the best simulation found with each method.

Figure 15 shows the best simulation obtained with the DE and ST2FDE2 methods
without noise in the controller and Figure 16 presents the best surface obtained from each
of the aforementioned methods.

Figure 15. Comparison of the results obtained optimizing controller cruise control without noise:
(a) using the DE method and (b) using the proposed ST2FDE2 method.
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Figure 17 shows the best simulation obtained with the DE and ST2FDE2 methods with
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Figure 17. Comparison of the results obtained optimizing controller cruise control with noise:
(a) using the DE method and (b) using the proposed ST2FDE2 method.
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The yellow line in Figures 15 and 17 indicates the controller reference and the pink
line indicates the value obtained from the best simulation found with each method.

6. Conclusions

The most important contribution of this article is the implementation of shadowed
type-2 fuzzy logic in the HS and DE algorithms for dynamically moving the parameters
of PArate and Cr, respectively, as these parameters had not been previously dynamically
moved for the solution of the above control problem. For this work, the control problem in
which the testing was performed was also solved separately by each algorithm used.

For the HS algorithm, the analysis of the results shows that when comparing HS-FLC
and ST2FHS2-FLC both without noise, the best results are 5.98 × 10−1 and 6.60× 10−2,
respectively. It is clearly observed that there is a difference, and the statistical test shows
that ST2FHS2-FLC without noise is lower on average than HS- FLC.

In the comparison of HS-FLC and ST2FHS2-FLC FLC with noise, the best results
obtained are 3.58× 10−1 and 4.43× 10−2, respectively, and in this paper, it is validated
that the best result is ST2FHS2-FLC with noise. This comparison was verified statistically,
proving that ST2FHS2-FLC with noise is better than HS- FLC.

Comparing DE-FLC and ST2FDE2-FLC without noise, the best results were 9.28× 10−1

and 7.59× 10−2, respectively, and we can note that there is a difference between both results.
The statistical test shows that ST2FDE2-FLC is better on average than DE- FLC without
noise. The comparison of the algorithm using a noise level in the controller shows that the
best results obtained for DE -FLC with noise is 3.00× 10−1 and for ST2FDE2 -FLC with
noise is 7.05× 10−2; so, it is statistically possible to confirm that ST2FDE2 -FLC with noise
it is better on average compared to DE -FLC with noise.
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In general, the finding presented in this paper is that the proposal to adapt the
PArate and Cr parameters for HS and DE algorithms combined with shadowed type-2 fuzzy
logic produces a significant improvement over the original algorithms and demonstrates
that the use of the proposed approach shows good results even when adding different
noise levels to the controller. As future work, we envision the application of the proposed
approach for the optimal design of fuzzy controllers for more complex problems, and also
for different areas of application, such as image processing, control to the path of robots in
simulations, or medical diagnosis.

Regarding the study of the shadowed type-2 fuzzy logic systems, one relevant conclu-
sion is that the main limitation is the computer performance of the metaheuristic, because
it is very important for the improvement of the efficiency of this method in its application.
The main contribution in this work was that it put forward a way of reducing execution
time, with the main goal to obtain good results. In this case, a control problem based on
precision is implemented, which is the cruise control problem. This case study requires
good stabilization to achieve the control goal in this problem.

In regard to future works, it would be interesting to observe and analyze the execution
time and performance of the shadowed type-2 fuzzy logic systems when higher noise
levels are considered in the control process.
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