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Abstract: Deposition of scale layers inside pipelines leads to many problems, e.g., reducing the
internal diameter of pipelines, damage to drilling equipment because of corrosion, increasing en-
ergy consumption because of decreased efficiency of equipment, and shortened life, etc., in the
petroleum industry. Gamma attenuation could be implemented as a non-invasive approach suitable
for determining the mineral scale layer. In this paper, an intelligent system for metering the scale
layer thickness independently of each phase’s volume fraction in an annular three-phase flow is
presented. The approach is based on the use of a combination of an RBF neural network and a
dual-energy radiation detection system. Photo peaks of 241Am and 133Ba registered in the two trans-
mitted detectors, and scale-layer thickness of the pipe were considered as the network’s input and
output, respectively. The architecture of the presented network was optimized using a trial-and-error
method. The regression diagrams for the testing set were plotted, which demonstrate the precision of
the system as well as correction. The MAE and RMSE of the presented system were 0.07 and 0.09,
respectively. This novel metering system in three-phase flows could be a promising and practical
tool in the oil, chemical, and petrochemical industries.

Keywords: scale-layer thickness; three-phase flow; volume fraction-independent; petroleum pipeline;
dual-energy technique; radial basis function; neural network

1. Introduction

Deposition of scale layers inside pipelines leads to many problems in the petroleum
industry. As a part of such problems, it can include decreasing of the internal diame-
ter, drilling equipment corrosion, increasing the energy consumption due to decreased
equipment efficiency, short life, and so forth. Water flooding, which contains calcium,
barium, and strontium sulfate scales, has caused many scale problems in several oil fields
worldwide. Scale deposition limits and blocks petroleum production. Consequently, scale
deposition causes critical challenges such as emergency shutdowns, equipment failures,
and decreasing efficiency of equipment [1–8].

Gamma attenuation technique is a useful method for detecting mineral scale in
petroleum pipelines. In 2015 [7], Oliviera et al. employed a NaI detector together with a
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137Cs radioisotope source to scan scale deposits in a pipe. They acquired a gamma spectrum
for each 0.5 cm step. They finally concluded that the gamma transmission scanning could
estimate the presence of scale in a pipe in which a single-phase fluid flows, but that it is
impossible to predict the precise distribution of scale. In 2018 [8], Teixeira et al. presented
an approach to investigate scale in a pipe. The proposed geometry consisted of a steel
pipe, a 137Cs radioisotope source with isotropic flux, and one NaI detector. The gamma
spectra measured from the pipe’s internal diameter were considered the input of the ANN,
whereas the output was the thickness of the scale. This methodology estimated the scale
thickness with deviations below 10% for 70% of the cases. The drawback of their proposed
system was that they could only measure the scale thickness of pipelines in which a single
fluid flowed, while in real oil pipelines there exists two or three-phase flow. Roshani
et al. investigated the possibility of identifying the flow regime and determining gas void
fraction in two-phase flow without any dependency on the scale layer of the oil pipeline by
combining photon attenuation and artificial intelligence techniques [9]. Their study imple-
mented ANN for regime identification and void fraction prediction. The results revealed
that their proposed technique is unable to identify all three flow regimes. To the best of the
author’s knowledge, as mentioned in the literature review, no investigation has been done
on the thickness measurement of scale layers in oil pipelines with an existing gas–oil–water
three-phase flow with various volume fractions. In real situations, there are two or three-
phase flows with variating volume fractions inside the oil pipelines which affect drastically
the performance of radiation-based scale thickness meters. The novelty of the present study
is the proposal of a system with the capability to measure scale layer thickness in petroleum
and oil pipelines without any dependency on the volume fractions of each phase in the
annular regime of a three-phase flow. We employed a dual-energy gamma attenuation
technique combined with a radial basis function neural network (RBFNN) to achieve this
aim. The details of the proposed approach are explained in the following sections.

2. Materials and Methods
2.1. Monte Carlo Simulation

MCNP code [10] was implemented in the present investigation to model the radiation-
based system. In the past few decades, it has been proved that MCNP code is a potential
tool for modeling radiation-based measuring instruments [11–22]. As pointed out in the
abstract section, our aim is to propose a gamma radiation-based system with the ability
to determine scale thickness independently of volume fraction changes of an annular
three-phase flow’s components. In order to obtain more information from the different
materials inside the pipe, a system consisting of a dual-energy source consisting of 241Am
and 133Ba radioisotopes that emit photons with energies of 59 and 356 keV, respectively,
and two NaI detectors for recording transmitted photons were used.

As shown in Figure 1, a steel pipe with an internal radius of 10 cm was simulated in
this study. In order to model the scale layer, a cylindrical shell of barium sulfate (BaSO4)
with a density of 4.5 g.cm−3 and different thicknesses in the range of 0–2 cm was considered
on the internal wall of the steel pipe.

An annular regime of a three-phase flow, including gas, oil, and water components,
was modeled inside the pipe. Air, gasoil, and water were utilized as gas, oil, and water
phases, respectively. Various volume fractions (10–80 percent) were simulated for each
component (5 different scale thickness × 36 different volume fractions = total of 180
simulations performed) for each scale thickness.

As mentioned earlier, in this investigation, two NaI detectors were applied. Tally F8
was utilized to register photon energy spectra in both detectors. The first detector was
positioned diametrically in front of the radioactive source, and the second one was placed
at an orientation of 7◦.

It is worth mentioning that the simulated configuration performance in this work was
benchmarked in our earlier study using an experiment [23]. As shown in Figure 2, in that
study, an experimental model was established. A two-phase flow annular regime with
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various amounts of gas and oil components was also modeled inside a pipe. A geometry
the same as the experimental setup was simulated. The acquired results showed that the
experimental and simulated data were in good agreement, which confirmed the simulated
detection system performance.
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Figure 1. Simulated geometry: (1) Radiation shield, (2) Radioactive sources, (3) Steel pipe, (4) Scale
layer, (5) Water phase, (6) Oil phase, (7) Gas phase, (8) First transmission detector, (9) Second
transmission detector.

Although the presented system in the current study was developed for measuring
the scale layer thickness independently of different volume fractions of each phase in an
annular regime of a three-phase flow, it can be applied for the other types of flow regimes.
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2.2. Radial Basis Function (RBF) Neural Networks

In recent years, a variety of advanced computational methods, e.g., finite element,
Newton’s method, numerical linear algebra, statistics, numerical analysis, discrete Fourier
transform, tensor analysis, and artificial intelligence, have been used in different research
fields such as material engineering [24–31], chemical engineering [32–37], electrical en-
gineering [38–46], medical and biomedical sciences [47–52], civil engineering [53–56],
economic science [57–68], fluid mechanic engineering [69–76], computer and informa-
tion technology engineering [77–79], physics [80,81], petroleum engineering [82–90], etc.
Among them, it has been proven that ANN is the most powerful tool for classification
and prediction. ANNs consist of three distinct layers: input, hidden, and output layers.
Different kinds of ANNs consist of one or several hidden layers, but RBF neural networks
have only one hidden layer. An RBF neural network was used in the present study, while
in most of the previous relevant studies, other types of ANNs such as MLP [8,11,14] and
GMDH [13,15,55] were used. The advantage of RBF is that its training process, with only
three layers, is normally faster than other types of ANN models because of its simpler
structure. MLP networks initially use randomly generated parameters, but for RBF neural
networks, it is necessary to set correct initial states.

There are different numbers of computational units named neurons in each layer. RBF
networks weigh and combine information through these neurons. Concerning process
input data, RBF is used in the hidden layer of the RBF neural network. A typical architecture
of an RBF neural network is shown in Figure 3. The hidden neurons, through “synaptic
weights”, connect and weigh the input signals. The neurons’ responses represent neuron
“activation” values. Nonlinear activation functions consider such values by adding up a
bias to the weighted summation of their input [91].

y = ∑(weight ∗ input) + bias (1)
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The activation function of the hidden layer is “radbas”. Therefore, Equation (2) refers
to the hidden layer, and precisely to the mth node’s output [91–93]:

ym = e
(− ||x−vm ||2

2σm2 )
(2)
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The default spread value (σ) in MATLAB software commands is 1, but this value was
optimized in this study. The output prediction from the jth node of the output layer is [94]:

zj =
M

∑
m=1

umjym + bj (3)

Both “radbas” and “purelin” are neural transfer functions. These kinds of functions
are the most well-known functions for the hidden layer and output layer of typical RBF
neural networks, respectively, and have been used in a lot of previous research. In this
study, 180 separate cases were simulated using the MCNPX code. 126 cases (70%) were
implemented to train the network, and 54 cases (30%) were used to test the efficiency
of the presented RBF neural network. In this problem, for measuring the scale layer
thickness of pipe independently of different volume fractions in a three-phase flow, four
features were extracted from two transmission detectors and applied to the RBF neural
network. The counts under the photopeaks for 241Am and 133Ba from both transmission
detectors were considered the RBF neural network inputs, and scale layer thickness of
the pipe was considered the RBF neural network output. The reason for choosing these
mentioned features as the inputs for the network is that counts under these two photopeaks
are directly connected to the amount and type of materials between the radiation source
and the detector, while other features in the recorded photon energy spectrum inside the
detector are not directly connected. The procedure for scale layer thickness metering is
illustrated in Figure 4.

Using a trial-and-error method, the best configuration of the network was obtained.
As mentioned previously, the RBF neural network has only 3 layers. The obtained configu-
ration was tabulated in Table 1, and the schematic of the network is shown in Figure 5.

Table 1. Configuration of the proposed ANN.

ANN Type RBF Neural Network

Function used for network performance evaluation ‘mse’
Activation function ‘radbas’

Spread of radial basis functions 2
Number of layers 3

Number of neurons 11
Mean squared error goal 0
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3. Results
3.1. Performance of the Modeled Detection System

Counts under photo peaks of 241Am and 133Ba radioisotopes were recorded in both
detectors for various scale layer thicknesses and volume fractions. As an example, ternary
surface plots of the recorded counts under the photopeak for the 133Ba radioisotope in the
first detector for various combinations of gas, oil, and water volume fractions when the
scale thickness is 0 and 2 cm, are shown in Figure 6a,b. Comparing Figure 6a,b, it could be
observed that when the scale layer is 0 cm, the sensitivity relative to changes of gas, oil,
and water components is much more than when the scale thickness is 2 cm. In other words,
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by increasing the thickness of the scale layer, somehow, information about the flow inside
the pipe starts fading. This exact occurrence has also been observed for the other detector
and radioisotope.
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For example, registered counts in both detectors versus the changes in scale thickness
for the state in which the volume fractions of components are fixed (50% gas, 30% oil, and
20% water) are shown in Figure 7. As expected, the registered counts in both detectors
decrease by increasing the scale thickness. As can be seen from Figure 7, the sensitivity of
registered counts under the photopeak for the 133Ba radioisotope in both detectors relative
to the scale thickness changes is more than those for 241Am.
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3.2. Scale Thickness Prediction by RBF Neural Networks

The input matrix, output matrix (network target), and measured data (network output)
for the testing set (54 cases) were tabulated in Table 2. An Intel Core i7 CPU computer was
used for running the MCNPX simulations and MATLAB 8.1.0.604 software. The acquired
results are shown as regression diagrams for training and testing sets in Figure 8a,b. In this
figure, measured scale values versus real scale values have been plotted for both training
and testing sets.

Table 2. The input matrix, output matrix, and measured data (network output) for the testing set (54 cases).

Data
Number

241Am Peak
in First

Detector

133Ba Peak
in First

Detector

241Am Peak
in Second
Detector

133Ba Peak
in Second
Detector

Scale Layer
Thickness

(cm)

Measured
Scale Layer
Thickness

Difference
between Real
and Measured

Thickness

1 7.50 × 10−6 2.63 × 10−5 6.37 × 10−6 1.84 × 10−5 0 −0.199 0.198999
2 7.19 × 10−6 2.81 × 10−5 6.26 × 10−6 2.01 × 10−5 0 0.053158 0.053158
3 8.37 × 10−6 3.28 × 10−5 7.46 × 10−6 2.89 × 10−5 0 0.060322 0.060322
4 9.03 × 10−6 3.55 × 10−5 7.48 × 10−6 3.13 × 10−5 0 0.017096 0.017096
5 9.54 × 10−6 4.04 × 10−5 8.77 × 10−6 3.79 × 10−5 0 0.111143 0.111143
6 1.06 × 10−5 4.68 × 10−5 1.02 × 10−5 4.40 × 10−5 0 −0.00335 0.003347
7 1.03 × 10−5 4.83 × 10−5 9.83 × 10−6 4.64 × 10−5 0 0.159976 0.159976
8 1.14 × 10−5 5.60 × 10−5 1.10 × 10−5 5.40 × 10−5 0 0.028774 0.028774
9 1.23 × 10−5 6.31 × 10−5 1.21 × 10−5 6.04 × 10−5 0 −0.02497 0.024969

10 3.84 × 10−6 1.56 × 10−5 3.27 × 10−6 1.09 × 10−5 0.5 0.597286 0.097286
11 4.45 × 10−6 1.81 × 10−5 3.50 × 10−6 1.25 × 10−5 0.5 0.557677 0.057677
12 5.19 × 10−6 1.97 × 10−5 4.23 × 10−6 1.61 × 10−5 0.5 0.546581 0.046581
13 5.19 × 10−6 2.21 × 10−5 4.20 × 10−6 1.86 × 10−5 0.5 0.784895 0.284895
14 5.54 × 10−6 2.53 × 10−5 5.08 × 10−6 2.16 × 10−5 0.5 0.65492 0.15492
15 6.35 × 10−6 2.64 × 10−5 5.36 × 10−6 2.33 × 10−5 0.5 0.495023 0.004977
16 6.33 × 10−6 2.96 × 10−5 5.68 × 10−6 2.68 × 10−5 0.5 0.569258 0.069258
17 6.97 × 10−6 3.37 × 10−5 6.42 × 10−6 3.08 × 10−5 0.5 0.484072 0.015928
18 7.81 × 10−6 3.74 × 10−5 7.19 × 10−6 3.52 × 10−5 0.5 0.446271 0.053729
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Table 2. Cont.

Data
Number

241Am Peak
in First

Detector

133Ba Peak
in First

Detector

241Am Peak
in Second
Detector

133Ba Peak
in Second
Detector

Scale Layer
Thickness

(cm)

Measured
Scale Layer
Thickness

Difference
between Real
and Measured

Thickness

19 9.43 × 10−6 4.63 × 10−5 8.84 × 10−6 4.49 × 10−5 0.5 0.362445 0.137555
20 2.61 × 10−6 1.01 × 10−5 2.08 × 10−6 6.59 × 10−6 1 1.03317 0.03317
21 2.82 × 10−6 1.09 × 10−5 2.01 × 10−6 6.87 × 10−6 1 1.022872 0.022872
22 2.85 × 10−6 1.16 × 10−5 2.07 × 10−6 7.32 × 10−6 1 1.029416 0.029416
23 3.18 × 10−6 1.27 × 10−5 2.76 × 10−6 9.63 × 10−6 1 0.983388 0.016612
24 3.22 × 10−6 1.35 × 10−5 2.75 1.06 × 10−5 1 0.706746 0.293254
25 3.72 × 10−6 1.51 × 10−5 3.34 × 10−6 1.24 × 10−5 1 0.93631 0.06369
26 3.58 × 10−6 1.55 × 10−5 3.22 × 10−6 1.30 × 10−5 1 1.141341 0.141341
27 4.40 × 10−6 1.75 × 10−5 4.14 × 10−6 1.77 × 10−5 1 1.068921 0.068921
28 4.01 × 10−6 1.81 × 10−5 3.75 × 10−6 1.56 × 10−5 1 1.052691 0.052691
29 4.79 × 10−6 1.97 × 10−5 4.05 × 10−6 1.78 × 10−5 1 0.914527 0.085473
30 4.72 × 10−6 2.08 × 10−5 4.19 × 10−6 1.85 × 10−5 1 0.926637 0.073363
31 5.61 × 10−6 2.53 × 10−5 5.05 × 10−6 2.36 × 10−5 1 0.732584 0.267416
32 1.63 × 10−6 6.64 × 10−6 1.25 × 10−6 3.95 × 10−6 1.5 1.575543 0.075543
33 1.82 × 10−6 6.81 × 10−6 1.33 × 10−6 4.12 × 10−6 1.5 1.496197 0.003803
34 1.92 × 10−6 7.31 × 10−6 1.41 × 10−6 4.45 × 10−6 1.5 1.439766 0.060234
35 2.11 × 10−6 8.29 × 10−6 1.63 × 10−6 6.01 × 10−6 1.5 1.590924 0.090924
36 2.12 × 10−6 8.71 × 10−6 1.74 × 10−6 6.39 × 10−6 1.5 1.560707 0.060707
37 2.36 × 10−6 9.81 × 10−6 2.01 × 10−6 7.67 × 10−6 1.5 1.532757 0.032757
38 2.44 × 10−6 1.03 × 10−5 2.07 × 10−6 8.21 × 10−6 1.5 1.562431 0.062431
39 2.70 × 10−6 1.14 × 10−5 2.31 × 10−6 9.21 × 10−6 1.5 1.460378 0.039622
40 3.01 × 10−6 1.27 × 10−5 2.48 × 10−6 1.06 × 10−5 1.5 1.469839 0.030161
41 3.18 × 10−6 1.40 × 10−5 2.67 × 10−6 1.19 × 10−5 1.5 1.47086 0.02914
42 3.60 × 10−6 1.58 × 10−5 3.04 × 10−6 1.37 × 10−5 1.5 1.339425 0.160575
43 9.37 × 10−7 4.12 × 10−6 7.45 × 10−7 2.52 × 10−6 2 2.07488 0.07488
44 1.07 × 10−6 4.21 × 10−6 8.20 × 10−7 2.60 × 10−6 2 1.997739 0.002261
45 1.15 × 10−6 4.49 × 10−6 8.91 × 10−7 2.77 × 10−6 2 1.932604 0.067396
46 1.21 × 10−6 5.07 × 10−6 9.96 × 10−7 3.36 × 10−6 2 1.944003 0.055997
47 1.34 × 10−6 5.22 × 10−6 1.02 × 10−6 3.64 × 10−6 2 1.9735 0.0265
48 1.37 × 10−6 5.76 × 10−6 1.17 × 10−6 4.35 × 10−6 2 1.999857 0.000143
49 1.48 × 10−6 6.08 × 10−6 1.24 × 10−6 4.65 × 10−6 2 1.966943 0.033057
50 1.55 × 10−6 6.58 × 10−6 1.31 × 10−6 5.28 × 10−6 2 2.028499 0.028499
51 1.68 × 10−6 7.01 × 10−6 1.36 × 10−6 5.51 × 10−6 2 1.961872 0.038128
52 1.86 × 10−6 7.45 × 10−6 1.43 × 10−6 6.28 × 10−6 2 2.048818 0.048818
53 2.04 × 10−6 8.38 × 10−6 1.53 × 10−6 7.11 × 10−6 2 2.040112 0.040112
54 2.40 × 10−6 9.89 × 10−6 1.87 × 10−6 8.89 × 10−6 2 1.984083 0.015917

For one output of the proposed RBF neural network model, the defined errors are
shown in Table 3. Those defined errors contain MAE and RMSE, which have been calculated
as:

MAE =
1
N

N

∑
i=1
|Xi(real)− Xi(measured)| (4)

RMSE =

√√√√√ N
∑

j=1
(Xj(real)− Xj(measured))2

N
(5)

where the number of data points is referred to by N, ‘X (real)’ and ‘X (measured)’ applies for
actual values and RBF predicted values, respectively.
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Figure 8. Measured scale value versus real data for (a) training and (b) testing sets.

Table 3. Errors of the designed RBF neural network.

Error Training Data Testing Data

MAE 0.067 0.070
RMSE 0.095 0.097

Network performance testing using training and test data sets will give the reassurance
of avoiding under-fitting and over-fitting of problems. For evaluating the precision and
accuracy of the proposed network, the MAE and RMSE were calculated in Table 3. By
investigating the errors ratio, it is clear that the errors are lower—proving the validity of
the ANN model, which is well-trained and doesn’t encounter under-fitting or over-fitting
of the problem. The low errors for the training set show that the under-fitting problem has
not occurred and that the network is precise. A performance-comparative evaluation of
the RBF neural network with other ANN types for use in the presented metering system is
proposed for future works.

4. Conclusions

In the present investigation, an intelligent system for metering the scale layer thickness
independently of each phase’s volume fractions in an annular three-phase flow was pre-
sented. In this regard, a combination of an RBF neural network and a Monte Carlo-based
radiation transport calculation method was used. Photo peaks of 241Am and 133Ba from two
transmitted detectors and the scale layer thickness of the pipe were considered the inputs
and output of the network. The architecture of the presented network was optimized using
a trial-and-error method. The regression diagrams showed the precision of the system
as well as correction. The MAE and RMSE of the presented system were 0.07 and 0.09,
respectively. The reasonable obtained results demonstrate the robustness of the proposed
system. As mentioned earlier, to the best knowledge of the authors, it is the first time
that a radiation-based system with the ability to measure the thickness of scale layer in oil
pipelines with an existing gas–oil–water three-phase flow with different volume fractions
is presented. The proposed new metering system can be applied as a promising tool in the
different industries for measuring the scale layer thickness of pipelines.
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