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Abstract: In this study, a new oscillation criterion for the fourth-order neutral delay differential equa-
aN !

tion <r(u) ((x(u) + p(u)x(&(u)))"') ) +q(u)xP(p(u)) = 0, u > uy is established. By introducing

a Riccati substitution, we obtain a new criterion for oscillation without requiring the existence of the

unknown function. Furthermore, the new criterion improves and complements the previous results

in the literature. The results obtained are illustrated by an example.

Keywords: delay differential equation; neutral; oscillation; fourth-order

1. Introduction

The behavior of solutions of functional differential/difference equations is a very fer-
tile area for study and investigation, as it has great importance in various applied sciences;
see [1-5]. Delay differential equations (DDEs) of neutral type arise in various phenomena;
see Hale’s monograph [3]. Oscillation theory, as one of the branches of qualitative theory,
has gained much attention in recent times. Agarwal et al. [6,7], Baculikova and Dzurina [8],
Bohner et al. [9,10], Chatzarakis et al. [11], and Moaaz et al [12,13] extended and improved
several techniques for studying the oscillation of second-order DDEs. On the other hand,
odd-order DDEs have received interest in studies [14-17]. The development of the study of
equations of the second order is reflected in the equations of the even order, and this can be
observed in the works [18-24].

In this study, we establish a new criterion for oscillation of the fourth-order neu-
tral DDE

(r() (@ (@)*) + () (p()) = 0, M

where u > upand w(u) = x(u) + p(u)x(6(u)). Throughout this study, we suppose a and f3
are ratios of odd positive integers and f > a, 1,6 € ct [tg, 00), p,q,¢ € Clug, ), r(u) >0,
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r'(u) >0,q(u) >0,0<p(u) <py<oo,d(u)>é>0,pod=060¢, ¢(u) <é(u) <u

limy 00 6(u) = limy 00 p(1) = 00, and

© 1
———d¢ = 0.
/uo 7’1/“(9) ¢

Via a solution of (1), we obtain the function x € C3 [tx,00), Uy > 1y, which has the
property r(w”")* € C'{uy, ), and satisfies (1) on [uy, o). We consider only those solutions
x of (1) that satisfy sup{|x(u)| : u > u} > 0, for all u > u,. A solution of (1) is called
oscillatory if it has arbitrarily large zeros on [uy, o) for some uy > ug; otherwise, it is
called non-oscillatory.

Many works have dealt with sufficient conditions for oscillation of solutions of
the DDE

w(Z”)(u) +q(u)x(¢p(u)) =0, forn > 2, )

and special cases thereof; see [18,20,21,23]. The advantage of these works over others is
that they took into account all of the positive values of p(u). Agarwal et al. [18] studied
oscillation of an even-order equation, Equation (2). They concluded a new relationship
between the solution x and the corresponding function w as

RS B SO B £l i) A
(u) = w( )p(5_1(”)) (1 p(é—l((s—l(u)))< 5= 1(u) > )I

and used a Riccati substitution to obtain the following results:

Theorem 1. Suppose that

1 (671 (67 ()" )
«(u) = 1— 0.
-t ( G ) P10 w)) )

0o 1 n—1 — (0 (u 2
/ (p(u)q(u)p*@(u))(‘s )l _ o2 )du—oo

and

e 0 -1 s (u))?
/ <(nf”§)! [ u @ o) g - L) )du—oo,

then (2) is oscillatory.

By using a different technique (comparison with the first-order delay equation), Ba-
culikova et al. [20] and Xing et al.[23] studied the sufficient conditions for oscillation
of (2).

Theorem 2 (Corollary 2.8, Corollary 2.14 [20,23]). If ¢ is invertible, p~' € C([ug, ), R),
(¢~ (w)) > ¢po > Oand

504)0 ! A n—1 1
lim inf dc> =
(Bo + po)(n — 1)l umeo Js-1(p(u)) Qlg)g" Tdg > -

then (2) is oscillatory, where Q(u) = min{q (¢~ (u)),q(¢~1(6(u)))}.
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Moreover, Baculikova et al. [20] introduced a new Riccati substitution to obtain one
condition that guarantees oscillation for (2).

Theorem 3. Assume that (¢~ (1)) > ¢o > 0. If there exists a function k(1) € C'([ug, 00), (0, o))

such that
u - 1y P ()
lim sup <1K(€)Q(€) - (¢0 (PO&O) — )dg = oo, 3)

woe Juo \ 271 (a+ D) (eMg™20(g))"
holds for some € € (0,1) and for all M > 0, then (2) is oscillatory.

It can be clearly observed that the previous theorem is not sufficient for application
to a high number of examples due to the necessity to fulfill Condition (3) for all positive
values of M.

In 2016, Li and Rogovchenko [21] improved the results in [18,20,23]. They used
an approach similar to that used in [18] but based on a comparison with the first-order
delay equation.

Theorem 4. Assume that there exist functions ¢ € Clug,c0) and & € C'[ug, o) satisfying

o(u) < ¢(u), o(u) < o(u), &(u) < ¢(u), &(u) <é(u), ¢'(u) >0

and
Jim o(u) = lim () = co.
if
1 . u 1 n—1 1
G L a(@p(e) (07 ee)) de >
and

agtmint [ ([0 g )a @lenae > 5,
then (2) is oscillatory, where
) — 1 B 57167 (w))
P = e Tw) (1 5—1<u>p<5—1<5—1<u>>>>'

Since there is no general rule as to how to choose functions ¢ and ¢ satisfying the
imposed conditions, an interesting problem is how an improved result can be established
without requiring the existence of the unknown function ¢ and ¢.

In this paper, we are interested in studying the oscillatory behavior of solutions
to a class of DDEs of neutral type. The technique used is based on introducing two
Riccati substitutes, such as that used in Theorem 3. However, in the case where « = §,
we present conditions that do not need to be satisfied for all positive values of M. Moreover,
the technique used (Riccati substitution) is distinguished from that used in [21,23] in that
it does not require the assumption of unknown functions. Using the example most often
mentioned in the literature, we compare our results with previous results.

In order to discuss our main results, we need the following lemmas:

Lemma 1 ([8]). Let A, B > 0. Then

(A+B)P <261 (AF 4+ BF), for p > 1
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and
(A+B)P < (4P +BF), for p < 1.

Lemma 2 ([24]). Let a be a ratios of two odd positive integers. Then

(a41)/a a Kot1
Kv —uv SWT,L[>O

Lemma 3 ([25]). Let Q € C"([ug, o), (0,00)). Suppose that Q) (1) # 0 is of fixed sign on
[ug, 00) and Q(”’l)(u)()(”)(u) < O0forall u > uy > ug. Iflimy, 0 Q(u) # O, then there exists
uy > uq such that

Qu) > ﬁun—l‘ﬂ(n—l)(u)

forallu > uy and u € (0,1).

Lemma 4 ([26]). Assume that z satisfies z(®) (u) >0,k=0,1,...,n,and z(k+1) (u) <0, then

z(u) > ~uz' (u),

==

for all values of A in (0,1) eventually.

2. Main Results
In the sequel, we adopt the following notation:

u 1 d
u,uy) = ——dg,
il n) /”1 ri/a(g) :
u
Msa(w) = [ elvm)dv, k=12
1

and

Q(u) = min{q(u),q(6(u))}

Lemma 5. Let x be a positive solution of (1). Then, (r(u)(w”’(u))“)/ < 0 and there are two
possible cases eventually:

0, w'(u) >0, w’(u) >0, w"(u) >0, w® (u) <0;
0, w'(u) >0, w'(u) <0, w" (u) >0.

Proof. Assume that x is a positive solution of (1). From (1), we obtain (r(u) (w’”(u))“)/ <0.
Thus, using Lemma 2.2.1 in [25], we obtain the cases (Cy) and (Cy) for the function w and
its derivatives. [

Theorem 5. Let f > 1,
o(u) € CY([ug,)), ¢’ >0 and ¢p(u) < 5(u).

Assume that there exist functions p, @ € C!([uo, ), (0,00)) such that

lim sup u(M,“p(g)Q@) - (H;aS) <a+1><"‘“><p’+<g>>“+l>dg:w @

u—soo Jug 261 % ) (p(6)na(¢(s), u1)e'(¢))"

and
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1/a 1/a / 2
" 6 /1 (19 (v)) .
hrun_>501:p/ ( MPB/O=1y(y) <5O+Opg) /v <W¢(V)> dv — 45(0) ) dv=00, (5)

forall M > 0 and some A € (0,1), where

o= /fsool(w %El) (@)Mdg’

o’ (1) = max{0, o' (u)} and 9', (u) = max{0, ¢’ (u)}. Thus, (1) is oscillatory.

Proof. Assume that x is a positive solution of (1). It follows from Lemma 5 that there exist
two possible cases: (C;) and (Cy). Let (Cy) hold. Since (r(u)(w” (1))*)" < 0, we obtain

u () (" ()Y
w'(u) > w'(u)—w(u) Z/ul ( (g)(rl/a((?)) ) dg
> M (W) (u,w),
integrating the above inequality from u; to u, we have
w'(u) > rt* (u)w" (u)g2 (u, 1), ©)
integrating (6) from u; to u, we obtain
w(u) > r* (u)w™” (u)s(u, up). )

Now, from (1), we obtain

s /

0 > (rl)(@"@)") + 5 (ro() @ (0())") +a(w(p(w))
+pha(6(u))xP(p(5(n)))

which follows from Lemma 1 and ¢od = do¢ that

B ' Ol
(rt @ @0)*) + 52 (160 (" 600)*) + G b @) 0. @)

Next, defining the function w(u) as

©)
then w(u) > 0. Differentiating (9) with respect to u, we have

(r(u) (" (u))")'
T w ()

from (6) and ¢(u) < u, we obtain

W' (P(u)) = r/ (@) (¢ () na(p(u), ) > r/* (' (W) (@(u),wm), (1)

and, thus, (10) can be written as

p(u)WW)<W’”w<g+>l>:;v(’if)<u>>¢’<“>, .
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It follows from (9) and (12) that

< it Y e v,
Similarly, defining another function ¢ by

() = pluy DAL )

then (1) > 0. Differentiating (14) with respect to u, we have

"(u) = p'(u) u u -
Y0 = Sy P00 TP a0 o~ T ()1 (8(a)) w1 (9]

(o) "0 s 0(w) w (900 (w) 1o
u))’

from (6) and ¢(u) < 6(u), we obtain

@' (@(u)) = (@) (¢(u)) 2 (@ (), ur) = v/ (6(u))w" (8(u)) 2 (¢ (), wr),  (16)

and, thus, (15) can be written as

00 ) 4 () @GN s (60 () u)g' W)

w*(¢(u)) pH (u)r =5 (u) )+ (P (u))

It follows from (14) and (17) that

¥’ (u) <

(@6 _ @), 1) W) arwm) )

Y0 ) ) o1/ (u)

¥'(u) <
Multiplying (18) by pg /8o and combining it with (13), we obtain

p () (W (u))*) Bo(r(s(u) (" (5(u)))")
W+ Py < p(u)(m( (w)")" , po (r(E(m) (" (& )))))

() & Wt (p(u))
p;(u>w(u) B 0‘772(4)(”)/“1)4)/(“)w(terl)/:x(u)

+
p(u) ot/ (u)
B, /
Po (P+(u) anp2 (p(u), u1)¢’ (1) (144)/a )
+20 - u) ).
o Upwy Y T oy W)
From (8), we obtain
B /
, Po s Q) wP(p(u) (@), un)¢ (1) (i) /a
SO GV S T ) T )
B, ’
Po (P(u) o (P(u), u1)¢’ () (144 /0 )
B0 (B - SRR W yrssgw) ) o)
P (1)
ot ™
From Lemma 2, (20), becomes
B / a+1
W' (u Po "1 _o(u Q(”)wﬁ—lx u 1 (p+(u))
(u) + (Solll( ) < —p( )Zﬁ’l (p(u)) + et D™ ()2 (@), ) )"
B / a+1
o1 (0 (u)) 20
0 (a4 1) (p(u)ma(p(u), ur)g’ (u))* (20)
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Since w’(u) > 0, there exist a u > 11 and a constant M > 0 such that
w(u) > M, forall u > uy, (21)
by using (21) and integrating (20) from u; (12 > u1) to 1, we obtain
u B a1 —(a41) /s a+1
_ 6
2 2 0 ) ((6)ma(e(c), u1)¢'(¢))
p
+ 20 (),
0
which contradicts (4).
Let (Cp) hold. We define a function ¢(u) by
PVENCAC)
p(u) = 0(u) (W)’ (22)
then w(u) > 0. Differentiating (22), we have
o' (u) W) g @ ()"
/ _ —
(P (u) - 19(1/1) (P(u) +l9(1/l) ZU(M) 19(”) wZ(u) (23)
from (22) and (23), we have
o (u) w” (u) 1
() — _ 2

ﬁ [e9)
— () (" ()" = ELr(8(u)) (" (8()))* < - %wﬁ(wg))dg- (25)

p o0 B/A
—rl " ) = Rrtstu) (w00 < - [T FEH(HELD) e
that is,
p oo B/A
) (") + F2r(00)) (o (000))* 2 ) [~ G (HE) g
since 6(u) < wand (r(u)(w" (u))*)" <0, we have
p o B/A
PO (" (0()* + Br(0(w) (" (0(w))* = wh(a) [ FE ()
that is, 5
s @ ) > (B Vub [ 2 (26
(500 (" (5(0)))* 2 <<so+pg>”’ o [TF9(H) e o
or
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since 61 (1) > u, thenw(6~'(u)) > w(u). From the above inequality, we have

" a % B ” % M "
r(u) (" (u))" 2 <50+P§>w <u)/s—1(u) 2“( ¢ ) e

Integrating the above inequality from u to oo, we obtain

1/« 1/«
7 . do B/a < 1 Q) (¢(s) P/
v < <5o+ p§> @ (”)/u (r(V) /5,1(1,) 2ﬂ—1< G ) d v (7

from (27) and (24), we have

Thus, we obtain
e 1/a p 2
' _ % (B/a)-1 (1 (¢ (u))
¢ dv + —/———,
o) < (”)<5o+p€> W [7(cse0)) e B

by using (21) and integrating (28) from u; to u, we obtain

u Ve 0 1/« / 0 2
U 0 0 JO

which contradicts (5). This completes the proof. O

Example 1. Consider the fourth-order neutral differential equation
(x(u) + pox(au))®) + Tax(bu) = 0, 29)

where a,b € (0,1),a > b, and qo > 0. We note that p(u) = po, 6(u) = au, ¢(u) = bu, and
q(u) = qo/u*. It can be easily verified that

Qu) = 1,

1
D(u) = qobl/)‘a?’ﬁ

and

(), 1) = 5 (b 1)



Mathematics 2021, 9, 2388

9of 12

By choosing p(u) = u> and ¢(u) = u, we obtain

lim sup ! p(g)%Mﬁ—zx _ (1 i };§> (P;(g))wrl dc
2671 (a+ 1) (o(c)m2(¢(c), u1)' ()"

U—00 Uy
u 14+ Fo 3c2 2
= lim sup g3q—27 ( +2”) (3¢%) — | dg
u—oo Jup 9 (2) §3 (bg_zul) b

A

and

u 1/a oS 1/a / 2
lim sup 9(v) % 7 M(ﬁ/w)fl/ (1q)(v)> dv — M do
u—oo Juq b0 + Po v 1’(1/) 419("0)
L u a i 79 1/A - i
_hrqu;:P . <U<a+p0)/ </Z 4<g) dg |dv e do
u a
= lim sup v( )
u—oo  Juy a+po

E

- () (5 - 4)

Thus, the Conditions (4) and (5) are satisfied if

9(a+ po)
g0 > Toud (30)
and 3( )
a+ po
90 = — api/a (31)
respectively. Therefore, we see that (29) is oscillatory if
9(a+ po) 3(a+po)
qo > max{ a3 2plA [ (32)
Remark 1. From Theorem 2, we see that (29) is oscillatory if
9(a+ po)
= 3en(a/b)’ 33
Using Theorem 4, if we choose 11 (1) = bu, then (29) is oscillatory if
6,2
9a°p§ (34)

90 = @po —1)beln(a/b)’

Figures 1 and 2 illustrate the efficiency of the Conditions (32)—(34) in studying the oscillation of the
solutions of (29). It can be easily observed that Condition (31) supports the most efficient condition
for values of p € (0,1/a3), and Condition (34) supports the most efficient condition for values
of p > (1/a®). Therefore, our results improve the results in [20,23] and complement the results
in[21].
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[ C1
[ Cc2
[1C3

10 12 14

ol
L]
S
@
o

Figure 1. Regions for which Conditions (32)-(34) are satisfied whena =1/2and b =1/3.

1000 |

800

o 1
[1c2
I c3

200 -

0 2 4 6 8 10
Figure 2. Regions for which Conditions (32)—(34) are satisfied whena =2/3and b = 1/2.

3. Conclusions

In this study, we established new criteria for oscillation of solutions of neutral delay
differential equation of fourth order (1). By imposing two Riccati substitutions in each
case of the derivatives of the corresponding function, we obtained criteria that ensure
that all solutions oscillate. To the best of our knowledge, the sharp results that addressed
the oscillation of (1) are presented in the works [18,20,21,23]. Li and Rogovchenko [21]
improved the results in [18,20,23], but they used Lemma 4 with A = 1 ( this is inaccurate);
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see Remark 12 in [14]. Thus, the results in [21] may be somewhat inaccurate. By applying
our results to an example, it was shown that our results improve the previous results in
the literature.
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