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Abstract: In this paper, models of unreliable multi-server retrial queues with delayed feedback are
examined. The Bernoulli retrial is allowed upon the arrival of both primary (from outside) and
feedback customers (from orbit), as well as the Bernoulli feedback that may occur after each service in
this system. Servers can break down both during the service of customers and when they are idle. If
a server breaks down during the service of a customer, then the interrupted customer, in accordance
with the Bernoulli scheme, decides either to leave the system or join a common orbit of retrial
and feedback customers. An approximate method, based on the space merging approach of three-
dimensional Markov chains, is proposed for the calculation of the steady-state probabilities, as well
as performance measures of the system. The results of the numerical experiments are demonstrated.

Keywords: multi-server queue; unreliable servers; retrial customers; delayed feedback; finite and
infinite orbits; balking from orbit; calculation method

1. Introduction

The theory of retrial queue (RQ) is widely implemented for modeling the functioning
of real-world systems. State of the art theory of RQ might be found in the recent review [1].
The general property of RQ is the following: if upon arrival of a primary customer, all
servers of the system and/or waiting rooms are full, then a primary customer can join
the group of customers that are waiting for the service outside of the system. This virtual
waiting room is called orbit for retrial customers. As a rule, in the classical theory of RQ, it
is assumed that the system has no information about the number of retrial customers in
the orbit, and retrial customers generate their requests independently of each other.

In classical RQ, both primary and retrial customers leave the system after getting the
required service. However, in many cases, some customers require an arbitrary number
of optional services aside from the essential services. In such systems, some customers
provide feedback to the system for optional service. These customers are referred to as
feedback customers. Note that a customer can provide feedback either instantaneously after
leaving the server or after some delay. Retrial queues with delayed feedback (RQwDFB) are
very useful tools for modeling stochastic processes arising in communication networks, call
centers, queueing-inventory systems, etc. This paper analyzes the steady-state behavior of
an unreliable multi-server retrial queueing system, first with essential services and then
with an arbitrary number of optional services.

2. Related Work

To see the importance of RQwDFB, the interested reader is referred to papers [2–9],
and their references lists.

In the above-mentioned papers, the models of RQwDFB with reliable servers are
investigated. However, in practice, the servers of the systems are subject to random
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breakdowns; therefore, it is necessary to study the model of RQwDFB with unreliable
servers. Models of RQwDFB with unreliable servers have been investigated in a small
number of papers in the last few years, see [10–17]. In the indicated papers, single-server
models are considered.

Note that the models of unreliable multi-server RQ without feedback phenomena were
investigated using the Space Merging Method (SMM) in [18–20]. Similar models have been
investigated in [21] using an asymptotic approach. In indicated papers, it is assumed that
the parameters of the Bernoulli trial that determine decisions for primary customers to join
the orbit or leave the system over the absence of free servers are state-independent. Further,
parameters of the Bernoulli trial that determine decisions for customers to enter the orbit
that are preempted due to a server failure or abandoning the service are state-independent.
Moreover, in known models, as a rule, it is assumed that both active and idle breakdowns
occur at the same rate. These assumptions essentially restrict the application areas of the
obtained results.

To our best knowledge, models of unreliable multi-server RQwDFB have not been
studied. In this paper, models of unreliable multi-server RQwDFB are investigated under
more general assumptions using SMM. The method is the same; however, the system is
different, and the parameters of the Bernoulli trial that determine appropriate decisions in
the system are state-dependent for the model with a finite orbit size. The last assumption
leads to more complex equations and solutions. For historical justice, it is necessary to
note that the SMM was initially used to calculate the steady-state probabilities of the two-
dimensional Markov chain (2D MC) in [22]. In the last decade, [23–25] have developed
similar algorithms to study 2D MC in various areas of application. In all papers, the
authors note the high efficiency of SMM (both in the sense of accuracy and complexity) in
comparison with other numerical methods.

This paper is structured as follows: Basic mathematical models of the investigated
multi-server unreliable RQwDFB are described in Section 3. The generator matrix of the
appropriate 2D MC that represents the mathematical model of the system with a finite
orbit size is created in Section 4. Here, the balance equations method of calculating its
steady-state probabilities is indicated, and explicit formulas for the performance measures
of the investigated system are developed, as well. In Section 5, the approximate SMM
for calculating steady-state probabilities and performance measures of the system with
an infinite orbit size is proposed. The results of numerical experiments that show the
behavior of performance measures versus system parameters are demonstrated in Section 6.
Conclusions are given in Section 7.

3. Model Description

A pictorial representation of the investigated RQwDFB with unreliable servers is
shown in Figure 1.

First, consider the model with a finite capacity of orbit for retrial customers, i.e., assume
that the maximal size of orbit is equal to R, R < ∞. The system contains K > 1 identical
and unreliable servers. It is assumed that servers can independently break down in both
busy and idle modes. The failure rate of servers is different in their various statuses,
i.e., failures of servers in both busy and idle statuses occur via two independent Poisson
processes with rates of θ1 and θ2, respectively. Each server also has its own repairman and
the repair times for servers are exponentially distributed with the common rate ξ. If the
failure of a server occurs during the busy status (active breakdown), then a customer that
is preempted due to a server failure either leaves the system (i.e., is lost) with a probability
(w.p.) γr or enters the retrial orbit w.p. 1− γr, provided that there are r customers in the
orbit, r = 0, 1, . . . , R− 1 ; γR = 1.
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Figure 1. A graphical representation of the unreliable multi-server RQwDFB under investigation.

Primary customers (p-customers) form Poisson flow with rate λ. An incoming p-
customer is accepted for service if at this moment the total number of busy and failed
servers is less than K; otherwise, they either leave the system w.p. αr or go to orbit w.p.
1− αr provided that there are r customers in the orbit, r = 0, 1, . . . , R− 1 ; αR = 1.

Sojourn times of retrial customers (r-customers) in the orbit are exponentially dis-
tributed with a mean η−1 and here a classical retrial scheme is considered, i.e., if there are r
customers in the orbit, then the arrival intensity of r-customers is rη (linear retrial rate). If
upon the arrival of r-customer there is no free and serviceable server, then they either leave
the orbit (i.e., are lost) w.p. σr or return to the orbit w.p. 1 − σr provided that there are r
customers in the orbit, r = 1, . . . , R.

After the completion of the service process, the customer either leaves the system
forever w.p. βr or goes to the orbit for repeated service w.p. 1− βr provided that there
are r customers in the orbit, r = 0, 1, . . . , R − 1 ; βR = 1. customers in the orbit,
r = 0, 1, . . . , R − 1; β = 1. Customers who require re-service are called feedback customers
(f -customers). For simplicity, in the orbit, both kinds of customers (i.e., r-customers and
f -customers) are treated as the same and they are referred to as r-customers. Here, multiple
re-servicing processes (feedbacks) are allowed.

For the model with an infinite orbit capacity for retrial and feedback customers,
i.e., when R = ∞, we assume that αr < 1 , βr < 1 , γr < 1 for any value of r.
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The service times for all kinds of customers (p-, r-, and f -customers) are assumed to be
exponentially distributed with a common mean µ−1.

All times involved in the model, as well as the arrival of p-customers from the outside,
the arrival of r-customers from the orbit, and the service of customers, are mutually
independent of each other.

Our goal is to determine the stationary distribution of the given system, as well as to
calculate its performance measures: loss probabilities of both p-customers and r-customers,
the average number of both failed and busy servers, and the average number of r-customers
in the orbit.

4. Balance Equations Method for the Model with a Finite Orbit Size

The state of the system is defined by a three-dimensional vector (b, f , r), where b
is the number of busy servers, f is the number of failure servers, and r is the number of
r-customers in the orbit. In other words, the mathematical model of the given system is 3D
MC with the following state space (SS):

S =
R
∪

r=0
Sr , Sr∩Sr′ = ∅ , r 6= r′ , (1)

where Sr = {(b, f , r) : 0 ≤ b + f ≤ K} , r = 0, 1 , . . . , R.
It is clear that in the state (b, f , r) ∈ S, the number of idle and serviceable servers

is equal to K − b − f . From (1), we conclude that the SS of the investigated 3D MC
geometrically represents a prism with height R. Consider the problem of constructing the
generator of the indicated 3D MC.

Let us fix the value of r and first consider determining transition intensities between
the states within a subset (level), Sr. In order to be short, a transition from state (b, f , r) ∈ Sr

to state (b′, f ′, r′) ∈ Sr′ with intensity a is denoted by (b, f , r) a→ (b′, f ′, r′) . Let the initial
state be (b, f , r) ∈ S. As a result of analyzing possible transitions, we have the following
relations:

• (b, f , r) λ→ (b + 1, f , r) is carried out upon receipt of the p-customer if b + f < K;

• (b, f , r)
bµr→ (b− 1, f , r) is carried out upon departure of the customer from the system

or their loss due to a server’s active breakdown, where µr = µβr + θ1γr;

• (b, f , r)
(K−b− f )θ2→ (b, f + 1, r) is carried out when the failure of a server occurs in its

idle status;

• (b, f , r)
f ξ→ (b, f − 1, r) is carried out when the repair of a failed server is completed;

Now consider determining the transition intensities between the states of the various
subsets (levels). Note that only transitions between states of neighboring levels are allowed.
For such kinds of transitions, we have the following relations:

• (b, f , r)
λ(1−αr)→ (b, f , r + 1) is carried out upon the joining of the arrived p-customer

to orbit when b + f = K and r < R;

• (b, f , r)
bµ(1−βr)→ (b− 1, f , r + 1) is carried out when the serviced customer feedbacks

to the orbit when r < R;

• (b, f , r)
f θ1(1−γr)→ (b, f + 1, r + 1) is carried out when the customer goes to orbit due

to a server’s active breakdown when r < R;
• (b, f , r)

rη→ (b + 1, f , r− 1) is carried out upon receipt of the r-customer if b + f < K
when r > 0;

• (b, f , r)
rησr→ (b, f , r− 1) is carried out when an arrived r-customer is lost, if b + f = K,

when r > 0.

The transition intensity from state (b, f , r) to state (b′, f ′, r′) is denoted by
q((b, f , r), (b′, f ′, r′)). From the above relations, we conclude that the positive elements of
the generator of the investigated 3D MCs are determined as follows:
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q
(
(b, f , r),

(
b′, f ′, r′

))
=



λ if b + f < K, (b′, f ′, r′) = (b + 1, f , r)
bµr if (b′, f ′, r′) = (b− 1, f , r)
(K− b− f )θ2 if (b′, f ′, r′) = (b, f + 1, r)
f ξ if (b′, f ′, r′) = (b, f − 1, r)
λ(1− αr) if r < R, b + f < K, (b′, f ′, r′) = (b, f , r + 1)
bµ(1− βr) if r < R, (b′, f ′, r′) = (b− 1, f , r + 1)
f θ1(1− γr) if r < R, (b′, f ′, r′) = (b, f + 1, r + 1)
rη if b + f < K, r > 0, (b′, f ′, r′) = (b + 1, f , r− 1)
rησr if b + f = K, r > 0, (b′, f ′, r′) = (b, f , r− 1) .

(2)

Hereinafter, the equality of vectors means that their corresponding components are
equal to one another.

From the relations (2), we conclude that states of constructed finite 3D MCs are
communicated with each other, i.e., a stationary mode exists in this system. Let p(b, f , r)
denote the stationary probability of the state (b, f , r) ∈ S. These probabilities can be found
using the following balance equations:

∑
(b′ , f ′ ,r′)∈S+

(b, f ,r)

q
(
(b, f , r) ,

(
b′, f ′, r′

))
p(b, f , r) = ∑

(b′ , f ′ ,r′)∈S−
(b, f ,r)

q
((

b′, f ′, r′
)

, (b, f , r)
)

p
(
b′, f ′, r′

)
; (3)

∑
(b, f ,r)∈S

p(b, f , r) = 1 , (4)

where S+
(b, f ,r) is the set of those states of S, which can be reached from the state (b, f , r) in

one step, and S−
(b, f ,r) is the set of those states of S, from which one can get to the state (b, f , r)

in one step. Note that the sets S+
(b, f ,r) and S−

(b, f ,r) are determined from the relations (2).
The dimension of the balance Equations (3) and (4) is equal to (K + 1)(K + 2)(R + 1)/2.

Modern software packages allow the linear equations of arbitrary (finite) dimensions to
be solved.

The desired performance measures are calculated via steady-state probabilities. The
average number of busy (NBSav) and failed servers (NFSav), as well as the average number
of r-customers in the orbit (NCOav), are calculated as the mathematical expectations of the
corresponding random variables, i.e.,

NBSav =
K

∑
b=1

b ∑
(b, f ,r)∈S

p(b, f , r) ; (5)

NBSav =
K

∑
f=1

f ∑
(b, f ,r)∈S

p(b, f , r) ; (6)

NCOav =
R

∑
r=1

r ∑
(b, f ,r)∈S

p(b, f , r) . (7)

The loss probabilities of p-customers
(

Pp
)

and r-customers (Pr) are calculated as

Pp =
R

∑
r=0

αr ∑
(b, f ,r)∈S

p(b, f , r)δ(b + f , K) ; (8)

Pr =
R

∑
r=1

σr ∑
(b, f ,r)∈S

p(b, f , r)δ(b + f , K) . (9)

Hereinafter δ(i, j) are Kronecker’s delta.
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5. The Space Merging Method for the Model with an Infinite Orbit Size

Methodological difficulties occur in solving the investigated problem for the model
with an infinite orbit size, i.e., when R = ∞. Now consider this problem for the case where
the indicated above probabilities, αr, βr, γr, σr, are state-independent, i.e., assume that
αr = α, βr = β, γr = γ, σr = σ.

The mathematical model of the given system is 3D MC with the following state
space (SS):

E =
∞
∪

r=0
Er , Er∩Er′ = ∅ , r 6= r′ , (10)

where Er = {(b, f , r) : 0 ≤ b + f ≤ K} , r = 0, 1 , . . .
From (10), we conclude that the SS of the investigated 3D MC geometrically represents

an infinite prism. The generator of the presently examined infinite 3D MC is determined
similarly to (2), wherein the right side condition, r < R, should be omitted.

For simplicity, let p(b, f , r) again denote the stationary probability of the state
(b, f , r) ∈ E. Below, we show that for the case of the linear retrial rate, the stationary
mode exists for any positive values of input parameters; however, in the case of the
constant retrial rate, the fulfillment of some stability conditions is required.

From the form of the SS (8), we conclude that the constructed 3D MC does not belong
to the class of quasi-birth and death (QBD) processes (see [26]). Therefore, unfortunately,
to calculate the steady-state probabilities of the investigated 3D MC, we cannot apply
well-worked matrix-geometric methods. For this reason, we propose an alternate approach
below to solve the indicated problem. The proposed approach is based on the space
merging principles of a multi-dimensional MC and it allows for the calculation of steady-
state probabilities and performance metrics via explicit formulas. Moreover, the obtained
formulas contain quantities that are tabulated, i.e., Erlang’s B-formula as well as the formula
for calculating the average number of busy servers in Erlang’s classical model.

It is known that satisfying the following condition is required for the correct appli-
cation of the SMM: the state space of the system should be decomposed into classes in
such a way that the rates of transitions between states within classes are much larger than
rates of transitions between states from different classes. The fulfillment of this condition
can be ensured at certain ratios between the initial parameters of the system under study.
So, suppose that the arrival rate of p-customers is much larger than the arrival rate of
r-customers, i.e., η << λ.

When this assumption is fulfilled, the transitions between the states within classes Er
(see (10)) are much larger than transition classes between the states of different classes. By
using this fact, the following merge function in the SS (10) is defined:

U1((b, f , r)) =< r >, (b, f , r) ∈ Er , (11)

where < r > is the merged state, which includes all micro-states from the class Er ,
r = 0, 1, . . . The set of merged states < r > is denoted by Ω1 = {< r > : r = 0, 1, . . .}.

According to hierarchical SMM (see [7,27]), the approximate values of the steady-state
probabilities of the initial 3D MC, denoted by p̃(b, f , r), are calculated as follows:

p̃(b, f , r) = ρr(b, f )π1(< r >) , (12)

where ρr(b, f ) is the probability of the state, (b, f , r), within a splitting model with SS Er,
and π1(< r >) is the probability of the merged state < r >∈ Ω1.

From (12), conclude that to calculate the steady-state probabilities of the initial 3D MC,
it is necessary to find the steady-state probabilities, ρr(b, f ), of the infinite number of 2D
MCs with a finite SS as well as the steady-state probabilities, π1(< r >), of one 1D MC
with the SS Ω1.

First, consider the calculation of the steady-state probabilities, ρr(b, f ), of the 2D MCs
with the SS Er. The transitions diagram for the splitting model with the SS Er is shown in
Figure 2.
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The transition intensity from state (b, f , r) ∈ Er to state (b′, f ′, r) ∈ Er is denoted by
qr((b, f , r), (b′, f ′, r)). From (2), we conclude that these quantities are determined as follows:

qr((b, f , r), (b′, f ′, r)) =


λ if b + f < K, (b′, f ′, r) = (b + 1, f , r)
bµ̃ if (b′, f ′, r) = (b− 1, f , r)
(K− b− f )θ2 if (b′, f ′, r) = (b, f + 1, r)
f ξ if (b′, f ′, r) = (b, f − 1, r) ,

(13)

where µ̃ = µβ + θ1γ.
From (13), we conclude that qr((b, f , r), (b′, f ′, r)) are identical for any value of r,

i.e., the steady-state probabilities, ρr(b, f ), do not depend on r because, below, we fix the
value of r and omit the subscript r in the notation of these quantities.

The calculation of the steady-state probabilities, ρ(b, f ), for a moderately sized SS, Sr,
might be performed via solving balance equations. However, it is possible to develop ex-
plicit formulas for their approximate calculations. For this purpose, the merging procedure
(the second level of the hierarchy) is applied to these 2D MCs.

For the correct application of the SMM in the second level, it is assumed that θ1 >> θ2.
Note that this assumption is a realistic one since, in real situations, the failure intensity
of servers in a busy mode is much higher than for those in an idle mode. Under this
assumption, consider the following splitting of Sr:

Er =
K
∪

f=0
E f

r , E f
r ∩E f ′

r = ∅ , f 6= f ′ , (14)

where E f
r = {(b, f ) ∈ Er : b = 0, 1, . . . , K; b + f ≤ K}, f = 0, 1, . . . , K.
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Similar to (11), based on splitting (14) in the SS, Er, the following merge function
is defined:

U2((b, f )) =<< f >> ,(b, f ) ∈ E f
r ,

where << f >> is a merge state which includes all micro-states from the subclass E f
r . The

set of merged states << f >> is denoted by Ω2 = {<< f >> : f = 0, 1, . . . , K}.
In accordance with [7,27], we have:

ρ(b, f ) ≈ ρ f (b)π2(<< f >>) , (15)

where ρ f (b) is the probability of the state (b, f ) within the splitting model with space E f
r ,

and π2(<< f >>) is the probability of the merged state << f >>∈ Ω2.
In a subclass, E f

r , f = 0, 1, . . . , K, the second component of the state vector is a
constant and equals f . Therefore, in a splitting model with space E f

r , each state, (b, f ), can
be represented simply by the first component, i.e., by b, b = 0, 1, . . . , K− f .

The transition intensity from state (b, f ) ∈ E f
r to state (b′, f ) ∈ E f

r is denoted by
q(b, b′). So, from relations (2) we conclude that these quantities are independent of the
parameter r, and are determined as follows:

q
(
b, b′

)
=

{
λ, if b′ = b + 1 ,
b(µβ + θ1γ), if b′ = b− 1 .

(16)

From (16), we conclude that the state probabilities, ρ f (b), of the splitting models with

the SS E f
r , f = 0, 1, . . . , K − 1, coincides with the state probabilities of Erlang’s model,

M/M/K-f/K-f, with load ν = λ/(µβ + θ1γ), i.e., the desired probabilities are calculated by
well-known Erlang’s formulas:

ρ f (b) =
νb

b!

/
K− f

∑
i=0

νi

i!
, b = 0, 1 , . . . , K− f . (17)

The splitting model with the SS EK
r contains only one state (0, K, r), i.e., for this model,

we set ρK(0) = 1.
The transition intensity from merged state << f >>∈ Ω2 to merged state

<< f ′ >>∈ Ω2 is denoted by q(<< f >>,<< f ′ >>). By using (2) and (17), after certain
mathematical transformations, we conclude that the indicated quantities are determined
as follows:

q
(
<< f >>,<< f ′ >>

)
=

{
Λ f , if f ′ = f + 1 ,
f ξ, if f ′ = f − 1 ,

(18)

where Λ f = θ2

K− f−1
∑

i=0
ρ f (i)(K− f − i).

Therefore, from relations (18), we conclude that the probabilities of merged states are
calculated as follows:

π2(<< f >>) =
1

f !ξ f

f−1

∏
i=0

Λiπ2(<< 0 >>) , f = 1, . . . , K , (19)

where π2(<< 0 >>) is found from the normalizing condition, i.e.,
K
∑

f=0
π2(<< f >>) = 1.

Now consider the problem of finding the probabilities of merged states π1(< r >),
< r >∈ Ω1 . The transition intensity from state < r >∈ Ω1 to state < r′ >∈ Ω1 is denoted
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by q(< r >, < r′ >). By using (2) (for this model), (17), and (19), we conclude that these
quantities are calculated as follows:

q
(
< r >,< r′ >

)
=

{
v, if r′ = r + 1 ,
rφ, if r′ = r− 1 ,

(20)

where

v = (µ(1− β) + θ1(1− γ))
K−1
∑

j=0

K−j
∑

i=1
iρj(i)

}
Bav(K−j,ν)

π2(<< j >>) + λ(1− α)
K
∑

i=0
ρi(K− i)

}
EB(K−i,ν)

π2(<< i >>) =

= (µ(1− β) + θ1(1− γ))
K−1
∑

j=0
Bav(K− j, ν)π2(<< j >>) + λ(1− α)

K
∑

i=0
EB(K− i, ν)π2(<< i >>) ;

φ = η


K−1
∑

i=0
ρ0(i)

}
1−EB(K,ν)

π2(<< 0 >>) +
K−2
∑

i=0
ρ1(i)

}
1−EB(K−1,ν)

π2(<< 1 >>) + . . . + ρK−1(0)
}

1−EB(1,ν)

π2(<< K− 1 >>)

+

+ησ

ρ0(K)
}

EB(K,ν)

π2(<< 0 >>) + ρ1(K− 1)
}

EB(K−1,ν)

π2(<< 1 >>) + . . . + ρK(0)
}

EB(0,ν)

π2(<< K >>)

 =

= η

(
K
∑

i=1
(1− EB(i, ν))π2(<< K− i >>) + σ

K
∑

i=0
EB(i, ν)π2(<< K− i >>)

)
.

Hereinafter, EB(m, ν) and Bav(m, ν) denote Erlang’s B-formula and the average
number of busy servers for the M/M/m/m system with a load, ν, respectively, i.e.,

EB(m, ν) =
νm

m!

/
m

∑
i=0

νi

i!
; EB(0, ν) = 1 ; Bav(m, ν) = ν(1− EB(m, ν)) .

From relations (20). we conclude that the probabilities of merged states coincide with
the probabilities of the states of the model M/M/∞ with the load ψ = v/φ, i.e.,

π1(< r >) =
ψr

r!
exp(−ψ) , r = 0, 1, 2, . . . (21)

By using (12), (15), (17), and (21), the approximate values of the steady-state of the
initial 3D MC are found. So, for any positive values of the loading parameters in this system,
there exists stationary mode, and after some standard mathematical transformations, we
obtain the following approximate formulas for calculating the performance measures:

Pp ≈ α
K

∑
i=0

EB(i, ν)π2(<< K− i >>) ; (22)

Pr ≈ σ
(
1− e−ψ

) K

∑
i=0

EB(i, ν)π2(<< K− i >>) ; (23)

NBSav ≈
K

∑
i=1

i
K−i

∑
j=0

ρj(i)π2(<< j >>) ; (24)

NFSav ≈
K

∑
i=1

iπ2(<< i >>) ; (25)

NCOav ≈ ψ (26)
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Note. The average number of busy (NBSav) and failed servers (NFSav) (see
Formulas (24) and (25)) does not depend on the parameters η and σ. These facts are
explained by the accepted assumption that η << λ, i.e., the impact of the indicated
parameters on two performance measures is not essential. Other performance measures
depend on all system parameters.

6. Numerical Results

In this section, the qualitative behavior of the performance measures is explored
through a few numerical experiments. Due to the size limitations for the present paper,
only the results for the model with an infinite orbit size have been considered here.

It can be noticed that the proposed algorithms allowed for a simple investigation
of the behavior of the performance measures over any parameter of the model without
any computational difficulties. For the sake of brevity, we have omitted the results of
numerical experiments that demonstrate the high accuracy of the algorithm developed
for the approximate calculation of steady-state probabilities of the system under study
(appropriate results might be found in [9]). Moreover, for brevity, we only demonstrate
experiments that present the behavior of performance measures with respect to the number
of servers over various values of the probabilities α, β, γ and σ.

For the numerical calculations, the values of the model parameters are selected as
follows: λ = 5, µ = 3, θ1 = 5, θ2 = 1, ξ = 1, η = 1 . Note that since the performance
measures depend on many parameters, the analysis of the numerical experiments indicated
below concerns only the selected values of the initial data. However, in some cases, the
conclusions are general.

Figure 3a–e represent the behavior of performance measures as functions of K over
various values of α, where values of other probabilities are fixed as follows: β = 0.4,
γ = 0.7, σ = 0.1. It can be observed from Figure 3a,b that both PBp and PBr decrease with
respect to K, where an increase of α is favorable for PBr, whereas PBp increases with respect
to α; for large values of K, i.e., when K ≥ 7, the impact of the values of α is negligible. It
is seen from Figure 3c,d that both the NBSav and the NFSav increase, and their values are
almost independent of α. Figure 3e exhibits the impact of K and α over the NCOav. It is
seen from the graph that the values of the decrease with respect to both K and α. As in
Figure 3a,b, here, when K ≥ 7, the impact of the values of α on the values of the NCOav
is negligible.
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Figure 4a–e describe the behavior of performance measures as functions of K over
various values of β, where values of other probabilities are fixed as follows: α = 0.2,
γ = 0.7, σ = 0.1. It is seen from Figure 4a,b that both PBp and PBr decrease, and their
values are almost independent on β; some dependence on β is observed for PBr under
small values of K, i.e., under small values of K, the performance measure PBr is decreasing
by one with respect to β. As was expected, the NBSav increases with respect to K and
decreases when β increases (see Figure 4c). Figure 4d shows that the NFSav increases with
respect to K, and its values are almost independent of β. However, it is seen from Figure 4e
that the values of the NCOav increase with respect to K and decrease when β increases, and
that the impact of the values of β on the values of the NCOav is essential for a large value
of K.
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Figure 5a–e show the behavior of performance measures as functions of K over various
values of γ, where values of other probabilities are fixed as follows: α = 0.2, β = 0.4, σ = 0.1.
From Figure 5a,b, we see that both PBp and PBr decrease with respect to K, and their
values are almost independent on γ. Surprisingly, the NBSav increases when γ increases
(see Figure 5c). Such behavior of the NBSav can be explained as follows: for selected
values of the load parameters of the system, an increase in the probability of a customer
leaving the system from a broken server leads to an increase in the chance of p-customers
being accepted, i.e., the average number of busy servers increases. Though, for other
values of the load parameters, this performance measure might decrease when γ increases.
Figure 5d demonstrates that the NFSav increases with respect to K and its values are almost
independent of γ. The impact of γ on the values of the NCOav is negligible, and it decreases
when K increases (see Figure 5e).
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Figure 6a–e show the behavior of performance measures as functions of K over various
values of σ, where the values of other probabilities are fixed as follows: α = 0.2, β = 0.4,
γ = 0.7. Plot 6(a) exhibits that PBp is almost not affected by an increment in σ, and it
decreases with the increasing number of servers. Conversely, plot 6(b) exhibits that, for a
small value of K, PBr is affected by an increment in σ, but when K ≥ 7, the impact of the
values of σ is negligible and with increasing σ, PBr increases. Note that both the NBSav
and the NFSav increase with respect to K, and the values are almost independent of σ (see
Figure 5c,d). It is seen from Figure 6e that for a small value of K, the NCOav is affected by
an increment in σ, but when K ≥ 4, the impact of the values of σ is negligible and with
increasing σ, the NCOav decreases.
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7. Conclusions

The present paper proposes mathematical models of unreliable multi-server RQwDFB.
We studied both models with common finite and infinite orbit capacity for retrial and
feedback customers. In a model with a finite orbit capacity, it is assumed that the proba-
bilities of retrial, feedback, and balking from the orbit depend on the current number of
customers in the orbit. For such a kind of model, we propose an exact method for calculat-
ing its steady-state probabilities as well as it performance measures. For a model with an
infinite orbit size, an approximate space merging method is developed for calculating its
steady-state probabilities as well as its performance measures.

As for directions for further research, it is proposed that models of RQwDFB with
MAP flow and phase-type distributions of service time be studied. Practical interests are
represented by the problems of optimizing RQwDFB regarding the selected criteria for the
quality of their functioning. These problems are the subjects of future works.
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