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1. Introduction

The asymptotic behavior of solutions of partial differential equations in thin domains
is extensively studied in the vast mathematical literature. In particular, the thin tube
structures, introduced in [1], are considered as a geometrical model of a blood vessel
network (see other approaches to the modeling of blood vessel networks [2,3]). For the
steady-state Navier–Stokes equations in a network of thin tubes, an asymptotic expansion
of the solution was firstly constructed in [1]. The small parameter was introduced as the
ratio of the thickness to the length of tubes in the network. This asymptotic expansion
was used to justify the method of asymptotic partial decomposition of the domain firstly
introduced for the stationary Navier–Stokes equations in thin tube structures in [4]. This
method allowed reducing the computational costs that the Navier–Stokes equations posed
in thin tube structures. In particular, the full-dimensional computations are only needed
in small neighborhoods of the junction of tubes, while in the largest part of the domain,
the computations are one-dimensional. The non-stationary Navier–Stokes equations in
such a domain were studied in [5]. However, in these papers, the inflows and outflows
were described by the given velocity at the corresponding parts of the boundary. For nu-
merical implementation, the boundary conditions involving pressure for outflow are more
natural. That is why such conditions were extensively studied in mathematical literature
(see [6,7]). In particular, ref. [7] studies the stationary Navier–Stokes equations in a tube
structure (a bundle of three tubes) with the given pressure at the “free” ends of the tubes.
It is well known that this formulation of the problem has a solution for small data only.
Therefore, ref. [7] proves such theorem of existence and uniqueness and constructs a
first-order asymptotic approximation.

In the present paper, we consider the inflow–outflow boundary conditions for the
Bernoulli pressure. These non-linear boundary conditions were studied first in [8] for
the non-stationary Navier–Stokes equations for a compressible fluid and in [6] for the
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stationary Navier–Stokes equations for an incompressible fluid with small data where
the existence of the solution was proved. Since then, these conditions were considered
in different contexts: in [9], these conditions were studied for arbitrary data in a finite
pipe; in [10], a special model of the decomposition of the boundary value problem for
the non-Newtonian flow with the Bernoulli boundary conditions and some special newly
introduced interface conditions inside the domain was studied, and the existence of a weak
solution to this problem was proved.

In this publication, we will construct an asymptotic expansion of a weak solution of
the stationary Navier–Stokes equations in the whole thin tube structure with the Bernoulli
boundary conditions for the inflows and outflows. As an auxiliary result, we prove the
existence and uniqueness of the solution. It is proved by the same method as in [9] but
taking into account the dependence of the domain on the small parameter. The dependence
of an a priori estimate on the small parameter is addressed. The main difficulty is related to
the construction of boundary layers corresponding to the non-linear boundary conditions
and the justification of the asymptotic expansion.

The paper has the following structure. Section 1 is the Introduction. Section 2 re-
calls the main definitions for thin structures and formulates the Poincaré–Friedrichs and
embedding inequalities in thin structures. The main problem is formulated in Section 3.
Also, Section 3 is devoted to the mathematical analysis of the stationary Navier–Stokes
equations in thin tube structures with Bernoulli’s pressure condition on the inflow–outflow
parts of the boundary, while on the lateral part of the boundary, the no-slip boundary con-
dition is set. Theorem 1 states the existence of a weak solution for an arbitrary right-hand
side from L2 and constant given Bernoulli’s pressure on the inflows and outflows. An a
priori estimate is proved with a constant depending on ε, and this dependence is studied.
Theorem 2 states that for the data bounded by some constant, the solution is unique, and
the solutions corresponding to two different sets of the data satisfy the stability estimate:
the norm of the difference of the solutions is bounded by some constant multiplied by an
appropriate norm of the difference of the right-hand sides.

In Section 4, an asymptotic expansion of the solution of the stationary Navier–Stokes
equations in the thin structure is constructed. This construction uses the stabilization
theorem of the Stokes equations in a cylinder with the no-slip conditions on the lateral
boundary, with the proof provided in Appendix A. Compared to the Navier–Stokes prob-
lem with a given velocity on the whole boundary, the problem with Bernoulli’s conditions
leads to the Dirichlet problem on the graph for the macroscopic pressure, while in the case
of a given velocity, the problem on the graph is of Neumann’s type.

In Section 5, the residual is calculated and evaluated. Finally, in Section 6, we prove
the error estimate for the asymptotic approximations. Section 7 is the Conclusion.

2. Thin Tube Structure

Let us remind the reader of the definitions of the tube structure and its graph given
in [11].

Definition 1. Let O1, O2, ..., ON be N different points in Rn, n = 2, 3, and e1, e2, ..., eM be
M closed segments, each connecting two of these points (i.e., each ej = OijOkj

, where ij, k j ∈
{1, ..., N}, ij 6= k j). All points Oi are supposed to be the ends of some segments ej. The segments
ej are called edges of the graph. A point Oi is called a node if it is the common end of at least two
edges, and Oi is called a vertex if it is the end of the only one edge. Any two edges ej and ei can only
intersect at the common node. The set of vertices is supposed to be non-empty.

Denote B =
M⋃

j=1
ej the union of edges, and assume that B is a connected set (see

Figure 1). The union of all edges that have the same end point Ol is called the bundle Bl .
Figure 1 presents the graph as a union of edges e1, ..., e7, where points O1, O2, O3 are the
nodes, and points O4, O5, O6, O7, O8 are the vertices. Each point Oi, a node or a vertex, with
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all edges containing Oi as an end point, form bundle Bl , for example, O1 with edges e1, e2
and e5 form bundle B1.

O4 O1

O2

O5

O6

O3

O7

O8

e1

e2

e3

e4

e5 e6

e7

Figure 1. Graph of the tube structure.

Let e be some edge, e = OiOj. Consider two Cartesian coordinate systems in Rn. The

first one has the origin in Oi, and the axis Oix
(e)
n has the direction of the ray [OiOj); the

second one has the origin in Oj, and the opposite direction, i.e., Oj x̃
(e)
n , is directed over the

ray [OjOi).
Below, in various situations, we choose one or another coordinate’s system, denoting

the local variable in both cases by x(e) and pointing out which end is taken as the origin of
the coordinate system.

With every edge ej, we associate a bounded domain σj ⊂ Rn−1 containing the origin
Oi and having C2-smooth boundary ∂σj, j = 1, ..., M. For every edge ej = e and associated

σj = σ(e), we denote the cylinder by Π(e)
ε

Π(e)
ε =

{
x(e) ∈ Rn : x(e)n ∈ (0, |e|), x(e)′

ε
∈ σ(e)

}
,

where x(e)′ = (x(e)1 , ..., x(e)n−1), |e| is the length of the edge e, and ε > 0 is a small parameter.
Notice that the edges ej and Cartesian coordinates of nodes and vertices Oj, as well as
the domains σj, do not depend on ε. We will also define a semi-infinite dilated cylinder

Π(e)
∞ =

{
x(e) ∈ Rn : x(e)n ∈ [0, ∞), x(e)′ ∈ σ(e)

}
.

Let O1, ..., ON1 be nodes and ON1+1, ..., ON be vertices. Let ω1, ..., ωN1 be the bounded

domains independent of ε inRn; introduce the nodal domains ω
j
ε = {x ∈ Rn :

x−Oj

ε
∈ ω j}.

Every vertex Oj is the end of one and only one edge ek, which will also be denoted
as eOj ; we will also re-denote the domain σk associated to this edge as σOj . Notice that the
subscript k may be different from j.

Definition 2. By a tube structure, we call the following domain

Bε =
( M⋃

j=1

Π
(ej)
ε

)⋃( N1⋃
j=1

ω
j
ε

)
.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C2-smooth except for
the parts of the boundary that are the bases γ

j
ε = {x(e)′ ∈ σOj , x(e)n = 0} of cylinders Π(e)

ε ,
j = N1 + 1, ..., N (see Figure 2).
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j = 1, 2, 3 j = 1, 2, 3, 4

Figure 2. Tube structures.

Let r1 be the maximal diameter of domains ωi, i = 1, ..., N, denote r = r1 + 1. Consider
a node or a vertex Ol and all edges ej having Ol as one of their end points. We call the
union of all these edges a bundle of edges and denote it Bl , i.e., Bl =

⋃
j:Ol∈ej

ej. By a

bundle of cylinders BOl , we call the union ωl
ε ∪
( ⋃

j:Ol∈ej

Π
(ej)
ε

)
. We will also consider the

half-bundle HBOl = ωl
ε ∪
( ⋃

j:Ol∈ej

{x ∈ Π
(ej)
ε , x

(ej)
n ∈ [0, |ej|/2]}

)
. We will also use Ωl =

ωl ∪
( ⋃

j:Ol∈ej

Π
(ej)
∞

)
, a bundle of dilated cylinders. Denote also Ωε

l = {x ∈ Rn : x/ε ∈ Ωl}.

Below, we will use the following notation. Let V be a Banach space. The norm of the
element u in the function space V is denoted by ‖u‖V . Vector-valued functions are denoted
by bold letters, and the spaces of scalar and vector-valued functions are not distinguished
in notation. We use the standard notations for Sobolev and Hölder spaces.

Let Γ = ∂Bε\ ∪N
j=N1+1 γ

j
ε be the lateral surface of the domain Bε. We introduce the

function spaces Ŵ1,2
γ (Bε) and Ĵ1,2

γ (Bε):

Ŵ1,2
γ (Bε) = {η ∈W1,2(Bε) : η|Γ = 0, ητ |γj

ε
= 0, j = N1 + 1, . . . , N},

Ĵ1,2
γ (Bε) = {η ∈ Ŵ1,2

γ (Bε) : divη = 0}.

We also introduce a subspace J1,2
γ (Bε) of Ĵ1,2

γ (Bε) defined by

J1,2
γ (Bε) = {η ∈ Ĵ1,2

γ (Bε) :
∫
γ

j
ε

ηndS = 0, j = N1 + 1, . . . , N}.

Lemma 1 (Poincaré–Friedrichs inequality). The following inequality

‖u‖L2(Bε)
≤ CPFε‖∇u‖L2(Bε)

, ∀u ∈ Ŵ1,2(Bε) (1)

holds with the constant CPF independent of ε.

The proof follows from the standard Poincaré–Friedrichs inequality in a bounded
domain with the Dirichlet boundary condition on a part of the boundary, the partition of
Bε with parts of a diameter of the order of ε and the scaling argument.
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Lemma 2. Let Bε ⊂ Rn, n = 2, 3, u ∈ Ŵ1,2(Bε). Then

‖u‖4
L4(Bε)

≤ cε−2‖u‖2
L2(Bε)

(‖u‖2
L2(Bε)

+ ε2‖∇u‖2
L2(Bε)

)

≤ cε2‖∇u‖4
L2(Bε)

, n = 2
(2)

and
‖u‖4

L4(Bε)
≤ cε−3‖u‖L2(Bε)

(‖u‖2
L2(Bε)

+ ε2‖∇u‖2
L2(Bε)

)3/2

≤ cε‖∇u‖4
L2(Bε)

, n = 3
(3)

with the constant c independent of ε.

This lemma is proved in [12].

Lemma 3. Let Bε ⊂ Rn, n = 2, 3, u ∈ Ŵ1,2(Bε). Then

‖u‖2
L2(γ

j
ε)
≤ cε−1(‖u‖2

L2(Bε)
+ ε2‖∇u‖2

L2(Bε)
) ≤ cε‖∇u‖2

L2(Bε)
(4)

with the constant c independent of ε.

Proof. The inequality in Equation (4) follows immediately from well-known trace estimate

‖v‖L2(∂Ω) ≤ c‖v‖W1,2(Ω)

and scaling argument.

3. Formulation of the Problem. Existence, Uniqueness and Stability of a Solution

Let us consider the following boundary value problem for the steady-state Navier–
Stokes equations in a tube structure Bε

−ν∆u + (u · ∇)u +∇p = 0 in Bε,
divu = 0 in Bε,

u = 0 on ∂Bε\ ∪N
j=N1+1 γ

j
ε,

uτ = 0 on γ
j
ε,

−ν∂nu · n + (p +
1
2
|u|2) = cj/ε2 on γ

j
ε, j = N1 + 1, ..., N,

(5)

where ν is a positive constant, n is the unit normal vector to γ
j
ε, uτ = u− (u · n)n is the

tangential component of the vector u, ∂ng = ∇g · n is the normal derivative of g, cj are
some constants.

Note that in the fifth equation the first term is equal to zero.
In this section, we prove the existence and uniqueness of the solution to Equation (5),

with the right-hand side f ∈ L2(Bε). From the boundary condition uτ |γj
ε
= 0 and the

divergence equation divu = 0, it follows that −ν∂nu · n|
γ

j
ε
= 0. Thus, using the identity

1
2 (∇u2) = u · (∇u)t =

n
∑

i=k
uk∇uk, we can rewrite Equation (5) with the right-hand side in

the following form

−ν∆u + (u · ∇)u− u · (∇u)t +∇Φ = f in Bε,
divu = 0 in Bε,

u = 0 on ∂Bε\ ∪N
j=N1+1 γ

j
ε,

uτ = 0 on γ
j
ε,

Φ = pj on γ
j
ε, j = N1 + 1, ..., N,

(6)

where Φ = (p + 1
2 |u|2) is the Bernoulli pressure, pj stand for the constants cj/ε2.
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Let us define a weak solution of problem (6) as a vector field u ∈ Ĵ1,2
γ (Bε) satisfying

the integral identity

ν
∫
Bε

∇u : ∇η dx +
∫
Bε

(u · ∇)u · η dx−
∫
Bε

(η · ∇)u · u dx

= −
N
∑

j=N1+1
pj
∫
γ

j
ε

ηn dx′ +
∫
Bε

f · η dx
(7)

for every η ∈ Ĵ1,2
γ (Bε).

Introduce p∗j = pj − pN , j = N1, ..., N. Consider an equivalent weak formulation: find

a vector field u ∈ Ĵ1,2
γ (Bε) satisfying the integral identity

ν
∫
Bε

∇u : ∇η dx +
∫
Bε

(u · ∇)u · η dx−
∫
Bε

(η · ∇)u · u dx

= −
N−1
∑

j=N1+1
p∗j
∫
γ

j
ε

ηn dx′ +
∫
Bε

f · η dx
(8)

for every η ∈ Ĵ1,2
γ (Bε). The equivalence of these formulations follows from the identity

N−1

∑
j=N1+1

p∗j
∫
γ

j
ε

ηn dx′ =
N

∑
j=N1+1

pj

∫
γ

j
ε

ηn dx′,

which is a corollary of the relation

N

∑
j=N1+1

∫
γ

j
ε

ηn dx′ = 0

for the solenoidal vector-valued function η.
Let us explain this weak formulation heuristically; the rigorous analysis of the equiv-

alence of the weak formulation and the classical one needs to study the regularity of the
weak solution, see [13] for the methods.

Identity (7) follows from Equation (6) after multiplying them by η ∈ Ĵ1,2
γ (Bε) and

integrating by parts in Bε. On the other hand, for a sufficiently regular solution u sat-
isfying Equation (7), there exists a pressure field p such that the pair (u, p) satisfies
Equation (6)1,2 i.e., in Bε. The boundary conditions (Equation (6))3,4,5 are satisfied in
the sense of traces (see the definition of the space Ĵ1,2

γ (Bε)). More exactly, function Φ is
defined up to an additive constant, but this constant can be chosen so that Φ satisfies
Equation (6)5. Indeed, in Equation (7), take a smooth solenoidal function η satisfying
the boundary conditions η|Γ = 0, ητ |γj

ε
= 0, j = N1 + 1, ..., N. Integrating by parts in

Equation (7) yields ∫
Bε

(−ν∆u + (u · ∇)u− u · (∇u)t − f) · η dx

= −ν
N
∑

j=N1+1

∫
γ

j
ε

∂nu · η dS−
N
∑

j=N1+1
pj
∫
γ

j
ε

ηn dx′

= −
N
∑

j=N1+1
pj
∫
γ

j
ε

ηn dx′.

(9)

If η ∈ J∞
0 (Bε) = {η ∈ C∞

0 (Bε) : divη = 0}, then it follows from Equation (9) that∫
Bε

(L(u)− f) · η dx = 0 ∀η ∈ J∞
0 (Bε),
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where
L(u) = −ν∆u + (u · ∇)u− u · (∇u)t.

Hence, there exists a pressure function Φ, such that (e.g., [14])

L(u) +∇Φ = f a.e. in Bε.

Then ∫
Bε

(L(u)− f) · η dx = −
∫
Bε

∇Φ · η dx = −
N

∑
j=N1+1

∫
γ

j
ε

Φ · ηn dx′

for every solenoidal η ∈ Ĵ1,2
γ (Bε). Therefore,

N

∑
j=N1+1

∫
γ

j
ε

Φ · ηn dx′ =
N

∑
j=N1+1

pj

∫
γ

j
ε

ηn dx′.

Thus,
N

∑
j=N1+1

∫
γ

j
ε

(Φ− pj) · ηn dx′ = 0 ∀η ∈ Ĵ1,2
γ (Bε). (10)

Let us fix arbitrary j ∈ {N1 + 1, . . . , N}. Taking η ∈ J1,2
γ (Bε) such that η|γk

ε
= 0 for

k 6= j, we obtain
(Φ− pj)|γj

ε
= cj,

where cj is a constant (see [9,15]). Using these relations and now taking a test function
η ∈ Ĵ1,2

γ (Bε) in Equation (10) such that
∫
γk

ε

ηn dx′ = 0 for k 6= j and k 6= N,
∫
γ

j
ε

ηn dx′ = 1 and∫
γN

ε

ηn dx′ = −1, we obtain

N

∑
j=N1+1

cj

∫
γ

j
ε

ηn dx′ = cj − cN ⇒ cj = cN .

Thus,
cj = cN ∀j = N1 + 1, ..., N. (11)

Since the Bernoulli pressure Φ in the weak formulation is defined up to an additive
constant, we may set cj = cN = 0, j = N1 + 1, ..., N. Then from Equation (11), we have

Φ|
γ

j
ε
= pj, j = N1 + 1, ..., N.

Theorem 1. For arbitrary f ∈ L2(Bε) and p∗j ∈ R, j = N1 + 1, ..., N − 1 problem (6) admits at

least one weak solution u ∈ Ĵ1,2
γ (Bε). There holds the estimate

‖∇u‖L2(Bε)
≤ c
(

εn/2
N−1

∑
j=N1+1

|p∗j |+ ε‖f‖L2(Bε)

)
(12)

with the constant c independent of ε.
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Proof. Define in Ĵ1,2
γ (Bε) the inner product [u, η] =

∫
Bε

∇u : ∇η dx corresponding to the

Dirichlet norm. Using the Hölder inequality and Lemmas 1 and 2, we derive the estimates∣∣∣ ∫
Bε

(η · ∇)u · u dx
∣∣∣+ ∣∣∣ ∫

Bε

(u · ∇)u · η dx
∣∣∣

≤
( ∫

Bε

|u|4 dx
)1/4( ∫

Bε

|∇u|2 dx
)1/2( ∫

Bε

|η|4 dx
)1/4

≤ cεα‖∇u‖2
L2(Bε)

‖∇η‖L2(Bε)
,

where α = 1 for n = 2 and α = 1/2 for n = 3. From Lemma 3, it follows that∣∣∣ N−1
∑

j=N1+1
p∗j
∫
γ

j
ε

ηn dx′
∣∣∣ ≤ N−1

∑
j=N1+1

|p∗j |
( ∫

γ
j
ε

|η|2 dx
)1/2
|γj

ε|1/2

≤ cεn/2
N−1
∑

j=N1+1
|p∗j |‖∇η‖L2(Bε)

.
(13)

Finally, ∣∣∣ ∫
Bε

f · η dx
∣∣∣ ≤ ( ∫

Bε

|f|2 dx
)1/2( ∫

Bε

|η|2 dx
)1/2

≤ cε‖f‖L2(Bε)
‖∇η‖L2(Bε)

.
(14)

From above estimates and the Riesz theorem, it follows that the integral identity (8) is
equivalent to the operator equation in the space Ĵ1,2

γ (Bε):

u = Au, (15)

where the operator A is defined by

[Au, η] =
∫
Bε

ν−1
[
− (u · ∇)u · η+ (η · ∇)u · u + f · η

]
dx

−ν−1
N−1
∑

j=N1+1
p∗j
∫
γ

j
ε

ηn dx′ ∀η ∈ Ĵ1,2
γ (Bε).

Using the compactness of the embedding W1,2(Bε) ↪→ L4(Bε), it is standard to show
that the operatorA : Ĵ1,2

γ (Bε) 7→ Ĵ1,2
γ (Bε) is compact (see [14]). Thus, the existence of at least

one solution to Equation (15) will follow from the Leray–Schauder fixed point theorem if
we show that all possible solutions u(λ) of the equation

u(λ) = λAu(λ), λ ∈ [0, 1] (16)

are uniformly (with respect to λ) bounded.
A solution u(λ) to Equation (16) satisfies the integral identity

ν
∫
Bε

∇u(λ) : ∇η dx + λ
∫
Bε

(u(λ) · ∇)u(λ) · η dx− λ
∫
Bε

(η · ∇)u(λ) · u(λ) dx

= −λ
N−1
∑

j=N1+1
p∗j
∫
γ

j
ε

ηn dx′ + λ
∫
Bε

f · η dx ∀η ∈ Ĵ1,2
γ (Bε).

(17)

Taking η = u(λ) in Equation (17), we obtain

ν
∫
Bε

|∇u(λ)|2 dx = −λ
N−1

∑
j=N1+1

p∗j
∫
γ

j
ε

u(λ)
n dx′ + λ

∫
Bε

f · u(λ) dx.
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Using Equations (13) and (14), we obtain

‖∇u(λ)‖2
L2(Bε)

≤ c
(

εn/2
N−1
∑

j=N1+1
|p∗j |+ ε‖f‖L2(Bε)

)
‖∇u(λ)‖L2(Bε)

.

Hence

‖∇u(λ)‖L2(Bε)
≤ c
(

εn/2
N−1
∑

j=N1+1
|p∗j |+ ε‖f‖L2(Bε)

)
.

The constant c in the last inequality is independent of λ and ε. This finishes the proof
of the theorem.

Define α = 1 for n = 2 and α = 1/2 for n = 3.

Theorem 2. 1. There exists a positive constant c0 independent of ε, such that if

c0εα
(

εn/2
N−1

∑
j=N1+1

|p∗j |+ ε‖f‖L2(Bε)

)
< ν, (18)

then the weak solution u ∈ Ĵ1,2
γ (Bε) of Equation (6) is unique.

2. Let {p∗1j} and {p∗2j} j = N1 + 1, ..., N be two sets of real constants and f1, f2 be functions,

fi ∈ L2(Bε), i = 1, 2, satisfying Equation (18), and let ui ∈ Ĵ1,2
γ (Bε) be weak solutions of

problem (6) corresponding to {p∗ij} and fi, i = 1, 2. Then there exists a constant C independent of ε

such that

‖∇u1 −∇u2‖L2(Bε)
≤ εC‖f1 − f2‖L2(Bε)

+ cεn/2
N−1

∑
j=N1+1

|p∗1j − p∗2j|. (19)

Proof. 1. Suppose that there exist two weak solutions u1 and u2 satisfying Equation (8).
Subtracting identity (8) for u2 from the one for u1, we obtain

ν
∫
Bε

∇w : ∇η dx +
∫
Bε

[
(w · ∇)u1 · η+ (u2 · ∇)w · η

]
dx

−
∫
Bε

[
(η · ∇)u1 ·w + (η · ∇)w · u2

]
dx = 0,

(20)

where w = u1− u2. Taking η = w in Equation (20), in virtue of Lemma 2 and Equation (12)
for u2, we obtain

ν
∫
Bε

|∇w|2 dx =
∫
Bε

(w · ∇)w · u2 dx−
∫
Bε

(u2 · ∇) ·w dx

≤ 2‖∇u2‖L4(Bε)
‖∇w‖L2(Bε)

‖w‖L4(Bε)

≤ c0εα
(

εn/2
N−1
∑

j=N1+1
|p∗j |+ ε‖f‖L2(Bε)

)
‖∇w‖2

L2(Bε)
,

where the constant c0 is independent of ε. If condition (18) is valid, the last inequality yields∫
Bε

|∇w|2 dx = 0,

and, thus, w = 0.
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2. Subtracting identity (8) for u2 from the one for u1, we obtain

ν
∫
Bε

∇w : ∇η dx +
∫
Bε

[
(w · ∇)u1 · η+ (u2 · ∇)w · η

]
dx

−
∫
Bε

[
(η · ∇)u1 ·w + (η · ∇)w · u2

]
dx

=
∫
Bε

(f2 − f1) · η dx−
N−1
∑

j=N1+1

(
p∗1j − p∗2j

) ∫
γ

j
ε

ηn dx′,

(21)

where w = u1− u2. Taking η = w in Equation (21), in virtue of Lemma 2 and Equation (12)
for u2, we obtain

ν
∫
Bε

|∇w|2 dx =
∫
Bε

(w · ∇)w · u2 dx−
∫
Bε

(u2 · ∇)w ·w dx +
∫
Bε

(f2 − f1) ·w dx

−
N−1
∑

j=N1+1

(
p∗1j − p∗2j

) ∫
γ

j
ε

wn dx′

≤ c‖∇w‖2
L2(Bε)

‖u2‖L4(Bε)
+ ‖f2 − f1‖L2(Bε)

‖w‖L2(Bε)

+cεn/2
N−1
∑

j=N1+1
|p∗1j − p∗2j|‖∇w‖2

L2(Bε)

≤ c0εα
(

εn/2
N−1
∑

j=N1+1
|p∗j |+ ε‖f2‖L2(Bε)

)
‖∇w‖L2(Bε)

+εCPF‖∇w‖L2(Bε)
‖f2 − f1‖L2(Bε)

+ cεn/2
N−1
∑

j=N1+1
|p∗1j − p∗2j|‖∇w‖2

L2(Bε)
,

where εCPF is the Poincaré–Friedrichs constant for domain Bε (constant CPF is independent
of ε). If condition (18) is valid, the last inequality yields Equation (19).

Remark 1. Notice also that the weak solution u of problem (6) belongs to the space W2,2(Bε)
whenever f ∈ L2(Bε). The corresponding pressure belongs to W1,2(Bε). This can be proved
extending the solutions and the data by reflection over the sections γ

j
ε to a larger domain (see [13]).

4. Asymptotic Expansion of the Solution

In this section, we describe the construction of the asymptotic expansion. Let ζ ∈
C2(R) be an even function independent of ε such that ζ(t) = 0 if |t| ≤ 1/3 and ζ(t) = 1
if |t| ≥ 2/3. Denote e = eOj (the edge with the end Oj) and x(e) the Cartesian coordinates

corresponding to the origin Oj and the edge e, i.e., x(e) = P (e)(x −Oj), and P (e) is the
orthogonal matrix relating the global coordinates x with the local ones x(e).

The asymptotic expansion of the velocity field is sought in the form:

u(J)(x) = ∑Ol ,l=N1+1,...,N;e=OlOil
ζ
( |e| − x(e)n

3rε

)
U[e,J]

( x(e)
′

ε

)

+∑e=OαOβ ;α,β≤N1
ζ
( x(e)n

3rε

)
ζ
( |e| − x(e)n

3rε

)
U[e,J]

( x(e)
′

ε

)
+

N
∑

l=1

(
1− ζ

( |x−Ol |
|e|min

))
U[BLOl ,J]

( x−Ol
ε

)
,

(22)

where the first sum is taken over all edges that have a vertex as an end point (and with the
origin of the local coordinate system at the vertex), and the second sum is taken over all
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remaining edges. All the terms in these sums are extended by zero out of cylinders Π(e)
ε ;

the terms of the third sum are extended by zero out of the corresponding bundles:

U[e,J] =
(

P(e))t
(0, . . . , 0, Ũ[e,J])t,

U(e)
(j) =

(
P(e))t

(0, . . . , 0, Ũ(e)
j )t, j = 0, 1, . . . , J,

Ũ[e,J](y(e)′) =
J

∑
j=0

εjŨ(e)
j (y(e)′),

U[BLOl ,J](y) =
J

∑
j=0

εjU[BLOl ]
j (y).

(23)

The asymptotic expansion of the pressure for every half-cylinder Π(e)
ε , xn < |e|/2,

corresponding to the edge e = OlOil , l = N1 + 1, ..., N, (Ol is the origin of the local
coordinate system) is sought in the form:

p(J)(x) = −s(e)x(e)n + a(e) +
1
ε

(
1− ζ

( |x−Ol |
|e|min

))
P[BLOl ,J]

( x−Ol
ε

)
, (24)

and on every half-bundle HBOl , l = 1, ..., N1, (Ol is the origin of the local coordinate system)
we define:

p(J)(x) = ∑e⊂Bl
ζ
( x(e)n

3rε

)(
− s(e)x(e)n + a(e) − a(es)

)
+ a(es)

+
1
ε

(
1− ζ

( |x−Ol |
|e|min

))
P[BLOl ,J]

( x−Ol
ε

)
,

(25)

where the terms of the sum are extended by zero out of cylinders Π(e)
ε ,

s(e) =
1
ε2

J

∑
j=0

εjs(e)j , a(e) =
1
ε2

J

∑
j=0

εja(e)j (26)

and

P[BLOl ,J](y) =
J

∑
j=0

εjP[BLOl ,J]
j (y). (27)

Here es is the selected edge of the bundle (arbitrary chosen among edges of the bundle),
and the local coordinates x(e) are redefined so that all of them have the same origin Ol .

The algorithm of successive determination of the terms in asymptotic Equations (22)
and (24) is as follows.

The base case. Solve the conductivity problem on the graph for the function p0:

−κe
∂2 p(e)0

∂x(e)n
2 (x(e)n ) = 0, x(e)n ∈ (0, |e|),

− ∑
e:Ol∈e

κe
∂p(e)0

∂x(e)n

(0) = 0, l = 1, ..., N1,

p(e)0 (0) = cl , l = N1 + 1, ..., N,
p(e)0 (0) = p(es)

0 (0), ∀e ⊂ Bl .

(28)

Here, the local coordinates x(e) are redefined so that all of them have the same origin
Ol . Thus, p0 is a continuous function on the graph. Indeed, the last condition of this
problem means that the values of the function p0 for the values of local variables x(e)n = 0
associated to all edges e of the bundle Bl are the same. Note that by applying the same
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Lax–Milgram lemma arguments as in the first part of [16], one can prove the existence and
uniqueness of the solution of this problem.

Solving the above conductivity problem, we define the constants s(e)0 and a(e)0 for every
edge e such that

p(e)0 (x(e)) = −s(e)0 x(e)n + a(e)0

and the velocity

Ũ(e)
(0)(y

(e)′)= s(e)
(0)U

(e)
0 (y(e)′), U(e)

0 (y(e)′) =
(
P (e))t

(0, . . . , 0, Ũ(e)
(0))

t(y(e)′), (29)

where U(e)
0 (y(e)′) is the solution to the Dirichlet problem

−ν∆(y(e)′)U
(e)
0 (y(e)′) = 1, y(e)′ ∈ σ(e);

U(e)
0 |∂σ(e) = 0.

For l = 1, ..., N1, the boundary layer problem for (U[BLOl ]
0 (y), P[BLOl ]

0 (y)) is:

−ν∆yU[BLOl ]
0 +∇yP[BLOl ]

0 = f[REGOl ]
0 + f[BLOl ]

0 , y ∈ Ωl ,
divyU[BLOl ]

0 = h[REGOl ]
0 , y ∈ Ωl ,

U[BLOl ]
0 |∂Ωl

= 0,

(30)

where
f[REGOl ]

0 (y) =

= − ∑
e:Ol∈e

{
s(e)0

(
− ν∆y

(
ζ
(y(e)n

3r

)(
P (e))t

(0, . . . , 0, U[e]
0 (y(e)′))∗

)
−∇y

(
ζ
(y(e)n

3r

)
y(e)n
))

+ (a(e)1 − a(es)
1 ) ∇y

(
ζ
(y(e)n

3r

))}
,

(31)

f[BLOl ]
0 (y) = 0, (32)

h[REGOl ]
0 (y) = divy ∑

e:Ol∈e

{
s(e)0 ζ

(y(e)n
3r

)(
P (e))t

(0, . . . , 0, U[e]
0 (y(e)′))t

}
. (33)

Here the sum ∑
e:Ol∈e

is taken over all edges e that have ends in the node Ol , and

the terms are extended by zero out of each cylinder Π
(ej)
ε . Here we have an unknown

quantity in the right-hand side, the constant a(e)1 − a(es)
1 is unknown. Let us denote by

(U[BLOl ]
0 (y), P̂[BLOl ]

0 (y)) the solution of Equation (30) without the last term

(a(e)1 − a(es)
1 )∇y

(
ζ
(y(e)n

3r

))
in f[REGOl ]

0 (y) (since this term is in the gradient form, the solu-
tions only differ by the pressure components). The right-hand sides of Equation (30) have
compact supports. Therefore, according to results of Propositions 7.1 and 7.2 in [5], the
pressure P̂[BLOl ]

0 (y) exponentially stabilizes in each outlet (corresponding to the edge e) to

a constant, say â[BLOl ,e]
0 , in the sense of integral estimates

lim
k→+∞

∫
{y(e)n ∈(k,k+1)}∩Ωl

(P̂[BLOl ]
0 (y)− â[BLOl ,e]

0 )2 dy = 0. (34)

For l = N1 + 1, ..., N, (U[BLOl ]
0 (y), P[BLOl ]

0 (y)) = (0, 0).
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Consider now the conductivity problem of rank 1 on the graph for the function p1:

−κe
∂2 p(e)1

∂x(e)n
2 (x(e)n ) = 0, x(e)n ∈ (0, |e|),

− ∑
e:Ol∈e

κe
∂p(e)1

∂x(e)n

(0) = 0, l = 1, ..., N1,

p(e)1 (x(e)n = 0) = 0, l = N1 + 1, ..., N,
p(e)1 (0)− p(es)

1 (0) = â[BLOl ,e]
0 , ∀e ⊂ Bl , e 6= es,

(35)

where es is the selected edge of the bundle. Therefore, in this problem on the graph, the
solution may be discontinuous at the nodes. Namely, at each node Ol , there are prescribed
jumps of p(e)1 between the edges e and es of the bundle. This problem also has a unique
solution p1.

Now, constants s(e)1 and a(e)1 are known: p(e)1 (x(e)n ) = −s(e)1 x(e)n + a(e)1 , and we can
completely determine the pressure in the boundary layer problem (30):

P[BLOl ]
0 (y) = P̂[BLOl ]

0 (y)− ∑
e:Ol∈e, e 6=es

ζ
(y(e)n

3r

)
â[BLOl ,e]

0 .

Suppose that all terms of Equations (22)–(27) corresponding to the rank less or equal
to j− 1 are known, and the macroscopic pressure on the graph pj is known as well. Let us
describe the passage from rank j− 1 to rank j.

Step 1. As the macroscopic pressure on the graph pj is known, define constants s(e)j

and a(e)j for every edge e such that

p(e)j (x(e)) = −s(e)j x(e)n + a(e)j

and
Ũ(e)
(j) (y

(e)′) = s(e)j U(e)
0 (y(e)′),

U(e)
j =

(
P (e))t

(0, . . . , 0, Ũ(e)
(j) )

t.
(36)

Step 2. The boundary layer solution is a pair
(
U[BLOl ]

j , P[BLOl ]
j

)
that solves the follow-

ing Stokes system in Ωl , l = 1, ..., N1:

−ν∆yU[BLOl ]
j +∇yP[BLOl ]

j = f[REGOl ]
j + f[BLOl ]

j ,

divyU[BLOl ]
j = h[REGOl ]

j ,

U[BLOl ]
j |∂Ωl

= 0, j =, 0, ..., J,

(37)

where

f[REGOl ]
j (y(e)) = − ∑

e:Ol∈e

{
− ν∆y

[
ζ
(y(e)n

3r

)
U[e]

j (y(e)′)
]

+∇y

[
ζ
(y(e)n

3r

)(
− s(e)j y(e)n

)]
+ ∑

p+r=j−1
ζ
(y(e)n

3r

)(
U[e]

p (y(e)′) · ∇y
)(

ζ
(y(e)n

3r

)
U[e]

r (y(e)′)
)

+â(e)j+1 ∇yζ
(y(e)n

3r

)}
(38)
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(for j = J, the coefficient â(e)j+1(t) is omitted),

f[BLOl ]
j (y(e)) = − ∑

e:Ol∈e

{
∑

p+r=j−1
ζ
(y(e)n

3r

)(
U[e]

p (y(e)′) · ∇y
)
U[BLOl ]

r (y)

+ ∑
p+r=j−1

(
U[BLOl ]

p (y) · ∇y
)(

ζ
(y(e)n

3r

)
U[e]

r (y(e)′)
)}

− ∑
p+r=j−1

(
U[BLOl ]

p (y) · ∇y
)
U[BLOl ]

r (y),

(39)

h[REGOl ]
j (y, t) = − ∑

e:Ol∈e
divy

(
ζ
(y(e)n

3r

)
U[e]

j (y(e)′, t)
)

. (40)

Here the sum ∑
e:Ol∈e

is taken over all the edges e that have ends in the node Ol , and the

terms of the sum are extended by zero out of cylinders Π(e)
ε and by convention, while the

terms with the negative subscripts j are equal to zero.
First, we find the couple

(
U[BLOl ]

j , P̂[BLOl ]
j

)
, which is the solution to the same

Equation (37) without the last term in the definition of f[REGOl ]
j (see Equation (38)). Using

the results of Theorems 7.1 and 7.2 in [5], it can be proven by induction that U[BLOl ]
j expo-

nentially tends to zero as |y| → +∞, while the corresponding pressure function P̂[BLOl ]
j

stabilizes in outlets to infinity to some constants â[BLOl ,e]
j in the sense of Equation (34); these

constants may be different for different outlets. Since the pressure function is defined up to
an additive constant, we can fix the limit constant to zero for the outlet corresponding to
the selected edge es.

Then we solve the problems in half-cylinders Ωl , l = N1 + 1, ..., N:

−ν∆yU[BLOl ]
j +∇y P̂[BLOl ]

j = f[REGOl ]
j + f[BLOl ]

j ,

divyU[BLOl ]
j = 0,

U[BLOl ]
j |∂Ωl\{yn=0} = 0,

U[BLOl ]
jτ |yn=0 = 0,(

− ν
∂U

[BLOl ]
j ·n
∂n + P̂[BLOl ]

j

)∣∣∣
yn=0

= − 1
2 ∑

p+r=j−1
(U[e]

p (y(e)′) + U[BLOl ]
p |yn=0)(U

[e]
r (y(e)′)

+U[BLOl ]
r |yn=0), j = 0, ..., J,

(41)

where
∂U[BLOl ]

j · n
∂n

is fictive.

f[REGOl ]
j (y(e)) = 0, (42)

f[BLOl ]
j (y(e)) = − ∑

p+r=j−1

(
U[e]

p (y(e)′) · ∇y
)
U[BLOl ]

r (y)

− ∑
p+r=j−1

(
U[BLOl ]

p (y) · ∇y
)
U[e]

r (y(e)′)

− ∑
p+r=j−1

(
U[BLOl ]

p (y) · ∇y
)
U[BLOl ]

r (y).

(43)

The pressure here P̂[BLOl ]
j tends to a constant â[BLOl ,e]

j .
If j = J, then the right-hand side of the boundary condition is replaced by
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− 1
2 ∑

J−1≤p+r≤2J
(U[e]

p (y(e)′) + U[BLOl ]
p |yn=0)(U

[e]
r (y(e)′)

+U[BLOl ]
r |yn=0), j = 0, ..., J.

(44)

Step 3. Solve the conductivity problem on the graph for the function p(e)j+1 (j < J):

−κe
∂2 p(e)j+1

∂x(e)n
2 (x(e)n ) = 0, x(e)n ∈ (0, |e|),

− ∑
e:Ol∈e

κe
∂p(e)j+1

∂x(e)n

(0) = 0, l = 1, ..., N1,

p(e)j+1(0) = â[BLOl ,e]
j , l = N1 + 1, ..., N,

p(e)j+1(0)− p(es)
j+1(0) = â[BLOl ,e]

j , ∀e ⊂ Bl , e 6= es,

where the local coordinates x(e) are redefined so that all of them have the same origin Ol .
Step 4. Finally, we find the pressure P[BLOl ]

j (y) in the boundary layer problem
(Equations (37) and (38)) for l = 1, ..., N1:

P[BLOl ]
j (y) = P̂[BLOl ]

j (y)− ∑
e:Ol∈e, e 6=es

ζ
(y(eαm )

n
3r

)
â[BLOl ,e]

j ,

and P[BLOl ]
j (y) in the boundary layer problem (Equations (41) and (42)) for l = N1 + 1, ..., N:

P[BLOl ]
j (y) = P̂[BLOl ]

j (y)− â[BLOl ,e]
j .

This step finalizes the passage from j to j + 1.

5. Residual

Consider the asymptotic expansion
(
u(J), p(J)) of order J (see Equations (22) and (24)).

By the construction
u(J) ∈W2,2(Bε),∇p(J) ∈ L2(Bε). (45)

Moreover, ‖u(J)‖4
L4(Bε)

≤ cε(n−1)/4. Indeed, the Poiseuille part of u(J) satisfies this

estimate. The ‖ · ‖
L4(B(i)

ε )
-norm of the boundary layer functions in each bundle B(i)

ε can

be estimated by the L4-norm in the unbounded dilated domain Ωi multiplied by εn/4.
Taking into consideration an exponential decay of the boundary layers, we obtain the
desired estimate.

Put L(u, p) = −ν∆u + (u · ∇)u +∇p. Let us calculate L(u(J), p(J)) in a half-bundle
HBOl , l = 1, ..., N1. We obtain

f(J)(x) = L(u(J), p(J))

= ∑
J+1≤j≤2J

εj−2

(
∑

e:Ol∈e
∑

α+β=j−1

(
U(e)

(α)
ζ
(y(e)n

3r

)
· ∇y

)
U(e)

(β)
ζ
(y(e)n

3r

)

+ ∑
e:Ol∈e

[
∑

p+r=j−1
ζ
(y(e)n

3r

)(
U(e)

(p)(y
(e)′) · ∇y

)
U[BLOl ]

r (y)

+ ∑
p+r=j−1

(
U[BLOl ]

p (y, t) · ∇y
)(

ζ
(y(e)n

3r

)
U(e)

(r)(y
(e)′)

)



Mathematics 2021, 9, 2433 16 of 20

+ ∑
p+r=j−1

(
U[BLOl ]

p (y, t) · ∇y
)
U[BLOl ]

r (y)
])

+εJ−2 ∑
e:Ol∈e

â[BLOl ,e]
J ∇yζ

(y(e)n
3r

)
−
{
L
(

ζ
( |x−Ol |
|e|min

)
U[BLOl ,J](y, t), ζ

( |x−Ol |
|e|min

)
P[BLOl ,J](y, t)

)
χ(x)

}
.

Here y =
x−Ol

ε
; y(e) =

x(e)

ε
; χ = χ

supp
(

1−ζ
( |x−Ol |
|e|min

)) is the characteristic function of

the set supp
(

1− ζ
(
|x−Ol |
|e|min

))
. As before, the terms of the sums ∑

e:Ol∈e
are extended by zero

out of cylinders Π(e)
ε .

Here the first four lines come from the inertial term, and they contain all the combi-
nations of U(e)

β and U[BLOl ]
β that have an order higher than J − 2, and the next line comes

from the pressure gradient term; this term is the only one that was not compensated by the
boundary layer-in-space problems. The last line is the residual generated by the multiplica-
tion of the boundary layer correctors by the cut-off function ζ

( |x−Ol |
|e|min

)
. Notice that terms

appearing in this last line exponentially vanish because in the set supp
(
1− ζ

( |x−Ol |
|e|min

))
(where χ 6= 0), the order of this term in L2-norm is O(e−c1/ε) with some positive constant
c1 (see the Appendix in [5]). From the obtained formulas, it follows that

‖f(J)‖L2(Bε)
= ‖L(u(J), p(J))‖L2(Bε)

= O(εJ−2). (46)

In the vertex-associated cylinders BOl , l = N1 + 1, ..., N, the residual is simpler: it is

without the factor ζ
(y(e)n

3r

)
.

Let us calculate the divergence of u(J). In any half-bundle, we have

divu(J) = −∇ζ
( |x−Ol |
|e|min

)
·U[BLOl ,J](y) = h(J)(y).

Obviously, h(J) ∈ W1,2(Bε). Since the support of the function ∇ζ
( |x−Ol |
|e|min

)
belongs to

the middle third of every cylinder, the relations there

‖h(J)‖W1,2(Bε)
= O(e−c2/ε) (47)

hold for some c2 > 0.
Finally, the boundary conditions are satisfied with the residual εJ−1 â[BLOl ,e]

J on γl
ε. This

residual appears as a result of the subtraction of the constant â[BLOl ,e]
j from the boundary

layer pressure P[BLOl ]
j (y) in Step 4 of the algorithm. For all j < J, it is compensated by the

gaps of the pressure in the problem on the graph, but for j = J, it remains as a residual.
It is easy to see that ∫

Bε

h(J)(y) dy = 0.

Therefore, by Lemma 3.7 in [17], there exists a vector field w(J) ∈ W̊1,2(Bε) with such
that divw(J) = −h(J). Moreover, the estimates

‖w(J)‖W1,2(Bε)
≤ ε−1c‖h(J)‖L2(Bε)

(48)

hold.
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Set ũ(J) = u(J) + w(J). Then divũ(J) = 0, ũ(J) satisfies the boundary conditions with
the residual −εJ−1 â[BLOl ,e]

J on γl
ε, and because of Equation (47), we have

‖f(J)
1 ‖L2(Bε)

= O(εJ−2), (49)

where f(J)
1 = L(ũ(J), p(J)).

6. Error Estimate

Theorem 3. The following error estimate

‖u− ũ(J)‖W1,2(Bε)
= O(εJ+(n−1)/2) (50)

holds.

Proof. Let v = u− ũ(J). Then the integral identity

ν
∫
Bε

∇v : ∇η dx +
∫
Bε

(v · ∇)v · η dx +
∫
Bε

(v · ∇)ũ(J) · η dx

+
∫
Bε

(ũ(J) · ∇)v · η dx−
∫
Bε

(η · ∇)v · v dx

−
∫
Bε

(η · ∇)v · ũ(J) dx−
∫
Bε

(η · ∇)ũ(J) · v dx

= εJ−1
N
∑

l=N1+1
â[BLOl ,e]

J
∫
γl

ε

ηn dx′ −
∫
Bε

f(J)
1 · η dx

holds for every η ∈ Ĵ1,2
γ (Bε).

Taking η = v and integrating by parts, we obtain

ν
∫
Bε

|∇v|2 dx = εJ−1
N
∑

l=N1+1
â[BLOl ,e]

J
∫
γl

ε

vn dx′

+
∫
Bε

(v · ∇)v · ũ(J) dx−
∫
Bε

(ũ(J) · ∇)v · v dx−
∫
Bε

f(J)
1 · v dx.

(51)

From Lemma 3, it follows that∣∣∣εJ−1
N
∑

l=N1+1
â[BLOl ,e]

J
∫
γl

ε

vn dx′| ≤ cεJ−1+n/2
N
∑

l=N1+1
â[BLOl ,e]

J ‖∇v‖L2(Bε)
.

Using the Hölder inequality, Equations (2) and (3), and the estimate ‖ũ(J)‖L4(Bε)
≤

cε(n−1)/4, we obtain∣∣∣ ∫
Bε

(v · ∇)v · ũ(J) dx
∣∣∣, ∣∣∣ ∫

Bε

(ũ(J) · ∇)v · vũ(J) dx
∣∣∣ ≤ ‖v‖L4(Bε)

‖∇v‖L2(Bε)
‖ũ(J)‖L4(Bε)

≤ cεα+ n−1
4 ‖∇v‖2

L2(Bε)
≤ cε

3
4 ‖∇v‖2

L2(Bε)
,

where α = 1/2 for n = 2 and α = 1/4 for n = 3. Moreover,∣∣∣ ∫
Bε

f(J)
1 · v dx

∣∣∣ ≤ εCPF‖f
(J)
1 ‖L2(Bε)

‖∇v‖L2(Bε)
,

where εCPF is the Poincaré–Friedrichs constant for the domain Bε.
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From these estimates and Equation (51), we obtain

ν
∫
Bε

|∇v|2 dx ≤ cε
2(J−1)+n

2
N
∑

l=N1+1
â[BLOl ,e]

J ‖∇v‖L2(Bε)

+cε
3
4 ‖∇v‖2

L2(Bε)
+ εCPF‖f

(J)
1 ‖L2(Bε)

‖∇v‖L2(Bε)
.

Hence

‖∇v‖L2(Bε)
≤ C

ν−cε3/4 (ε
2(J−1)+n

2
N
∑

l=N1+1
â[BLOl ,e]

J + ε‖f(J)
1 ‖L2(Bε)

)

≤ C
ν−cε3/4 (ε

2(J−1)+n
2

N
∑

l=N1+1
â[BLOl ,e]

J + εJ−1).

If ν− cε3/4 > ν/2, then

‖v‖W1,2(Bε)
= ‖u− ũ(J)‖W1,2(Bε)

= O(εJ−1). (52)

Now, by evaluating the norm of the difference u(J) and u(J+2), we obtain:

‖ũ(J) − ũ(J+2)‖W1,2(Bε)
= O(εJ+(n−1)/2).

Replacing J with J + 2 in Equation (52), we obtain:

‖u− ũ(J+2)‖W1,2(Bε)
= O(εJ+1).

So, the triangle inequality gives Equation (50).

7. Conclusions

The main result of the paper is the construction of the asymptotic expansion of a
weak solution of the stationary Navier–Stokes equations in a thin tube structure with the
Bernoulli boundary conditions for the inflows and outflows. The existence and uniqueness
of the solution is proved. The dependence of the stability estimate on the small parameter
is addressed. We proved the error estimate. It allows evaluating the limitations of the
theoretical predictions of the asymptotic theory and introducing a new numerical strategy
for computations of the Navier–Stokes equations in thin tube structures.
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Appendix A. Stokes Equation in a Half-Cylinder with Neumann’s Condition on the
Base and No-Slip Condition on the Lateral Boundary

Let Ω be a half-cylinder ω× (0,+∞), where ω is a bounded domain in Rn−1 with a
Lipschitz boundary. Γ denotes the lateral boundary ∂ω× (0,+∞), and γ denotes the base
ω× {0}. Consider the stationary Stokes problem

−ν∆u +∇p = f +
n
∑

m=1

∂fm

∂xm
,

divu = 0,
u(x)|Γ = 0,

p(x)|γ = ψ(x′),
uτ(x)|γ = 0.

(A1)

Define JΓ,0 = {η ∈W1,2(Ω) : divη = 0, η|Γ = 0, ητ |γ = 0}. Assume that f, fm ∈ L2(Ω)
and ψ ∈ L2(γ). By a weak solution ofproblem (A1), we understand a vector field u ∈ JΓ,0
satisfying the integral identity

ν
∫
Ω

∇u : ∇η dx =
∫
γ

ψ(x′)ηn(x′) dx′ +
∫
Ω

f · η dx−
n

∑
m=1

∫
Ω

fm ·
∂η

∂xm
dx (A2)

for every vector field η ∈ JΓ,0.

Theorem A1. Assume that f, fm ∈ L2(Ω) and ψ ∈ L2(γ). Then there exists a unique weak
solution u of problem (A1). It satisfies the estimate

‖u‖W1,2(Ω) ≤ C
(
‖f‖L2(Ω) +

n

∑
m=1
‖fm‖L2(Ω) + ‖ψ‖L2(γ)

)
(A3)

with a constant C independent of f, fm and ψ.

Proof. The proof of this theorem is standard: the right-hand side of Equation (A2) is
considered as a linear continuous functional on the space of functions η belonging to JΓ,0.
This space is supplied with the inner product [u, η] = ν

∫
Ω∇u · ∇η dx. Using the trace

theorem and the Poincaré–Friedrichs inequality for functions from JΓ,0, we apply the Riesz
representation theorem and obtain the existence and uniqueness of the solution. Then
taking η = u and using again the trace theorem and Poincaré–Friedrichs inequality, we
obtain estimate (A3).

Let us define in Ω weighted function spaces. Denote

Eβ(x) = exp(2βxn). (A4)

Denote byW l,2
β (Ω), l ≥ 0 the space of functions obtained as the closure of C∞

0 (Ω) in
the norm

‖u‖W l,2
β (Ω)

=
( l

∑
|α|=0

∫
Ω

Eβ(x)|Dαu(x)|2 dx
)1/2

and setW0,2
β (Ω) = L2

β(Ω). Notice that for β > 0, elements of the spaceW l,2
β (Ω) exponen-

tially vanish as xn → ∞.
Denote Ωδ = {x ∈ Ω : xn > δ}.
There holds the following theorem.

Theorem A2. Assume that f, fm ∈ L2
β(Ω), β > 0. If β is sufficiently small, then the weak

solution u of problem (A1) belongs to the spaceW1,2
β (Ω).
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Moreover, if ∂ω ∈ C2 and fm = 0, then for any δ > 0, u ∈ W2,2
β (Ωδ), and there exists a

function p ∈ L2
loc(Ω) with∇p ∈ L2

β(Ωδ) such that the pair (u, p) satisfies Equation (A1) almost
everywhere in Ωδ. There exists a constant â such that lim

x∈Ω,|x|→∞
p(x) = â in the sense

∫
Ωδ

exp{2β1xn}|p(x)− â|2 dx < ∞ ∀β1 ∈ (0, β). (A5)

This assertion is a corollary of Theorems A.1 and A.2 and Proposition A.1 of [5], see
also [18,19]. The regularity of the solution in Ωδ needed for the proof follows from ADN
estimates (see [20]).
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