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Abstract: By introducing the dimension splitting method (DSM) into the improved interpolating 
moving least-squares (IMLS) method with nonsingular weight function, a dimension splitting–in-
terpolating moving least squares (DS–IMLS) method is first proposed. Since the DSM can decom-
pose the problem into a series of lower-dimensional problems, the DS–IMLS method can reduce the 
matrix dimension in calculating the shape function and reduce the computational complexity of the 
derivatives of the approximation function. The approximation function of the DS–IMLS method and 
its derivatives have high approximation accuracy. Then an improved interpolating element-free Ga-
lerkin (IEFG) method for the two-dimensional potential problems is established based on the DS–
IMLS method. In the improved IEFG method, the DS–IMLS method and Galerkin weak form are 
used to obtain the discrete equations of the problem. Numerical examples show that the DS–IMLS 
and the improved IEFG methods have high accuracy. 

Keywords: meshless method; dimension splitting–interpolating moving least squares (DS–IMLS) 
method; improved interpolating element-free Galerkin (IEFG) method; potential problem 
 

1. Introduction 
The construction of approximation functions in the meshless method is only related 

to nodes and independent of the mesh, so the meshless method has the advantages of no 
grid reconstruction and high computational accuracy [1–4]. The meshless method has be-
come an essential numerical method in scientific and engineering calculation problems 
[5–8]. 

Many meshless methods have been proposed based on different construction meth-
ods of the shape function or discretization approach of the problem to be solved. The 
smoothed particle hydrodynamics (SPH) method [9], moving least squares (MLS) approx-
imation [10], point interpolation method (PIM) [11], and radial basis function [12–15] are 
the widely used method to construct the meshless approximation. The major drawbacks 
of the SPH method include tensile instability and lack of approximation consistency. The 
MLS can provide an approximation with high smoothness on the whole problem domain. 
However, the major shortcoming of the MLS is a lack of Kronecker delta function prop-
erty. The meshless method based on the MLS cannot enforce the essential boundary con-
ditions directly. The approximation of the PIM satisfies the properties of delta function. 
However, when the node arrangement is not very suitable, the matrix singularity is likely 
to occur in the calculation of the shape function for PIM. 

The meshless method is mainly constructed based on the strong form and weak form. 
The strong form-based method has also been applied to various problems [16,17]. This 
method has the advantages of easy adaptive refinement and low computation cost [18–
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21]. Since no background mesh is required, this method is a real meshless method. How-
ever, the strong form-based meshless collation method also has the drawbacks of poor 
accuracy and stability. The element-free Galerkin (EFG) method [22], reproducing kernel 
particle method [23,24], local Petrov–Galerkin method [25], and boundary integral equa-
tion method [26] belong to the weak-from meshless method. Sometimes meshless meth-
ods based on weak forms may have weak computational efficiency. 

The MLS approximation, which is developed from the traditional least squares (LS) 
method [27–30], is one of the most important methods for constructing trial functions in 
meshless methods. Based on the MLS approximation, Belytschko et al. proposed the EFG 
method [31], which has a wide range of applications and high calculation accuracy. In 
addition to the EFG method, many MLS-based meshless methods have been proposed, 
such as meshless local Petrov–Galerkin [32] and boundary knot method [33]. 

To reduce the ill condition of the matrix in the calculation of MLS approximation, 
Liew and Cheng et al. proposed an improved MLS approximation by using the weighted 
orthogonal function [34,35]. Based on this improved orthogonal MLS approximation, the 
boundary element-free method [36] and improved MLS Ritz method [37] were developed. 
To improve the computational efficiency, by using the theory of complex variables, Liew 
and Cheng et al. proposed the complex variable moving least-squares (CVMLS) method 
[38]. The meshless method based on the CVMLS method can improve calculation effi-
ciency and accuracy [39,40]. 

Because the MLS method is not interpolable at the nodes, the MLS-based meshless 
method cannot directly enforce the essential boundary as the finite element method, 
which increases the additional computational burden. For this reason, Lancaster et al. pro-
posed the interpolated moving least-squares (IMLS) method [10] by selecting singular 
special weight functions. Based on IMLS, the interpolating element-free Galerkin (IEFG) 
method [41] and other interpolation-type meshless methods [32,42–45] were proposed. 
Wang et al. studied the error convergence of the IMLS method [46,47]. The meshless 
method based on the IMLS method has a good calculation effect [48–51]. However, the 
singularity of the weight function in the IMLS method is not conducive to numerical cal-
culation. To overcome the deficiency, Cheng et al. proposed an improved IMLS method 
with nonsingular weights [52,53]. The meshless method based on the improved IMLS has 
the advantages of nonsingular weight function and direct application of essential bound-
ary [54–56]. 

The dimension-splitting method (DSM) was first applied in the finite element 
method. This method divides high-dimensional problems into a series of lower-dimen-
sional problems and then iteratively solves them, which can effectively improve the com-
putational complexity of the numerical methods [4,57,58]. By introducing DSM into the 
meshless method, Cheng et al. first proposed the dimension splitting meshless method, 
which showing high calculation accuracy and efficiency [59–61]. When a high order pol-
ynomial basis function is used, there are many matrix multiplications and inversion of 
high order matrices in the MLS approximation, especially in the calculations for the 
higher-order derivatives of the approximation function. It leads to a considerable accu-
mulation of calculation errors and is not conducive to improving accuracy. This paper 
aims to propose a new hybrid method to obtain the shape function of the meshless method 
by incorporating the DSM into the improved IMLS method. 

The main contributions of this paper are as follows. (1) By coupling the DSM and 
improved IMLS methods, this paper aims to propose a new hybrid method to obtain the 
shape function of the meshless method, which is called the “dimension splitting – inter-
polating moving least squares (DS–IMLS) method.” (2) Similar to the weight function in 
the improved IMLS method, the weight function in the DS–IMLS method is also 
nonsingular, and the approximation satisfies the properties of the Kronecker delta func-
tion, so the meshless method based on the DS–IMLS method does not require additional 
numerical methods to enforce essential boundary conditions. (3) When a high order pol-
ynomial basis function is used, there are many matrix multiplications and inversion of 
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high order matrices in MLS. This may lead to a considerable accumulation of calculation 
errors. We expect that the order of the inverse matrix can be reduced when finding the 
shape function in the hybrid method. Based on the DSM, for two-dimensional space, the 
shape function is calculated from a series of one-dimensional spaces, and then the order 
of the matrix that needs to be inverted will be greatly reduced in the DS–IMLS method 
when calculating the shape function. (4) We hope that the DS–IMLS method has high cal-
culation accuracy for anisotropic node distribution. Even if the difference between the 
nodes spacings in the x and y directions is very large, the DS–IMLS method still has a good 
calculation effect. The performance of the method is verified through several numerical 
examples. 

This paper is organized as follows. In Section 2, we describe the improved IMLS 
method with nonsingular weight functions. Incorporating the DSM to the improved IMLS 
method, the DS–IMLS method is presented in Section 3. Then based on the Galerkin weak 
form and the DS–IMLS method, Section 4 describes the improved IEFG method for the 
two-dimensional potential problems. The numerical examples to verify the performance 
are prescribed in Section 5. Finally, a summary and conclusions are provided in Section 6. 

2. The Improved IMLS Method with Nonsingular Weight Functions 
To improve the deficiency that the weight function must be singular in the IMLS 

method [10], Wang and Cheng et al. proposed an improved IMLS method with nonsingu-
lar weight functions [52]. The improved IMLS method can apply any nonsingular weight 
function used in the MLS approximation. To meet the interpolation characteristics, the 
improved IMLS method performs the following interpolation transformation: 

1
( ) ( ) ( , ) ( )

n

i i k i k
k

b p I p
=

= −xx x x x x  , mi ,,2,1 = , (1)

1
( ) ( ) ( , ) ( ),

n

k k
k

u u I u
=

= − ∈Ωxx x x x x x   ,  (2)

where ( )u x  is an unknown function to be approximated, ( )ip x  is the basis function, 

and kx represents the node whose influence domain covering x . The ( , )kI x x  is a 
Kronecker δ  function on the nodes. In 1D space, it can be chosen as 

( , )
x x

I x x
x x≠

−
=

−∏ j
k

j k k j

, 1x R∈ . (3)

Let ( )kw −x x  denote the nonsingular weight function. Then, taking ( )ib xx  and 

( )u xx  as the basis function and a function to be approximated, respectively, the approx-
imation function of ( )u x  can be obtained from the traditional MLS method as 

1
( ) ( ) ( ) ( )x x x xφ

=

= =
n

h
k k

k
u u uΦ , (4)

where ( )kφ x  is the shape function defined by 

T 1
1 2( ) ( ( ), ( ), , ( )) ( ) ( ) ( ) ( )nφ φ φ −= = +x x x x I x p x A x B xΦ , (5)

with 

))(,),(),(( 21
T

nuuu xxxu = , (6)
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3. The DS–IMLS Method 
The MLS approximation is one of the most important methods to construct shape 

functions in the meshless method and is widely used in scientific and engineering prob-
lems. The process of seeking the shape function of the MLS approximation involves matrix 
multiplication and inversion. Especially in calculating high-order derivatives such as sec-
ond-order derivatives, there are many high-order matrix operations when using the quad-
ratic basis function. It leads to the accumulation of calculation errors and the reduction of 
the accuracy of high-order derivatives of the approximation function. By introducing the 
idea of the dimension splitting method into the improved IMLS method with nonsingular 
weight functions, a dimension splitting – interpolating moving least squares (DS–IMLS) 
method with nonsingular weight functions is proposed in this section. 

For two-dimensional problems, the problem domain is divided into a series of low-
dimensional regions by the DSM (as shown in Figure 1). Suppose the problem domain 
Ω  is split into L  layers in the x  direction, and ( )kΩ  denotes the -thk  layer satisfy-
ing kx x=  with relevant boundary ( )kΓ , 1,  2,  ,  k L=  . For the problem domain, it 
follows that 

1
1
{ } [ , )

L

k k k
k

x x x x +
=

Ω = = × . (15)
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Calculation point

Discrete nodes

1x 2x 3x  kx Lx0 x

y

 
Figure 1. Problem domain and node distribution for the DS–IMLS method. 

Based on the idea of the DSM, the unknown ( , )u x y  is first regarded as a one-di-
mensional function of x . Then, imposing the improved IMLS method with nonsingular 
weight functions on the node distribution 1 2{ , , , }Lx x x , the approximation function on 
x  can be obtained as 

1
( ) (, ,( ) )

n

k
h

k
k

u x Φ x u x yy
=

= , (16)

where ( )kΦ x  is the shape function determined by the improved IMLS method in one-

dimensional space from Equation (4), and suppose kx  is one of the n  nodes whose in-
fluence domain covers x . 

Next, the function ( , )ku x y  is treated as the function on y , and is approximated 

by the improved IMLS method on the split plane ( )kΩ . Suppose the plane ( )kΩ  is dis-
cretized as { }( ) ( ) ( )

1 2, , ,
k

k k k
my y y , where km  is the number of the nodes on ( )kΩ . Then 

we have 

( ) ( )

1
( , ) ( ) ( , )

kn
k k

k i k i
i

u x y Φ y u x y
=

=  , (17)

where ( )k
iy  is a node whose influence domain contains ( , )kx y , and kn  is the number, 

and ( ) ( )k
iΦ y  is the shape function deduced from the splitting plane ( )kΩ . 

Coupling Equations (16) and (17), the approximation function of ( , )u x y  can be 

( ) ( )

1 1
( ) ( ) (( , ), )

knn
k k

k i k i
k i

hu uΦ x Φ y x yx y
= =

=  . (18)

Let 
1

n

k
k

m n
=

= . Suppose that the global number of ( )( , )k
k ix y  in all discrete nodes 

of the problem domain is sv , 1, 2, ,s m=  . Then Equation (18) can be rewritten as 

( )1 1 2 2( ) ( ), ( ) ( ),( , ( ) (, )) n
h

nu Φ x y Φ x y Φ xx yy = =    Φ φu φ φ u , (19)

where Φ  is the shape function of the DS–IMLS method, and 

( )
1 2

T
1 ( , , , )

mv vmk vu u u
×

= u  u , (20)
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( )( ) ( ) ( )
1 2 1

( , ), ( , ), , ( , )
k
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k k k
k k nk k nu x y u x y u x y

×
=u  , 

( )( ) ( ) ( )
1 2( ) ( ),  ( ),  ,  ( )

k

k k k
k ny Φ y Φ y Φ y=    φ . (21)

The derivatives of the approximation function can be easily obtained as 

( )1, 1 2, 2 ,, , ( ) ( ), ( ), ( ),) , ( (( ) )x x nx nx x
hu Φ xx y Φ x y x y Φ y= =    Φ u φ φ φ u , (22)

( )1 1, 2 2, ,, , ( ) ( ), ( ) ( ), , ( ) ( )( , ) y y n n y
h
y yu Φy Φ x y x y Φ x yx = =   Φ u uφ φ φ , (23)

where the subscript is defined as 

, ( , ) ( , )h h
xu x y u x y

x
∂=
∂

. (24)

The radii of the influence domain of nodes for the approximation of Equations (16) 
and (17) are, respectively, defined as 

1 1 1dmax dγ = ⋅ , (25)

2 2 2dmax dγ = ⋅ , (26)

where 1d  and 2d  represent the distances between adjacent nodes in the x  direction 

and on the split plane, respectively. The 1dmax  and 2dmax  are the influence domain 
parameter determining the radii. To ensure the existence of the shape function, the radius 
of the influence domain should be large enough. We can adopt the adaptive algorithm to 
determine the radius so there is an appropriate number in the influence domain in the 
program. 

Thus, the DS–IMLS method is proposed. In the DS–IMLS method, the weight func-
tion is not singular, and the approximation satisfies the Kronecker delta property. Since 
the DSM is used to divide the problem into a series of lower-dimensional problems, the 
complexity of the matrix calculation for calculating the approximation function and its 
derivative is reduced. 

4. The Improved IEFG Method Based on the DS–IMLS Method 
Consider the following two-dimensional potential problems 

2 ( , ) ( , )u x y f x y−∇ = , ( , )x y ∈ 2RΩ ⊂ , (27)

with the essential boundary condition 

( , ) ( , )u x y u x y= , ( , ) ux y ∈Γ , (28)

where uΓ  is the boundary of Ω , f  and u  are given functions. 
The Galerkin weak form of Equation.（27） is 

2 ( , ) ( , ) d 0u u x y f x yδ
Ω

 ∇ + Ω =  , (29)

where uδ  denotes the variation of function u . 
From the partial integral, it follows that 

T( ) d ( , )d 0u u u f x yδ δ
Ω Ω

− ∇ ⋅∇ Ω + ⋅ Ω =  , (30)

where 
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T( , )u uu
x y

∂ ∂∇ =
∂ ∂

. (31)

From the DS–IMLS method, the function ( , )u x y  can be approximated as 

( )1 1 2 2( ) ( ), ( ) ( ) )( , ) ( , ) , , ( ) (h
n nu Φ x y Φx y u x x yx yy Φ= =≈    φ φΦu φ u . (32)

Substituting Equation (32) into Equation (30) yields 

T T T( ) d ( , )df x yδ δ
Ω Ω

Ω = ⋅ Ω  u BB u u Φ , (33)

where 

1, 1 2, 2 ,T

1 1, 2 2, ,

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
x x n x n

y y n n y

Φ x y Φ x y Φ x y
Φ x y Φ x y Φ x y
 

=  
 

  

  

φ φ φ
B

φ φ φ
. (34)

According to the arbitrariness of uδ , the discretized equation of Equation (27) is 

FKu= , (35)

where 

Td
Ω

= ΩK BB , (36)

( , )df x y
Ω

= ⋅ Ω F Φ . (37)

The shape functions of the DS–IMLS method have the interpolating property. Then 
the numerical solutions for two-dimensional potential problems can be obtained by di-
rectly substituting the essential boundary condition into Equation (35). Thus, the im-
proved IEFG method based on the DS–IMLS method is presented for the potential prob-
lems. 

5. Numerical Example 
This section presents some examples to illustrate the effectiveness of the DS–IMLS 

method and the improved IEFG method. Three examples are given for studying the con-
vergence and errors of the approximation function of the DS–IMLS method by using the 
known functions. In addition, two potential problems are solved by the improved IEFG 
method based on the DS–IMLS method. All numerical results are compared with those of 
the MLS or EFG methods. Both the MLS and DS–IMLS methods use second-order com-
plete polynomial basis functions and cubic spline weight functions. In the MLS method, 
the node rectangular influence field of the following form is adopted: 

0dmaxiε = ⋅Δ , (38)

where Δ  is a two-dimensional column vector representing the average distance between 
nodes in the x  and y  directions. To study the error, the average and maximum errors 
of the following form are defined: 

mean
1

1 M
h

k k
k

e u u
M =

= − , (39)

{ }max 1
max h

k kk M
e u u

≤ ≤
= −  (40)
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where ( , )k k ku u x y=  and ( , )h h
k k ku u x y=  are, respectively, the exact and numerical 

solutions at the node ( , )k kx y , and M  is the number of the discrete points used to cal-
culate the errors. 

The procedure for obtaining the approximation of the DS–IMS method and the solu-
tion of the improved IEFG method is as follows: 
(1) Input the parameters of the governing equation and geometric parameters. 
(2) Split the problem domain into L layers in the dimension splitting direction and de-

termine the radius of influence domain for point ix . Suppose the set of splitting 

points is 1 2{ , , , }Lx x x . 

(3) Discretize the plane ( )kΩ  by { }( ) ( ) ( )
1 2, , ,

k

k k k
my y y , 1, 2, ,k L=  . 

(4) For any given (x, y), get all nodes 1 2{ , , , }nx x x  whose influence field covers x, and 

denote the subscript set as 1v . Then calculate the corresponding shape functions 

( )kΦ x  by the improved IMLS method from 1 2{ , , , }nx x x  and 1v . 

(5) For every k∈ 1v , find all nodes in { }( ) ( ) ( )
1 2, , ,

k

k k k
my y y  whose influence domain co-

vers y . Suppose the global number is iv . Then calculate the ( ) ( )k
iΦ y  by introduc-

ing the improved IMLS method into { }( ) ( ) ( )
1 2, , ,

k

k k k
my y y  and iv . 

(6) Coupling Steps (4) and (5), the approximation function of ( , )u x y  can be obtained 

as ( , )hu x y = ( ) ( )

1 1
( ) ( ) ( , )

knn
k k

k i k i
k i

Φ x Φ y u x y
= =
  . Thus, the approximation of the DS–

IMLS method is presented. 
(7) Substitute the approximation and its derivatives into Equation (30), and then obtain 

the discrete equation of the potential problems. 
(8) Substitute the essential boundary condition into Equation (35) and solve Equation 

(35), and then obtain the node value u . Thus, the solution of the improved IEFG 
method for two-dimensional potential problems is obtained. 

5.1. The Examples of the DS–IMLS Method 

Example 1. Let ( , ) sin( )u x y xy= ，0 ,x y π≤ ≤ . 

The approximation function is constructed from the known function ( , )u x y  by the 
DS–IMLS method or MLS approximation. When 1 2dmax dmax 3= = , and 21 21×  reg-

ular nodes distribution is used, the numerical approximations of the functions ,  ,  x xxu u u  

on the line y x=  are shown in Figure 2, and the approximations of  ,  y yyu u  are given 
in Figure 3. The corresponding approximated values of the second derivatives obtained 
by the MLS method are shown in Figure 4. It can be seen from these figures that the ap-
proximation function and its first and second derivatives of the DS–IMLS method are very 
consistent with the exact solutions and have higher accuracy than the MLS method. 

In order to analyze the influence of influence domain parameters on the error, 
30 30×  regular points are used to calculate the average and maximum errors. The ap-
proximation functions of the DS–IMLS and MLS methods are constructed based on the 
21 21×  regular nodes distribution. When 2dmax 3= , the average and maximum errors 

of the nodes for different influence domain parameters 1dmax  are shown in Figure 5a. 

When fixing 1dmax 3= , the corresponding errors are shown in Figure 5b. The errors of 
the MLS method for different influence domain parameter values are depicted in Figure 
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6. For the quadratic basis function, the DS–IMLS method has higher stability on the influ-
ence domain parameters and has high calculation accuracy when the value is greater than 
3. 

To analyze the convergence of the approximation function with respect to node spac-
ing, when 5 × 5, 9 × 9, 13 × 13, 17 × 17, and 21 × 21 regular node distributions are respec-
tively adopted, the average discrete point errors meane  of the DS–IMLS and MLS methods 

at 30× 30 points are shown in Figure 7. The corresponding maximum point errors maxe  

are given in Figure 8. Here, 0dmax =2.1 , and 1 2dmax dmax 3= = . It can be seen that 
the approximation function of the DS–IMLS method gradually converges to the exact so-
lution with the increase of the number of nodes and has a higher convergence order than 
the MLS method. Let rand()  represent the uniformly distributed random numbers on 
(0,1) generated by Matlab and d  be the node spacing. When the perturbation of 
2 rand() 1

5
× − ×d  is added on the nodes 1 2{ , , , }Lx x x  and { }( ) ( ) ( )

1 2, , ,
k

k k k
my y y , the 

errors of meane  and maxe  under the irregular node distribution are plotted in Figure 9. 
This figure shows that the approximation of the DS–IMLS method also has high accuracy 
under irregular nodes distribution. 
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Figure 2. The numerical approximations of the functions ,  ,  x xxu u u  obtained by the DS–IMLS 
method. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-8

-6

-4

-2

0

2

4

6

exact solutions:  
numerical soluions:

 uy
 uyy

nu
m

er
ic

al
 so

lu
tio

ns

x  



Mathematics 2021, 9, 2424 10 of 23 
 

 

Figure 3. The numerical approximations of the functions ,  y yyu u  obtained by the DS–IMLS 

method. 
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Figure 4. The numerical approximations of ,  xx yyu u  obtained by the MLS method. 
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Figure 5. The average and maximum errors obtained by the DS–IMLS method for (a) different val-
ues of 1dmax  with fixed 2dmax =3 ; (b) different values of 2dmax  with fixed 1dmax =3 . 
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Figure 6. The average and maximum errors obtained by the MLS method for different influence 
domain parameters 0dmax . 
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Figure 7. The average discrete point errors meane  of the DS–IMLS and MLS methods for the differ-

ent node distances dx  of 5× 5, 9× 9, 13× 13, 17× 17, 21× 21 regular node distributions. 
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Figure 9. The errors meane  and maxe  of the MLS and DS–IMLS methods under the irregular node 
distribution obtained by small random disturbance. 

Example 2. Let 
2

( , )
ln(1 )

xeu x y
y

=
+

，0 , 1x y≤ ≤ . 

In this example, 21 21×  regular nodes distribution is used to construct the approx-
imation function. The numerical approximations of the ,  ,  x xxu u u  on the line y x=  

are plotted in Figure 10 by using the DS–IMLS method with 1 2dmax dmax 3= = . The 
corresponding numerical results of the second derivatives obtained by the DS–IMLS and 
MLS methods are shown in Figure 11. We can see that the approximation function and its 
derivatives of the DS–IMLS method fit the exact solution very well. 

When fixing 2dmax =3 , the average and maximum point errors of the 30 30×  reg-

ular calculation point are shown in Figure 12a for different values of 1dmax . Fixing 

1dmax =3 , the corresponding errors for different values of 2dmax  are listed in Figure 
12b. The effect of the influence domain parameter on the MLS method is shown in Figure 
13. It can still be seen that when the value of the influence domain parameter reaches 3, 
the DS–IMLS method has better calculation accuracy. 

When 0dmax =2.1 , and 1 2dmax dmax 3= = , the errors meane  and maxe  for the 
different node distance dx  of 5× 5, 9× 9, 13× 13, 17× 17, 21× 21 regular node distribu-
tions are respectively shown in Figures 14 and 15 by the DS–IMLS and MLS methods. The 
DS–IMLS method has a higher order of convergence than the MLS method. 
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Figure 10. The numerical approximations of the functions ,  ,  x xxu u u  on line y x= obtained by 
the DS–IMLS method for Example 2. 
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Figure 11. The numerical approximations of yyu  on line y x=  obtained by the DS–IMLS (a) and 

MLS (b) methods for Example 2. 
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Figure 12. The errors on the 30 30×  regular calculation point obtained by the DS–IMLS method 
for (a) different 1dmax  with 2dmax 3= ; (b) different 2dmax  with 1dmax 3= . 
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Figure 13. The errors obtained by the MLS method for different influence domain parameters 
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Figure 14. The errors meane  of the DS–IMLS and MLS methods for different node distances dx  of 
5× 5, 9× 9, 13× 13, 17× 17, 21× 21 regular node distributions. 
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Figure 15. The maximum errors maxe  of the DS–IMLS and MLS methods for the different node 

distance dx  for Example 2. 

Example 3. Let 3 2( , ) ( )sin( )u x y x x yπ= − ，0 , 1x y≤ ≤ . 

When 21 21×  regular nodes distribution is used and 1 2dmax dmax 3= = , the ap-

proximation and its first and second derivatives ,  x xxu u  on the line y x=  are plotted 
in Figure 16. The partial derivatives of the approximation function concerning y  are 
shown in Figure 17. The approximation of the DS–IMLS method is also consistent with 
the exact function. Let 0dmax 2.1= . When using the 5× 5, 9× 9, 13× 13, 17× 17, and 21

× 21 regular node distributions, the errors meane  and maxe  obtained by the DS–IMLS and 
MLS methods are shown in Figures 18 and 19, respectively. These two figures show that 
the approximation functions of the DS–IMLS and MLS methods are convergent to the ex-
act solutions, and the DS–IMLS method has a higher convergence rate. 
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Figure 16. The approximations of the functions ,  ,  x xxu u u  on the line y x=  obtained by the 
DS–IMLS method for Example 3. 
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Figure 17. The approximations of the functions ,  y yyu u  on the line y x=  obtained by the DS–

IMLS method for Example 3. 
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Figure 18. The errors meane  obtained by the DS–IMLS and MLS methods for the different node 

distances dx  of 5× 5, 9× 9, 13× 13, 17× 17, 21× 21 regular node distributions of Example 3. 
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Figure 19. The maximum errors maxe  obtained by the DS–IMLS and MLS methods for the different 

node distances dx  of Example 3. 

5.2. The Examples for the Improved IEFG Method Based on the DS–IMLS Method 

Example 4. Considering a temperature field governed by Laplace’s equation 
2 2

2
2 2 0T TT
x y

∂ ∂∇ = + =
∂ ∂

, 0 5, 0 10x y< < < < . (41)

The essential boundary conditions are used and deduced from the analytical temper-
ature solution of 

100sin( 10)sinh( 10)( , )
sinh( )

πx / y /T x y π
π

= . (42)

When 21 21×  regular nodes distribution is used and 1 2dmax dmax 3= = ,

1dmax =2.1 , the improved IEFG method of this paper and EFG methods are used to solve 
this potential problem. In the EFG method, the Lagrange multiplier method is applied to 
enforce the essential boundary condition. The exact and numerical solutions obtained 
with the improved IEFG and EFG methods on the line y x=  are listed in Figure 20. The 
corresponding absolute errors of numerical solutions of the improved IEFG and EFG 
methods are plotted in Figure 21. It is clear that the solutions of the improved IEFG and 
EFG methods are very consistent with the analytical solutions, but the improved IEFG 
method based on the DS–IMLS method has a smaller calculation error than the EFG 
method. 



Mathematics 2021, 9, 2424 17 of 23 
 

 

0 1 2 3 4 5

0

5

10

15

20

T

x

 exact solutions
 EFG
 this paper

 
Figure 20. The exact and numerical solutions on the line y x=  obtained by the improved IEFG 
and EFG methods. 
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Figure 21. The absolute errors of numerical solutions on the line y x=  obtained by the improved 
IEFG and EFG methods. 

Example 5. Considering a potential problem governed by 
2 2

2
2 2 ( , )u uu f x y
x y

∂ ∂∇ = + =
∂ ∂

, 0 , 1x y< < , (43)

with 
( ) ( )2 2( , ) 1 cos( ) 2 1f x y x x y y yπ π = − − −   

( )( ) ( ) ( )22 3 1 1 cos( ) 2 1 2 1 sin( )x y y y x x y yπ π π+ − − − − − . 
(44)

The essential boundary conditions are used, and the analytical solution is 

( )( )3 2 2( , ) cos( )u x y x x y y yπ= − − . (45)

Let 1 2dmax dmax 3= = , 1dmax =2.1 . Using the 21 21×  regular nodes distribu-
tion, the numerical solutions on the line y x=  solved by the improved IEFG and EFG 
methods are shown in Figure 22. The corresponding absolute errors are shown in Figure 



Mathematics 2021, 9, 2424 18 of 23 
 

 

23. For the two-dimensional potential problem, this example again illustrates that the im-
proved IEFG method based on the DS–IMLS method has a smaller calculation error than 
the EFG method. 
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Figure 22. The exact and numerical solutions on the line y x=  obtained by the EFG and improved 
IEFG methods of this paper for Example 5. 
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Figure 23. The absolute errors of solutions on the line y x=  obtained by the EFG and improved 
IEFG methods of this paper for Example 5. 

Example 6. The example considered is a potential problem with a trapezoidal field as 
shown in Figure 24. The source term is 

( ) ( )( )2( , ) 2 1 6 2 1f x y x x x y y= − + − − . (46)

The analytical solution is 

( )( )3 2 2( , )u x y x x y y= − − . (47)

Let 1 2dmax dmax 2= = , 1dmax =2.1 . When the 11 11×  regular nodes (shown in 
Figure 24) and the essential boundary condition are used, the numerical and exact solu-

tions on the line 
3
xy =  are shown in Figure 25. We can see that the numerical solution 

of this paper is in good agreement with the exact solution. When using different node 
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distributions shown in Table 1, the corresponding average errors meane  of the 31 31×  
node distribution are given in Table 1. When 11× 81 regular nodes are used, the EFG 
method cannot obtain the numerical solutions. It can be seen from the table that both the 
EFG and improved IEFG methods have high calculation accuracy. When the difference of 
the node spacings in the x and y directions is very large, the improved IEFG method can 
still obtain high accuracy, but the EFG method may not obtain a numerical solution. More-
over, reducing the spacing dx of dimension splitting is more conducive for the improved 
IEFG method of this paper to improve the accuracy than reducing the node spacing on 
the split plane. When 11× 11, 21× 11, , 81 11×  nodes are adopted, the relationships be-
tween the average error meane  and CPU time for the EFG and the method of this paper 
are shown in Figure 26. It can be seen from the figure that when the node spacing in X and 
Y directions is quite different, the IEFG method based on the DS–IMLS method has high 
calculation efficiency. 
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Figure 24. A trapezoidal field for Example 6. 
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Figure 25. The exact and numerical solutions on the line 
1
3

y x=  obtained by the EFG and im-

proved IEFG methods of this paper for Example 6. 
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Figure 26. The relationships between the average error meane  and CPU time for the EFG and the 
method of this paper under the 11 × 11, 21 × 11, , 81 × 11 nodes. 

Table 1. The average errors meane  of the EFG and improved IEFG methods for different nodes. 

Nodes EFG Improved 
IEFG Nodes EFG Improved 

IEFG Nodes EFG Improved 
IEFG 

11 × 11 2.03 × 10−5 9.56 × 10−6 11 × 11 1.44 × 10−5 9.56 × 10−6 11 × 11 2.03 × 10−5 9.56 × 10−6 
21 × 11 3.12 × 10−6 1.49 × 10−6 11 × 21 1.28 × 10−5 9.77 × 10−6 21 × 21 2.21 × 10−6 1.39 × 10−6 
41 × 11 1.24 × 10−6 3.13 × 10−7 11 × 41 5.79 × 10−5 5.11 × 10−5 41 × 41 3.32 × 10−7 2.88 × 10−7 
81 × 11 1.12 × 10−6 8.66 × 10−8 11 × 81 NaN 1.69 × 10−4 81 × 81 5.06 × 10−8 8.43 × 10−8 

6. Conclusions 
By introducing the DSM into the improved IMLS method with a nonsingular weight 

function, this paper presents a new hybrid method to obtain the shape function of the 
meshless method, which is called the dimension splitting–interpolating moving least 
squares (DS–IMLS) method. Then based on the Galerkin weak form and the DS–IMLS 
method, the improved IEFG method for the two-dimensional potential problems is also 
presented. The weight function used in the DS–IMLS method is nonsingular, and the ap-
proximation function has the characteristics of the Kronecker delta function. Then the im-
proved IEFG method based on the DS–IMLS method can directly impose essential bound-
ary conditions. Since the DSM can decompose the problem into a series of lower-dimen-
sional problems, the DS–IMLS method can reduce the matrix dimension and complexity 
in calculating the shape function. The derivatives of the approximation function in the 
DS–IMLS method can be easily calculated. For a two-dimensional space, the shape func-
tion is calculated from a series of one-dimensional spaces, and then the order of the matrix 
that needs to be inverted will be greatly reduced. The DS–IMLS method has high calcula-
tion accuracy for anisotropic node distribution. When the difference between the node 
spacings in the x and y directions is very large, the DS–IMLS method still has a good cal-
culation effect. Several examples demonstrated that the approximation function and its 
derivatives of the DS–IMLS and the improved IEFG methods have high accuracy in the 
regular problem domain. 
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