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Abstract: In this paper, we study the two weight commutators theorem of Riesz potential on an
arbitrary homogeneous group H of dimension N. Moreover, in accordance with the results in the
Euclidean space, we acquire the quantitative weighted bound on homogeneous group.
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1. Introduction and Main Results

Suppose H is a nilpotent Lie group, which has the multiplication, inverse, expansion
and norm configurations (x, y) 7→ xy, x 7→ x−1, (t, x) 7→ t ◦ x, x 7→ ρ(x) for x, y ∈ H, t > 0,
respectively, then we call H being a homogeneous group (see [1] or [2]). The multiplication
and inverse operations are polynomials and t-action is an automorphism of the group
structure, where t is of the form

t ◦ (x1, . . . , xn) = (tβ1 x1, . . . , tβn xn)

for some constants 0 < β1 ≤ β2 ≤ . . . ≤ βn. Besides, ρ(x) := max
1≤j≤n

{|xj|1/β j} is a norm

linked to the expansion configuration. We call the value N= ∑n
j=1 β j the dimensionality of

H. In addition to the Euclidean structure, H is equipped with a homogeneous nilpotent Lie
group structure, where Lebesgue measure is a bi-invariant Haar measure, the identity is
the origin 0, x−1 = −x and multiplication xy, x, y ∈ H, satisfies

(1) (ax)(bx) = ax + bx, x ∈ H, a, b ∈ R;
(2) t ◦ (xy) = (t ◦ x)(t ◦ y), x, y ∈ H, t > 0;
(3) if z = xy, then zk = Pk(x, y), where P1(x, y) = x1 + y1 and Pk(x, y) = xk + yk +

Pk(x, y) for k ≥ 2 with a polynomial Pk(x, y) depending only on x1, · · · , xk−1, y1, · · · , yk−1.
Finally, the Heisenberg group on R3 is an example of a homogeneous group. If we

define the multiplication

(x, y, u)(x′, y′, u′) = (x + x′, y + y′, u + u′ + (xy′ − yx′)/2),

(x, y, u)(x′, y′, u′) ∈ R3, the R3 with this group law is the Heisenberg group H1; a dilation
is defined by t ◦ (x, y, u) = (tx, ty, t2u), that is the parameters β1 = 1, β2 = 1, β3 = 2.

Definition 1. Let w(x) is a function on H, which is non-negative locally integrable. For 1 < p <
∞, we call that w is an Ap weight, denoted by w ∈ Ap, if

[w]Ap := sup
B

( 1
|B|

∫
B

w(x)dx
)( 1
|B|

∫
B

( 1
w
) 1

p−1 dx
)p−1

< ∞,

The supremum here is taken over of all balls B ⊂ H. We call that the quantity [w]Ap is the Ap
constant of w. For p = 1, if M(w)(x) ≤ cw(x) for a.e.x ∈ H, then we say that w is an A1 weight,
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denoted by w ∈ A1, where M represents the Hardy-Littlewood maximal function. In addition, let
A∞ := ∪1≤p≤∞ Ap, then we have

[w]A∞ := sup
B

( 1
|B|

∫
B

wdx
)

exp
( 1
|B|

∫
B

log
( 1

w
)dx
)
< ∞.

Definition 2. Let x ∈ H, and w(x) be a non-negative locally integrable function. For 1 < p <
q < ∞, w ∈ Ap,q if

[w]Ap,q := sup
B

( 1
|B|

∫
B

wq
)( 1
|B|

∫
B

w−p′
) q

p′ < ∞,

where p′ is the conjugate exponent of p, that is 1
p + 1

p′ = 1.

Definition 3. Suppose w ∈ A∞. Let b ∈ L1
loc(H), then b(x) ∈ BMOw(H) if

‖b‖BMOw(H) := sup
B

1
w(B)

∫
B
|b(x)− bB|dx < ∞,

where bB := 1
|B|
∫

B b(x)dx and the supremum is taken over of all balls B ⊂ H.

We now review the definition of Riesz potential on homogeneous group. For 0 < α <N,

Iα f (x) :=
∫
H

f (y)
ρ(xy−1)N−α

dy,

and the corresponding associated maximal function Mα by

Mα f (x) = sup
x∈B

1

|B|1− α
N

∫
B
| f (y)|dy.

The reason why we study the weighted estimates for these operators is because they
have a wide range of applications in partial differential equations, Sobolev embeddings or
quantum mechanics (see [3] or [4]).

Muckenhoupt and Wheeden [5] are the first scholars to study the Riesz potential.
When H is an isotropic Euclidean space, Muckenhoupt and Wheeden [5] show that Iα is
bounded from Lp(wp) to Lq(wq) for 1 < p < n

α , 1
q = 1

p −
α
n , w ∈ Ap,q. Moreover, the sharp

constant in this inequality was given in [6]:

‖Iα‖Lp(wp)→Lq(wq) ≤ C[w]
(1− α

n )max(1, p′
q )

Ap,q
.

Definition 4. Suppose b ∈ L1
loc(H), f ∈ Lp(H). Let [b, Iα] be the commutator defined by

[b, Iα] f (x) := b(x)Iα( f )(x)− Iα(b f )(x).

The iterative commutators (Iα)m
b , m ∈ N, are defined naturally by

(Iα)
m
b f (x) := [b, (Iα)

m−1
b ] f (x), (Iα)

1
b f (x) := [b, Iα] f (x).

In 2016, Holmes, Rahm and Spencer [7] prove that

[b, Iα] : Lp
wp(Rn)→ Lq

λq(Rn)⇔ b ∈ BMOµ(Rn),
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where 1 < p < n
α , 1

q = 1
p −

α
n , w, λ ∈ Ap,q, µ = w

λ . Later, the quantitative estimates for
iterated commutators of fractional integrals was obtained by N. Accomazzo, J. C. Martínez-
Perales and I. P. Rivera-Ríos [8].

In 2013, Sato [9] gave the estimates for singular integrals on homogeneous groups.
In [10], X. T. Duong, H. Q. Li and J. Li established the Bloom-type two weight estimates
for the commutator of Riesz transform on stratified Lie groups. Moreover, Z. Fan and
J. Li [11] obtained the quantitative weighted estimates for rough singular integrals on
homogeneous groups.

Motivated by the above estimates, we investigate the quantitative weighted estimation
for the higher order commutators of fractional integral operators on homogeneous groups.

In this paper, our main result is the follow theorem.

Theorem 1. Let 0 < α < N and 1 < p < N
α , q defined by 1

q +
α
N = 1

p , and m is a positive integer.
Assume that µ, λ ∈ Ap,q and that ν = µ

λ .

1. If b ∈ BMOν1/m(H), then

‖(Iα)
m
b f ‖Lq

λq (H) ≤ Cm,N,α,p‖b‖m
BMO

ν1/m (H)κm‖ f ‖Lp
µp (H), (1)

where

κm =
m

∑
k=0

(
m
k

)(
[λ]

k
m
Ap,q

[µ]
m−k

m
Ap,q

)(1− α
N )max{1, p′

q }
A(m, k)B(m, k)

and

A(m, k) ≤
(
[λq]

m+k+1
2

Aq
[µq]

m−k−1
2

Aq

)m−k
m max{1, 1

q−1 }
,

B(m, k) ≤
(
[λp]

k−1
2

Ap
[µp]

m− k−1
2

Ap

) k
m max{1, 1

p−1 }
.

2. For every b ∈ L1
loc(H), if (Iα)m

b is bounded from Lp
µp(H) to Lq

λq(H), then b ∈ BMOν1/m(H)

with

‖b‖m
BMO

ν1/m (H) . ‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H).

2. Domination of the Iterated Commutators by Sparse Operators
2.1. A System of Dyadic Cubes

We define a left-unchanged analogous-distance d on H by d(x, y) = ρ(x−1y), which
signifies that there has a constant A0 ≥ 1 such that for any x, y, z ∈ H,

d(x, y) ≤ A0[d(x, z) + d(z, y)].

Next, let B(x, r) := {y ∈ H : d(x, y) < r} be the open ball which is centered on x ∈ H
and r > 0 is the radius.

Let Ak be k-th denumerable index set. A denumerable class D := ∪k∈ZDk,Dk :=
{Qk

β : β ∈ Ak}, of Borel sets Qk
β ⊆ H is known as a set of dyadic cubes with arguments

δ ∈ (0, 1) and 0 < a1 ≤ A1 < ∞ if it has the characteristics below:
(1) H = ∪β∈Ak

Qk
β (disjoint union) for all k ∈ Z;

(2) If ` ≥ k, then either Q`
γ ⊆ Qk

β or Qk
β ∩Q`

γ = ∅;

(3) For arbitrary (k, β) and for any ` ≤ k, there is a exclusive γ such that Qk
β ⊆ Q`

γ;
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(4) For arbitrary (k, β) there exists no more that M (a settled geometric constant) γ
such that Qk+1

γ ⊆ Qk
β, and Qk

β = ∪Q∈Dk+1,Q⊆Qk
β
Q;

(5) B(xk
β, a1δk) ⊆ Qk

β ⊆ B(xk
β, A1δk) =: B(Qk

β);

(6) If ` ≥ k and Q`
γ ⊆ Qk

β, then B(Q`
γ) ⊆ B(Qk

β). The set Qk
β is called a dyadic cube of

generation k with centre xk
β ∈ Qk

β and side length `(Qk
β) = δk.

From the natures of the dyadic system above, for any Qk
β, Qk+1

γ and Qk+1
γ ⊂ Qk

β, we

get that there is a constant Ã0 > 0 such that:

|Qk+1
γ | ≤ |Qk

β| ≤ Ã0|Qk+1
γ |.

2.2. Adjacent Systems of Dyadic Cubes

Let {Dt : t = 1, 2, . . . , T } be a limited set of the dyadic families, then we call that it is a
collection of neighbor systems of dyadic cubes with arguments δ ∈ (0, 1), 0 < a1 ≤ A1 < ∞
and 1 ≤ Cadj < ∞ if it has the following two characteristics:

(1) For any t ∈ {1, 2, . . . , T }, Dt is a system of dyadic cubes with arguments δ ∈ (0, 1)
and 0 < a1 ≤ A1 < ∞;

(2) For any ball B(x, r) ⊆ H with δk+3 < r ≤ δk+2, k ∈ Z, there have t ∈ {1, 2, . . . , T }
and Q ∈ Dt of generation k which is centered on txk

β such that d(x, txk
β) < 2A0δk and

B(x, r) ⊆ Q ⊆ B(x, Cadjr). (2)

2.3. Sparse Operators

We review the concept of sparse family given in [12] on ordinary spaces of homoge-
neous description in the sense of Coifman and Weiss [13], which is also suitable in the case
of homogeneous groups.

Definition 5. Let 0 < η < 1, for every Q ∈ S , we call that the collection S ⊂ D of dyadic cubes
be a η-sparse, if there exists a measurable subset EQ ⊂ Q such that |EQ| ≥ η|Q| and the sets
{EQ}Q∈S have only limited overlap.

Definition 6. Given a sparse family, the sparse operator AS is defined by

AS ( f )(x) = ∑
Q∈S
〈 f 〉QχQ(x),

where 〈 f 〉Q = 1
|Q|
∫

Q f (x)dx.

In this subfraction, the primary target is to reveal the following quantitative edition of
Lacey’s pointwise domination inequality.

Proposition 1. Let 0 < α < N. Let m be a nonnegative integer. For every f ∈ C∞
c (H) and

b ∈ Lm
loc(H), there exits T dyadic systems Dt, t = 1, 2, . . . , T and η-sparse families St ⊂ Dt such

that for a.e.x ∈ H,

|(Iα)
m
b f | ≤ CN,m,α

T
∑
t=1

m

∑
k=0

(
m
k

)
Am,k

α,St
(b, f )(x), a.e.x ∈ H, (3)

where for a sparse family S , Am,k
α,S (b, ·) is the sparse operator given by

Am,k
α,S (b, f )(x) = ∑

Q∈S
|b(x)− bQ|m−k|Q|

α
N 〈 f (b− bQ)

k〉QχQ(x).
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To show the Proposition 1, we need some auxiliary maximal operators. To begin with,
let j̃0 be the smallest integer such that

2 j̃0 > max{3A0, 2A0Cadj} (4)

and let Cj̃0
:= 2 j̃0+2 A0.

Next we define the grand maximal truncated operatorMIα as follows:

MIα f (x) = sup
x∈B

ess sup
ξ∈B

|Iα( f χH\Cj̃0
B)(ξ)|,

where the first supremum is taken over of all balls B ⊂ H satisfying x ∈ B. We can know
that this operator is of vital importance in the following proof, Given a ball B0 ⊂ H, for
x ∈ B0 we also define a local edition ofMIα by

MIα ,B0 f (x) = sup
x∈B⊂B0

ess sup
ξ∈B

|Iα( f χCj̃0
B0\Cj̃0

B)(ξ)|.

Now, we claim that the following lemma is true.

Lemma 1. Let 0 < α < N. The following pointwise estimates holds:

1. For a.e.x ∈ B0,

|Iα( f χCj̃0
B0)(x)| ≤ MIα ,B0 f (x).

2. There exists a constant CN,α > 0 such that for a.e.x ∈ H,

MIα f (x) ≤ CN,α

(
Mα f (x) + Iα| f |(x)

)
.

Using the results of Lemma 1, we then prove the Proposition 1.

Proof of Proposition 1. In order to proof the Proposition 1, we refer to the thinking in [8]
for this domination, which is adapted to our situation of homogeneous groups.

Firstly, we suppose that f is supported in a ball B0 := B(x0, r) ⊂ H, next we disinte-
grate H which respect to this ball B0. We can do it as follows. We start define the annuli
Uj := 2j+1B0 \ 2jB0, j ≥ 0 and select the minimum integer j0 such that

j0 > j̃0 and 2j0 > 4A0 (5)

Next, for any Uj, we select the balls

{B̃j,`}
Lj
`−1, (6)

centred in Uj and with radius 2j− j̃0 r to cover Uj. From the doubling property [13], we obtain

sup
j

Lj ≤ CA0, j̃0
, (7)

where CA0, j̃0
is an positive constant that only relates on A0 and j̃0.

We now go over the characters of these B̃j,`. Denote B̃j,` := B(xj,`, 2j− j̃0 r), where j̃0
is defines as in (4). Then we have Cadj B̃j,` := B(xj,`, Cadj2j− j̃0 r), which was shown in the
proof of Theorem 3.7 in [12] that

Cadj B̃j,` ∩Uj+j0 = ∅, ∀j ≥ 0 and ∀` = 1, 2, . . . , Lj; (8)
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and

Cadj B̃j,` ∩Uj−j0 = ∅, ∀j ≥ j0 and ∀` = 1, 2, . . . , Lj. (9)

Now, because of the Equation (8) and (9), we see that each Cadj B̃j,`, at most overlap
with 2j0 + 1 annuli Uj’s. Moreover, for every j and `, Cj̃0

B̃j,` covers B0.

Next by observing the (2), there is an integer t0 ∈ {1, 2, . . . , T } and Q0 ∈ Dt0 such that
B0 ⊆ Q0 ⊆ CadjB0. Additionally, for this Q0, as in Section 2.1 the ball that includes Q0 and
has comparable measure to Q0 is represented by B(Q0). Consequently, B0 is overwritten
by B(Q0) and |B(Q0)| . |B0|, where the implicit constant relates only to Cadj and A1.

Now we claim that there exists a 1
2 -sparse family F t0 ⊂ Dt0(Q0), the set of all dyadic

cubes in t0-th dyadic system that are contained in Q0, such that for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)| ≤ CN,m,α

m

∑
k=0

(
m
k

)
Bm,k

α,F t0
(b, f )(x), (10)

where

Bm,k
α,F t0

(b, f )(x) = ∑
Q∈F t0

|b(x)− bRQ |
m−k|Cj̃0

B(Q)|
α
N 〈 f (b− bRQ)

k〉Cj̃0
B(Q)χQ(x).

Here, RQ is the dyadic cube in D t for some t ∈ {1, 2, . . . , T } such that Cj̃0
B(Q) ⊂

RQ ⊂ Cadj · Cj̃0
B(Q), where B(Q) is defined as in Section 2.1, j0 defined as in (5) and j̃0

defined as in (4).
Assume that we have already proven the assertion (10). Let us take a partition of H

as follows:

H =
∞⋃

j=0

2jB0.

We next consider the annuli Uj := 2j+1B0 \ 2jB0 for j ≥ 0 and the covering {B̃j,`}
Lj
`=1

of Uj as in (6). We note that for each B̃j,`, there exist tj,` ∈ {1, 2, . . . , T } and Q̃j,` ∈ Dtj,` such
that B̃j,` ⊆ Q̃j,` ⊆ Cadj B̃j,`. Therefore, we acquire that for each such B̃j,`, the enlargement
Cj̃0

B(Q̃j,l) covers B0 since Cj̃0
B̃j,` covers B0.

Next, we utilize (10) to each B̃j,`, then we acquire a 1
2 -sparse family F̃j,` ⊂ Dtj,`(Q̃j,`)

such that (10) can be established for a.e. x ∈ B̃j,`.
Now, set F := ∪j,`F̃j,`. Then we observe that the balls Cadj B̃j,` are overlapping not

more than CA0, j̃0
(2j0 + 1) times, where CA0, j̃0

is the constant in (7). Then, we can obtain

that F is a 1
2CA0, j̃0

(2j0+1) -sparse family and for a.e. c ∈ H,

|(Iα)
m
b ( f )(x)|

≤ CN,m,α

m

∑
k=0

(
m
k

)
∑

Q∈F

(
|b(x)− bRQ |

m−k|Cj̃0
B(Q)|

α
N 〈 f (b− bRQ)

k〉Cj̃0
B(Q)

)
χQ(x).

Since Cj̃0
B(Q) ⊂ RQ, and it is clear that |RQ| ≤ C|Cj̃0

B(Q)| (C depends only on

Cadj), we obtain that 〈 f 〉Cj̃0
B(Q) ≤ C〈 f 〉RQ . Now, we set St := {RQ ∈ Dt : Q ∈ F}, t ∈

{1, 2, . . . , T }, then since the fact that F is 1
2CA0, j̃0

(2j0+1) -sparse, we can acquire that each

family St is 1
2CA0, j̃0

(2j0+1)c -sparse.
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Now, we let

η :=
1

2CA0, j̃0
(2j0 + 1)c

,

where c is a constant relating only on C, Cj̃0
. Then it follows that (3) holds, which finishes

the proof.

Proof of the Assertion (10). To demonstrate the assertion it suffice to attest the following
recursive computation: there exist the cubes Pj ∈ Dt0(Q0) that does not intersect each other
such that ∑j |Pj| ≤ 1

2 |Q0| and for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0(x)

≤ CN,m,α

m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Cj̃0
B(Q0)|

α
N 〈 f (b− bRQ0

)k〉Cj̃0
B(Q0)

χQ0(x)

+ ∑
j
|(Iα)

m
b ( f χCj̃0

B(Pj)
)(x)|χPj(x).

Iterating this estimate, we acquire (10) withF t0 being the union of all the families {Pk
j },

where {P0
j } = {Q0}, {P1

j } = {Pj} as mentioned above, and {Pk
j } are the cubes acquired

at the k-th stage of the iterative approach. Clearly F t0 is a 1
2 -sparse family, since let

EPk
j
= Pk

j \ ∪jPk+1
j .

Now we prove the recursive estimate. For any countable family {Pj}j of disjoint cubes
Pj ⊂ Dt0(Q0), we have that

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0(x)

≤ |(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)
)(x)χPj(x)

≤ |(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)χPj(x)

+ ∑
j
|(Iα)

m
b ( f χCj̃0

B(Pj)
)(x)χPj(x)

So we just have to reveal that we can opt for a family of pairwise disjoint cubes
{Pj} ⊂ Dt0(Q0) such that ∑j |Pj| ≤ 1

2 |Q0| and that for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)|χPj(x)

≤ CN,m,α

m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Cj̃0
B(Q0)|

α
N 〈 f (b− bRQ0

)k〉Cj̃0
B(Q0)

χQ0(x).

Using that (Iα)m
b f = (Iα)m

b−c f for any c ∈ R, and also that

(Iα)
m
b−c f =

m

∑
k=0

(−1)k
(

m
k

)
Iα

(
(b− c)k f

)
(b− c)m−k,
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it follows that

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0\∪jPj(x) + ∑

j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)|χPj(x)

≤
m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)|χQ0\∪jPj

(x)

+
m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k ∑
j
|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)\Cj̃0

B(Pj)

)
(x)|χPj(x)

=: W1 + W2.

Now we define the set E = ∪m
k=0Ek, where

Ek = {x ∈ B0 :MIα ,B0

(
(b− bRQ0

)k f
)
(x) > CN,m,α|Cj̃0

B(Q0)|
α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

},

with CN,m,α being a positive number to be chosen.
From [8], we can choose CN,m,α big enough (depending on Cj̃0

, Cadj, and A1) such that

|E| ≤ 1

4Ã0
|B0|,

where Ã0 is defined in Section 2.1. We now utilize the Calderón-Zygmund decomposition
to the function χE on B0 at the height λ := 1

2Ã0
, to acquire pairwise disjoint cubes {Pj} ⊂

Dt0(Q0) such that

1

2Ã0
|Pj| ≤ |Pj ∩ E| ≤ 1

2
|Pj|

and |E \ ∪jPj| = 0. This implies that

∑
j
|Pj| ≤

1
2
|B0| and Pj ∩ Ec 6= ∅.

Fix some j. Since we have Pj ∩ Ec 6= ∅, we observe that

MIα ,B0

(
(b− bRQ0

)k f
)
(x) ≤ CN,m,α|Cj̃0

B(Q0)|
α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

,

which allows us to control the summation in W2 by considering the cube Pj.
Now by (i) in Lemma 1, we know that

|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)| ≤ MIα ,B0

(
(b− bRQ0

)k f
)
(x), for a.e. x ∈ B0.

Since |E \ ∪jPj| = 0, we have that

MIα ,B0

(
(b− bRQ0

)k f
)
(x)

≤ CN,m,α|Cj̃0
B(Q0)|

α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

, for a.e. x ∈ B0 \ ∪jPj.

Consequently,

|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)|

≤ CN,m,α|Cj̃0
B(Q0)|

α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

, for a.e. x ∈ B0 \ ∪jPj.
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These estimates allow us to control the remaining terms in W1, so we are done.

Proof of Lemma 1. Now we give the proof process of Lemma 1.
The result in the Euclidean space case can be referred to as [8]. Now, we can adapt the

proof in [8] to our setting of homogeneous groups.
(i) Let r is close enough to 0 such that B(x, r) ⊂ B0. Then,

|Iα( f χCj̃0
B0)(x)| ≤ |Iα( f χCj̃0

B(x,r))(x)|+ |Iα( f χCj̃0
B0\Cj̃0

B(x,r))(x)|

≤ |Iα( f χCj̃0
B(x,r))(x)|+MIα ,B0 f (x),

the estimate for the first term follows by standard computations involving a dyadic annuli-
type decomposition of the B(x, r).

|Iα( f χCj̃0
B(x,r))(x)| =

∣∣∣∣ ∫H
f (y)χCj̃0

B(x,r)

d(x, y)N−α
dy
∣∣∣∣

≤
∫

B(x,Cj̃0
r)

| f (y)|
d(x, y)N−α

dy

=
1

∑
i=−∞

∫
B(x,Cj̃0

ir)\B(x,Cj̃0
i−1r)

| f (y)|
d(x, y)N−α

dy

≤
1

∑
i=−∞

(Cj̃0
i−1r)α−N

∫
B(x,Cj̃0

ir)
| f (y)|dy

=
1

∑
i=−∞

( 1
Cj̃0

)α−N
(Cj̃0

ir)α 1
(Cj̃0

ir)N

∫
B(x,Cj̃0

ir)
| f (y)|dy

≤ CN,α,Cj̃0
rα M f (x).

Then,

|Iα( f χCj̃0
B0)(x)| ≤ CN,α,Cj̃0

rα M f (x) +MIα ,B0 f (x), (11)

the estimate in (i) is settled letting r → 0 in (11).
(ii) Let x, ξ ∈ B := B(x0, r). Let Bx be the closed ball with radius 4(A0 + Cj̃0

)r, which
centered at x. Then Cj̃0

B ⊂ Bx, and we acquire

|Iα( f χH\Cj̃0
B)(ξ)| = |Iα( f χH\Bx )(ξ) + Iα( f χBx\Cj̃0

B)(ξ)|

≤ |Iα( f χH\Bx )(ξ)− Iα( f χH\Bx )(x)|
+ |Iα( f χBx\Cj̃0

B)(ξ)|+ |Iα( f χH\Bx )(x)|

For the first term, since ρ is homogeneous of degree α− N, and by using the Proposi-
tion 1.7 in [1], we get
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|Iα( f χH\Bx )(ξ)− Iα( f χH\Bx )(x)|

≤
∫
H\Bx

| f (y)|
∣∣∣∣ 1
d(y, ξ)N−α

− 1
d(x, y)N−α

∣∣∣∣dy

≤ CN,α

∫
H\Bx

2r
d(x, y)N−α+1 | f (y)|dy

= CN,α

∞

∑
i=1

∫
2i Bx\2i−1Bx

2r
d(x, y)N−α+1 | f (y)|dy

≤ CN,α

∞

∑
i=1

2r(
2i−1|Bx|

1
N

)N−α+1

∫
2i Bx
| f (y)|dy

= CN,α

∞

∑
i=1

2r(
2i−122r(A0 + Cj̃0

)
)N−α+1

∫
2i Bx
| f (y)|dy

= CN,α

∞

∑
i=1

2r
2i+1r(A0 + Cj̃0

)
· 1(

2i+1r(A0 + Cj̃0
)
)N−α

∫
2i Bx
| f (y)|dy

≤ CN,α Mα f (x).

Next, for ξ ∈ B, y ∈ Bx \ Cj̃0
B, we have d(y, ξ) > 2 j̃0 r. Then we have

|Iα( f χBx\Cj̃0
B)(ξ)| ≤

∫
Bx\Cj̃0

B

1
d(y, ξ)N−α

| f (y)|dy

≤ 1

|2 j̃0 r|N−α

∫
Bx
| f (y)|dy

= CN,α
1

|4(A0 + Cj̃0
)r|N−α

∫
Bx
| f (y)|dy

≤ CN,α Mα f (x).

Finally, we observe that

|Iα( f χH\Bx )(x)| = |
∫
H\Bx

f (y)
d(x, y)N−α

dx|

≤
∫
H

| f (y)|
d(x, y)N−α

dx

= Iα| f |(x),

which finishes the proof of (ii).

Next, we review that the dyadic weighted BMO space associated with the system Dt

is defined as

BMOη,Dt(H) := {b ∈ L1
loc(H) : ‖b‖BMOη,Dt < ∞},

where ‖b‖BMOη,Dt = sup
Q∈Dt

1
η(Q)

∫
Q |b(x)− bQ|dx. Then according to the dyadic structure

theorem studies in [14], one has

BMOη(H) =
T⋂

t=1

BMOη,Dt(H).
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Now, to verify a function b is in BMOη(H), it suffices to verify it belongs to each
weighted dyadic BMO space BMOη,Dt(H). Given a dyadic cube Q ∈ Dt with t =
1, 2, . . . , T , and a measurable function f on H, we define the local mean oscillation of
f on Q by

ωλ( f ; Q) = inf
c∈R

(
( f − c)χQ

)∗
(λ|Q|), 0 < λ < 1,

where (
( f − c)χQ

)∗
(λ|Q|) = sup

E⊂Q,|E|=λ|Q|
inf
x∈E
|( f − c)(x)|.

With these notation and dyadic structure theorem above, following the same proof
in [10], we also acquire that for any weight η ∈ A2, we have

‖b‖BMOη(H) ≤ C
T
∑
t=1

sup
Q∈Dt

ωλ(b; Q)
|Q|

η(Q)
, 0 < λ ≤ 2N+1, (12)

where C depends on η.

Proposition 2. Suppose that H is a homogeneous group with dimension N, b ∈ L1
loc(H). Then

for any cube Q ⊂ H, there exist measurable set Fi ⊂ Q with i = 1, 2, such that

ω
2

1
N+2

(b; Q) ≤ b(x)− b(y), ∀(x, y) ∈ F1 × F2.

Proof. We take ideas from N. Accomazzo, J. C. Martínez-Perales and I. P. Rivera-Ríos [8].
In [8], for any cube Q ∈ Dt with t = 1, 2, . . . , T , there exists a subset E ⊂ Q with |E| =

1
2N+2 |Q| such that for every x ∈ E,

ω
2

1
N+2

(b; Q) ≤ |b(x)−mb(Q)|,

where mb(Q) is a not necessarily unique number that satisfies

max
{
|{x ∈ Q : b(x) > mb(Q)}|, |{x ∈ Q : b(x) < mb(Q)}|

}
≤ |Q|

2
.

Let E1 ⊂ Q with |E| = 1
2 |Q| and such that b(x) ≥ mb(Q) for every x ∈ E1. Further let

E2 = Q \ E1, then |E2| = 1
2 |Q| and for every x ∈ E2, b(x) ≤ mb(Q).

We obtain that at least half of the set E is contained either in E1 or in E2 since Q is the
disjoint union of E1 and E2. Without loss of generality, we assume that half of E is in E1,
then we let F1 = E ∩ E1, F2 = E2 ∩ (E ∩ E1)

c, we have

|F1| = |E| − |E ∩ (E ∩ E1)
C| ≥ |E| − |E|

2
=
|Q|

2N+3 ,

and

|F2| = |E2| − |E2 ∩ (E ∩ E1)| ≥
1
2
|Q| − 1

2N+3 |Q| = (
1
2
− 1

2N+3 )|Q|.

Then if x ∈ F1 and y ∈ F2, we have that

ω
2

1
N+2

(b; Q) ≤ b(x)−mb(Q) ≤ b(x)− b(y),

which shows that Proposition 2 holds.
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Given a dyadic grid D, define the dyadic Riesz potential operator

IDα f (x) = ∑
Q∈D

1

|Q|1− α
N

∫
Q
| f (y)|dyχQ(x).

Proposition 3. Given 0 < α < N, then for any dyadic grid D,

IDα f (x) . Iα f (x). (13)

Proof. The result in the Euclidean setting is from the Proposition 2.1 in [15]. Here, we can
adapt the proof in [15] to our setting of spaces of homogeneous type.

3. Proof of Theorem 1

To proof (i), we are following the ideas in [16] or [8].
Let D be a dyadic system in H and let S be a sparse family from D. We know

Am,k
α,S (b, f )(x) = ∑

Q∈S
|b(x)− bQ|m−k|Q|

α
N
〈
(b− bQ)

k f
〉

QχQ(x),

by duality, we have that

‖Am,k
α,S (b, f )(x)‖Lq

λq (H) ≤ sup
g:‖g‖

Lq′
λq′ (H)

=1
∑

Q∈S

( ∫
Q
|g(x)λq||b(x)− bQ|m−kdx

)
|Q|

α
N

×
(

1
|Q|

∫
Q
|b(x)− bQ|k| f (x)|dx

)
.

By Lemma 3.5 in [12], there exists a sparse family S̃ ⊂ D such that S ⊂ S̃ and for
every cube Q ∈ S̃ , for a.e. x ∈ Q,

|b(x)− bQ| ≤ CN ∑
P∈S̃ ,P⊂Q

Ω(b, P)χP(x),

where Ω(b, P) = 1
|P|
∫

P |b(x)− bP|dx
Assume that b ∈ BMOη(H) with η to be chosen, then we have for a.e. x ∈ Q,

|b(x)− bQ| ≤ CN ∑
P∈S̃ ,P⊂Q

1
η(P)

∫
P
|b(x)− bP|dx · η(P)

|P| χP(x)

≤ CN‖b‖BMOη
(H) ∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x).

Then, we further have

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∑
Q∈S

(
1
|Q|

∫
Q
|g(x)λq|

(
∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)m−k
dx
)

×
(

1
|Q|

∫
Q

(
∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)k
| f (x)|dx

)
· |Q| · |Q|

α
N .
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Next, note that for each ` ∈ N, from [12], for an arbitrary function h, we have∫
Q
|h(x)|

(
∑

Q∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)`
dx

.
∫

Q
A`
S̃ ,η

(|h|)(x)dx,

where AS̃ ,η(|h|)(x) := AS̃ (|h|)η, AS̃ (h) := ∑
Q∈S̃

hQχQ and A`
S̃ ,η

f stands for the `-th

iteration of AS̃ ,η .
Then we have

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∑
Q∈S

( ∫
Q
Am−k
S̃ ,η

(|g|λq)
)
· 1

|Q|1− α
N

( ∫
Q
Ak
S̃ ,η

(| f |)
)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∫
H

∑
Q∈S

1

|Q|1− α
N

( ∫
Q
Ak
S̃ ,η

(| f |)χQ(x)
)
· Am−k
S̃ ,η

(|g|λq)

= CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∫
H

Iα
S

(
Ak
S̃ ,η

(| f |)
)
(x)
(
Am−k
S̃ ,η

(|g|λq)
)
(x)dx,

where Iα
S ,η f := Iα

S ( f )η and Iα
S f (x) = ∑

Q∈S
1

|Q|1−
α
N

∫
Q | f |χQ(x).

From (13) and the boundedness of Iα f , if p, q, α are as in the hypothesis of Theorem
1.1 and w ∈ Ap,q,S ⊂ D, then

‖Iα
S‖Lp

wp (H)→Lq
wq (H) ≤ CN,p,q,α[w]

(1− α
N )max{1, p′

q }
Ap,q

. (14)

Observe that AS̃ is self-adjoint, then∫
H

Iα
S

(
Ak
S̃ ,η

(| f |)
)(
Am−k
S̃ ,η

(|g|λq)
)
=
∫
H
AS̃A

m−k−1
S̃ ,η

[
Iα
S ,η

(
AK
S̃ ,η

(| f |)
)]
|g|λq.

By Hölder inequality, we have that

‖Am,k
α,S (b, f )(x)‖Lq

λq (H) ≤ CN‖b‖m
BMOη(H)‖AS̃A

m−k−1
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λq (H).

Applying that ‖AS̃‖Lp
w(H) ≤ CN,p[w]

max{1, 1
p−1 }

Ap
(see, e.g., [17] ),

‖AS̃A
m−k−1
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λq (H)

≤ CN,p[λ
q]

max{1, 1
q−1 }

Aq
‖AS̃A

m−k−2
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqηq (H)

≤ CN,p[λ
q]

max{1, 1
q−1 }

Aq
[λqηq]

max{1, 1
q−1 }

Aq
‖Am−k−2
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqηq (H)

≤ CN,p

( m−k−1

∏
i=0

[λqηiq]Aq

)max{1, 1
q−1 }‖Iα

S ,ηAk
S̃ ,η

(| f |)‖Lq

λqη(m−k−1)q (H).
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Using (14), we have that

‖Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqη(m−k−1)q (H) = ‖Iα
SAk
S̃ ,η

(| f |)‖Lq

λqη(m−k)q (H)

≤ CN,p,α[ληm−k]
(1− α

N )max{1, p′
q }

Ap,q
‖Ak
S̃ ,η

(| f |)‖Lp

λpη(m−k)p (H),

and applying again ‖AS̃‖Lp
w(H) ≤ CN,p[w]

max{1, 1
p−1 }

Ap
,

‖Ak
S̃ ,η

(| f |)‖Lp

λpη(m−k)p (H) ≤ CN,p

( m

∏
i=m−k+1

[λpηip]Ap

)max{1, 1
p−1 }‖ f ‖Lp

λpηmp (H),

which, along with the previous estimate, yields

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN,p,α‖b‖m
BMOη(H)A(m, k)B(m, k)[ληm−k]

(1− α
N )max{1, p′

q }‖ f ‖Lp
λpηmp (H),

where

A(m, k) =
( m−k−1

∏
i=0

[λqηiq]Aq

)max{1, 1
q−1 }

,

and

B(m, k) =
( ∞

∏
i=m−k+1

[λpηip]Ap

)max{1, 1
p−1 }

.

Hence, setting η = ν1/m, where ν = ( µ
λ )

1/p, it reading follows from Hölder’s inequality

[λsνs i
m ]As ≤ [λs]

m−i
m

As
[µs]

i
m
As

, s = p, q.

Thus, we acquire that

A(m, k) ≤
( m−k−1

∏
i=0

[λq]
m−i

m
Aq

[µq]
i
m
Aq

)max{1, 1
q−1 } ≤

(
[λq]

m+k+1
2

Aq
[µq]

m−k−1
2

Aq

)m−k
m max{1, 1

q−1 }
,

and

B(m, k) ≤
( m

∏
i=m−k+1

[λp]
m−i

m
Ap

[µp]
i
m
Ap

)max{1, 1
p−1 } ≤

(
[λp]

k−1
2

Ap
[µp]

m− k−1
2

Ap

) k
m max{1, 1

p−1 }
.

Combining all the preceding estimates obtains (i).
To proof (ii), we are going to follow ideas in [10]. Based on (12), it suffices to show that

there exists a positive constant C such that for all dyadic cubes Q ∈ Dt,

ω
2

1
N+2

(b; Q)m ≤ C
(

ν1/m(Q)

|Q|

)m

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H) (15)
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Using Proposition 2 and Hölder inequality implies that

ω
2

1
N+2

(b; Q)m|F1||F2| ≤
∫

F1

∫
F2

(
b(x)− b(y)

)m
dxdy

≤ dima(Q)N−α
∫

F1

∫
F2

(
b(x)− b(y)

)m

d(x, y)N−α
dxdy

= dima(Q)N−α
∫

F1

(Iα)
m
b (χF2)(x)dx

≤ C|Q|1−
α
N

( ∫
Q

λ−q′
) 1

q′
·
( ∫

H
[(Iα)

m
b (χF2)]

qλqdx
) 1

q

≤ C|Q|1−
α
N

( ∫
Q

λ−q′
) 1

q′
·
( ∫

Q
µp
) 1

p

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H)

= C|Q|2
(

1
|Q|

∫
Q

λ−q′
) 1

q′
·
(

1
|Q|

∫
Q

µp
) 1

p

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H),

where we used that 1
q +

α
N = 1

p .
Further, this yields

ω
2

1
N+2

(b; Q)m ≤ C
(

1
|Q|

∫
Q

λ−q′
) 1

q′
·
(

1
|Q|

∫
Q

µp
) 1

p

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H).

Then from [8], we have(
1
|Q|

∫
Q

µp
) 1

p

≤ C
(

1
|Q|

∫
Q

ν1/m
)m( 1

|Q|

∫
Q

λp
) 1

p

,

so the

ω
2

1
N+2

(b; Q)m

≤ C
(

1
|Q|

∫
Q

ν1/m
)m( 1

|Q|

∫
Q

λ−q′
) 1

q′
(

1
|Q|

∫
Q

λp
) 1

p

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H).

Now we observe that since q > p then by Hölder inequality,

(
1
|Q|

∫
Q

λp
) 1

p

≤
(

1
|Q|

∫
Q

λq
) 1

q

and
(

1
|Q|

∫
Q

λ−q′
) 1

q′
≤
(

1
|Q|

∫
Q

λ−p′
) 1

p′
,

then (
1
|Q|

∫
Q

λ−q′
) 1

q′
(

1
|Q|

∫
Q

λp
) 1

p

≤
[(

1
|Q|

∫
Q

λq
) 1

q
(

1
|Q|

∫
Q

λ−p′
) q

p′
] 1

q

.

Consequently, since λ ∈ Ap,q, we finally get

ω
2

1
N+2

(b; Q)m ≤ C
(

1
|Q|

∫
Q

ν1/m
)m

‖(Iα)
m
b ‖Lp

µp (H)→Lq
λq (H).

Thus, (15) holds and hence, the proof of (ii) is complete.
Therefore, we complete the proof of Theorem 1.
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Abbreviation

BMO Bounded Mean Oscillation
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