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Abstract: We consider the nonlinear n-th order boundary value problem Lu = u(n) = f (t, u(t), u′(t), . . . ,
u(n−1)(t)) = Nu given arbitrary bounded linear functional conditions Bi(u) = 0, i = 1, . . . , n and
develop a method that allows us to study all such resonance problems of order one, as well as
implementing a more general constructive method for deriving existence criteria in the framework of
the coincidence degree method of Mawhin. We demonstrate applicability of the formalism by giving
an example for n = 4.
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1. Introduction

We consider the differential equation

u(n) = f (t, u(t), u′(t), . . . , u(n−1)(t)), 0 < t < 1, (1)

together with the functional conditions

Bi(u) = 0, i = 1, .., n. (2)

The topic of existence results for resonance problems in the view of topological degree
due to Mawhin has a long history [1–11]. Many results span not just ordinary differential
equations, but even fractional differential equations [12,13]. Among the degree based
methods, the coincidence degree theory continues to play an important role [2,4–7,14] just
to name a few. There are two particular matters of import, that being the structure of
the projectors and that of the order of resonance. A common theme emerges from recent
research when it comes to finding suitable projectors: fix the boundary conditions away
from a more general form in order to construct suitable projectors. We highlight a few
examples.

In [9], the author study the problem

x′′(t) = q(t) f (t, x(t), x′(t)), t ∈ (0, ∞),

x(0) = 0, x′(+∞) =
∫ ∞

0
x′(s) dg(s),

where g : [0, ∞)→ [0, ∞) is nondecreasing and such that g(0) = 0. The resonance condition
g(∞) = 1. The existence results were obtained using the coincidence degree theorem of
Mawhin stated below, which is the method of our paper, as well.

In [11], which is a generalization of [9],the authors analyzed an n-th order boundary
value problem.
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u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)), t ∈ (0, ∞),

u(i)(0) = 0, i = 1, . . . , n− 3, u(n−1)(∞) = 0,

Γ1(u) = Γ2(u) = 0,

where n ≥ 3, Γ1, Γ2 : C(n−1)[0, ∞)→ R. In this work, the resonance occurs if Γ1(1)Γ2(tn−2) =
Γ1(tn−2)Γ2(1).

The above shows a similar trend: they offer a particular type of bounded linear
boundary conditions. Using said conditions they obtain projectors P and Q and conclude
that indeed solutions exist because of coincidence degree theory due to Mawhin. The
problem here is that this obscures the methodology of obtaining projectors necessary for
the theory in general, since the choice of boundary conditions are too specific. We provide
a method for these of the form of (1) of resonance one in which we assume very little about
the boundary conditions (2), in order to illuminate this process of constructing projectors.
This is a further extension of [7] in which they apply a similar methodology to solve all
similar problems to that of (1) but n = 2. Here n is arbitrary. This is beneficial as there exist
problems of higher order which are of interest, such as fourth order problems dealing with
thermo-elasticity, mechanics, and flow as seen in papers such as [15]. We will use [7] in
several cases to confirm that our results do indeed generalize their methods.

We assume the following:
(B1) The linear functionals Bi : X → R, i = 1, . . . , n, are such that the matrix

K = [σij]i,j=1,...,n, σij =
1

(n− j)!
Bi(tn−j), (3)

has rank n− 1;
(B2) The functionals Bi : X → R are continuous with the respective norms βi,

where X = C(n−1)[0, 1] with the norm ||u||X = maxi=1,...,n ||u(i−1)||0, where || · ||0 is the
max norm.

Set
dom L = {u ∈ X : u(n) ∈ Z and B̂u = 0}

where B̂(u) = [Bi(u)]Ti=1,...,n and Z = L1[0, 1] with the usual norm || · ||Z. Define the
mapping L : dom L ⊂ X → Z by

Lu = u(n). (4)

We define the mapping N : X → Z by

Nu(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)),

where f is Carathéodory. Then (1) and (2) is equivalent to the coincidence equation
Lu = Nu. The following results come from [8].

Definition 1. Let X and Z be real normed spaces. A linear mapping L : dom L ⊂ X → Z is called
a Fredholm mapping if ker L has finite dimension and Im L is closed and has a finite co-dimension.
If L is a Fredholm mapping, its (Fredholm) index is the integer Ind L = dim ker L− codim Im L.

In this instance we are concerned with a Fredholm mapping of index zero. Thus we
construct continuous projectors P : X → X, Q : Z → Z so that

Im P = ker L, ker Q = Im L, X = ker L⊕ ker P, Z = Im L⊕ Im Q. (5)

The map
L|dom L∩ker P : dom L ∩ ker P→ Im L

has the inverse denoted by KP : Im L → dom L ∩ ker P. The generalized inverse of
L denoted by KP,Q : Z → dom L ∩ ker P is defined by KP(I − Q). If L is a Fredholm
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mapping of index zero, then, for every isomorphism J : Im Q → ker L, the mapping
JQ + KP,Q : Z → dom L is an isomorphism and

(JQ + KP,Q)
−1u = (L + J−1P)u, u ∈ dom L.

Definition 2. Let L : dom L ⊂ X → Z be a Fredholm mapping, E be a metric space, and
N : E→ Z be a mapping. We say that N is L-compact on E if QN : E→ Z and KP,QN : E→ X
are continuous and compact on E. In addition, we say that N is L-completely continuous if it is
L-compact on every bounded E ⊂ X.

For our methods to apply, we need that our given N is L-compact. Since f is
Carathéodory, however, this follows from the dominated convergence theorem and the
Kolmogorov-Riesz criterion:

Theorem 1. For 1 ≤ p ≤ ∞, E ⊂ Lp[0, 1] is compact if

• E is bounded;
• the limit

lim
ε→0

∫ 1

0
|g(s + ε)− g(s)|p ds = 0

is uniform in E.

To show the existence of a solution to (1) and (2), expressed as Lu = Nu, we apply the
following theorem from [8]:

Theorem 2. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index zero and N be
L-compact on Ω. Assume that the following are satisfied:

1. Lu 6= Nu for every (u, λ) ∈ ((dom L\ ker L) ∩ ∂Ω)× (0, 1);
2. Nu /∈ Im L for every u ∈ ker L ∩ ∂Ω;
3. deg(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) 6= 0, with Q : Z → Z a continuous projector such that

ker Q = Im L, and J : Im Q→ ker L is an isomorphism.

Then the equation Lu = Nu has at least one solution in dom L ⊂ Ω.

2. Technical Lemmas

The set

Tn =

{
n

∑
i=1

βitn−i

(n− i)!
: β̂ = [βi]

T
i=1,...,n ∈ Rn

}

=

{
u ∈ ACn−1[0, 1] : u(t) =

n

∑
i=1

u(n−i)(0)tn−i

(n− i)!

}

is the solution space of the homogeneous Equation (1). Let (3) represent a linear map
K : Rn → Rn. By (2) and (B1), u ∈ ker L ⊆ Tn if and only if

Bi

(
n

∑
j=1

β jtn−j

(n− j)!

)
=

n

∑
j=1

β j

(n− j)!
Bi(tn−j) = 0, i = 1, . . . , n.

Then kerK =
{

β̂ ∈ Rn : KL̂u = 0̂
}

, dim kerK = 1, where

L̂u = [u(n−1)(0), u(n−2)(0), . . . , u(0)]T , (6)
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if and only if (B1) is fulfilled. We define a map Ĝ : Z → Rn by

Ĝ(g) = [BiG(g)]Ti=1,...,n, G(g)(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1g(s) ds. (7)

Note that u ∈ dom L implies Lu = g(t) for some g ∈ Z. Hence

u(t) =
n

∑
i=1

u(n−i)(0)tn−j

(n− j)!
+ G(g)(t),

which, together with (2), yields
Ĝ(g) + KL̂u = 0̂.

We state our next lemma in terms of (3) and (7).

Lemma 1. The functional differential problem (1) and (2) is at resonance of dimension 1 if and
only if the condition (B1) is satisfied. Moreover,

ker L =
{

u ∈ Tn : KL̂u = 0̂
}

and Im L =
{

g ∈ Z : Ĝ(g) ∈ ImK
}

.

Let K′ : Rn → Rn denote the adjoint of K. Then

kerK′ ⊕ ImK = kerK⊕ ImK′ = Rn.

Let {κ̂i : i = 1, . . . , n} and {ρ̂i, i = 1, . . . , n} be such that

span{κ̂1} = kerK and span{κ̂2, . . . , κ̂n} = ImK′, (8)

span{ρ̂1} = kerK′ and span{ρ̂2, . . . , ρ̂n} = ImK (9)

and, in addition,
(P1) Let {κ̂i : i = 1, . . . , n} be a basis of unit vectors in Rn such that 〈κ̂1, κ̂j〉 = 0 for all
j = 2, . . . , n,
(P2) Let {ρ̂i : i = 1, . . . , n} be a basis of unit vectors in Rn such that 〈ρ̂1, ρ̂j〉 = 0 for all
j = 2, . . . , n.

Remark 1. Notice that the original problem outlined in [7] offers

K =

[
αb αa
b a

]
.

From this we can tell that kerK = {c[a,−b]T : c ∈ R}; compare it to ker L = {c(at− b) : c ∈
R} in [7].

3. Projectors in X and Z

We present a strategy for “isolating” an arbitrary subspace for Tn by a continuous
linear projector in X. This task is essentially algebraic and the continuity follows from
properties of the Wronskian. The construction to follow is independent of the functional
problem in question.

We consider M = [κ̂1| . . . |κ̂n] = [κij]i,j=1,...,n and define

ψκ̂i (t) =
n

∑
j=1

κji

(n− j)!
tn−j, i = 1, . . . , n

so that L̂ψκ̂i = κ̂i.
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Theorem 3. Assume that (P1) holds. Then there exist linear projectors P, P̃ : X → X such that
X = ker P⊕ Im P, with Tn = Im P̃⊕ Im P, where Im P = span{ψκ̂1} and ker P = {u ∈ X :
L̂u ∈ span{κ̂i : i = 2, . . . , n}}.

Proof. Let u ∈ X and define P : X → X by

Pu(t) = 〈κ̂1, L̂u〉ψκ̂1(t). (10)

Since P
(

tn−i

(n−i)!

)
(t) = κi1ψκ̂1 , i = 0, . . . , n − 1, then Pψκ̂1(t) = ψκ̂1(t) and so P2 = P,

X = ker P ⊕ Im P with Im P = span{ψκ̂1} and ker P = {u ∈ X : L̂u ∈ span{κ̂i : i =
2, . . . , n}}.

Now, let
P̃u(t) = 〈M−1L̂u, ψ̂0〉 (11)

where ψ̂0 = [0, ψκ̂2(t), . . . , ψκ̂n(t)]
T . With M−1L̂u = [ωi]i=1,...,n, this can be written as

P̃u(t) =
n

∑
i=2

ωiψκ̂i (t).

This reveals that

L̂P̃u =
n

∑
i=2

ωiκ̂i = MUM−1L̂u

where U is the identity matrix with the first column replaced with the zero column and so

P̃2u(t) = 〈M−1L̂P̃u, ψ̂0〉 = 〈UM−1L̂u, ψ̂0〉 = P̃u(t).

We can see that P̃ψκ̂i (t) = ψi(t) for i = 2, . . . , n because of the properties of L̂ and the M−1

factor and so Im P̃ = span{ψκ̂i : i = 2, . . . , n}. But then ker P|Tn = Im P̃|Tn because of the
properties of L̂.

Remark 2. Note that one could rewrite Pu(t) as

Pu(t) = 〈M−1L̂u, ψ̂1〉

where ψ̂1 = [ψκ̂1 , 0, . . . , 0]T and so

Pu(t) + P̃u(t) = 〈M−1L̂u, ψ̂〉

where ψ̂ = ψ̂0 + ψ̂1. Define

α̂ =

[
1

(n− 1)!
tn−1,

1
(n− 2)!

tn−2, . . . , t, 1
]T

.

Then its clear that ψ̂ = MT α̂. This means that

Pu(t) + P̃u(t) = 〈M−1L̂u, ψ̂〉 = 〈L̂u, (MT)−1ψ̂〉
= 〈L̂u, (MT)−1MT α̂〉 = 〈L̂u, α̂〉

=
n

∑
i=1

1
(n− i)!

tn−iu(n−i)(0) = P0u(t).

The same technique seen in the previous theorem can be used to show that P2
0 = P0, ker P0 = {u ∈

X : L̂u = 0̂}, Im P0 = Tn, and X = ker P0 ⊕ Im P0.
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Remark 3. In the problem outline in [7], we would have κ1 = [a,−b]T with ψκ̂1 = at− b meaning
one has the projector

Pu(t) =
1

a2 + b2 (au′(0)− bu(0))(at− b),

which is the exactly the projector P identified in the paper.

This leaves our projector Q.

Lemma 2. Let ρ̂i ∈ Rn, i = 1, . . . , n, satisfy (P2). Then there exists a linear projector Q : Z → Z
such that Z = ker Q⊕ Im Q, where Im Q = span{h} for some h ∈ Z and ker Q = {g ∈ Z :
Ĝ(g) ∈ span{ρ̂i : i = 2, . . . , n}}.

Proof. Although an abuse of notation, consider the operator

B = 〈ρ̂1, B̂〉.

We show that there exists an h ∈ Z such that B(Gh) 6= 0. Note that

B
(

tn−i

(n− i)!

)
=

〈
ρ̂1, B̂

(
tn−i

(n− i)!

)〉
= 0

because ρ̂1 is the vector that spans kerK′ and B̂(tn−i)
(n−i)! is just the ith row of KT which is the

associated matrix for K′. But at the same time, each Bi is linearly independent, meaning
there exists a u0 ∈ X\Tn such that B(u0) 6= 0. By the continuity of B there exists a
polynomial p such that ||p− u0||X < ε and Lp 6= 0 and so set h = Lp. Then

BG(h) = BG(Lp) = B

(
p−

n

∑
i=1

u(n−i)(0)tn−i

(n− i)!

)
= Bp 6= 0.

Since B ◦ G is linear, we can choose h such that BG(h) = 1. Define Q : Z → Z by

Qg(t) = BG(g)h(t) =

(
n

∑
i=1

ρi1Bi

)
G(g)h(t). (12)

Since Qh(t) = h(t), we have that Q2g = Qg, g ∈ Z. Obviously, Q is a continuous map
and Z = ker Q ⊕ Im Q, Im Q = span{h}, ker Q = {g ∈ Z : Ĝ(g) ∈ span{ρ̂i : i =
2, . . . , n}}.

Remark 4. In [7], one had that

Qg(t) = (B1 − αB2)

(∫ t

0
(t− s)g(s) ds

)
h(t).

Note that kerK′ = span{[1,−α]T} in the case of n = 2 from their paper and so constitutes a quick
example of the above.

4. Main Results

The formulas for P and Q in the previous section are not presumed to depend on the
geometry of a particular problem. Now this connection is made and we obtain suitable
decompositions of the spaces X and Z by an exact pair (P, Q) of projectors. This is done in
the next lemma.

Lemma 3. Let (B1) and (B2) hold and Ĝ be given by (7). Then the mapping L : dom L ⊂ X → Z
is a Fredholm mapping of index zero.
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Proof. We utilize the projectors P and Q from Lemma 3, Lemma 2 respectively.

By Lemma 2 and that ImK = span{ρ̂i : i = 2, . . . , n},

ker Q = {g ∈ Z : Ĝ(g) ∈ ImK} = Im L ⊂ X

for the projector (12). In particular, Z = Im L⊕ Im Q and codim Im L = 1.
By (3) and that Im P = span{ψκ̂1} = {u ∈ Tn : KL̂u = 0̂} since with L̂(ψκ̂1) one

would obtain the vector κ̂1 by construction,

Im P = {u ∈ Tn : KL̂u = 0̂} = ker L

for the projector (10). In particular, X = ker L ⊕ ker P and dim ker L = 1. Thus L is a
Fredholm map of index zero.

Now, consider K and recall that K is of rank n− 1. Let

Kb = [σ′lk]l,k=1,...,n−1, where σ′lk = σil jk , il < il+1, jk < jk+1

so that det Kb is a basis minor. Let g ∈ Im L and choose κ̂0 = κ̂0(g) ∈ Rn satisfy the equation
Kκ̂ = −Ĝ(g) with Ĝ given by (7). In particular, with the matrix Kb, κ̂0 = [κ0,i]

T
i=1,...,n−1 can

be determined by

κ0,ik =

{
−(K−1

b Ĝb(g))k, if k = 1, . . . , n− 1
0, k = n

(13)

Note that

Kκ̂0 = KMM−1κ̂0 =
n

∑
i=2

(M−1κ̂0)iKκ̂i =
n

∑
i=2

(M−1κ̂0)iKκ̂i;

this suggests defining

φ(g) =
n

∑
i=2

(M−1κ̂0)iψκ̂i . (14)

Subsequently, we define KP : Im L→ X by

KPg = φ(g) + G(g). (15)

The map KP is well-defined. Indeed, if ω̂1,ω̂2 ∈ Rn satisfy the equation Kκ̂ = −Ĝ(g), then
ω̂1 − ω̂2 ∈ kerK, meaning ω̂1 = ω̂2 + ζ̂, ζ̂ ∈ kerK. This means that

φ(g)ω̂1 =
n

∑
i=2

(M−1ω̂1)iψκ̂i =
n

∑
i=2

(M−1ω̂2)iψκ̂i = φ(g)ω̂2 .

We have
LKPg = Lφ(g) + LG(g) = g

by definition of G and since φ(g) ∈ Tn. Also

B̂φ(g) =
n

∑
i=2

(M−1κ̂0)i B̂ψκ̂i =
n

∑
i=2

(M−1κ̂0)iKκ̂i

and
B̂G(g) = Ĝ(g) = −Kκ̂0.
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Hence

B̂KPg = B̂φ(g) + B̂G(g) = K

(
n

∑
i=2

(M−1κ̂0)iκ̂i − κ̂0

)
= −K

(
M−1κ̂0)1κ̂1

)
= 0̂.

Note that L̂G(g) = 0̂ and φ(g) ∈ Im P̃. Hence KPg ∈ ker P since PKPg = Pφ(g)+ PG(g) =
0. Thus KPg ∈ dom L ∩ ker P.

Now, let u ∈ dom L ∩ ker P and g = Lu = u(n). By Lemmas 1 and 3, KL̂u = Ĝ(u(n))
and

L̂u =
n

∑
i=2

(M−1L̂u)iκ̂i ∈ ImK′.

Thus

φ(u(n)) =
n

∑
i=2

(M−1L̂u)iψκ̂i = P̃u.

Therefore

KPLu = φ(Lu) + G(Lu) = P̃u +

(
u−

n

∑
i=1

u(n−i)(0)
tn−i

(n− i)!

)
= P̃u + u− P0u

= u− Pu

= u

since u ∈ ker P.
We can summarize the above as a lemma.

Lemma 4. For L defined by (4), KP : Im L→ dom L ∩ ker P defined by (15) satisfies

KP = (L|dom L∩ker P)
−1.

Remark 5. Again, considering [7], we see that we may remove the first row and column of K; this
results in Kb = [a] and so κ̂0 = [0,− 1

a B2G(g)]T . We find that [b, a]T is a vector orthogonal to
[a,−b]T and so ψκ̂2 = bt + a and

M =

[
a b
−b a

]
, M−1 =

1
a2 + b2

[
a −b
b a

]
and so

Kpg = − bt + a
a2 + b2 B2G(g) + G(g)

which is exactly the generalized inverse found in said paper.

Assume the following conditions on the function f (t, x1, . . . , xn) are satisfied:
(H1) there exists a constant K0 > 0 such that, for each u ∈ dom L\ ker L with

n−1
∑

i=0
|u(i)(t)| > K0, t ∈ [0, 1], we have QNu 6= 0.

(H2) there exist functions δi ∈ L1[0, 1], i = 0, . . . , n such that, for all (x1, . . . , xn) ∈ Rn

and a.e. t ∈ [0, 1],

| f (t, x1, . . . , xn)| ≤ δ0 +
n

∑
i=1

δi(t)|xi|.
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(H3) there exists a constant K1 > 0 such that if |c| > K1 then cB(GNuc) > 0 where
uc = cψκ̂1 .

This leads us into the position to prove the following existence theorem.

Theorem 4. If (B1), (B2), (H1)–(H3) hold, then the functional problem (1), (2) has at least one
solution provided

n

∑
i=1
||δi||Z < 1.

Proof. Let Ω1 = {u ∈ dom L\ ker L : Lu = λNu, λ ∈ (0, 1)}. If u ∈ Ω1, it follows from
(H1) that there exists a t0 ∈ [0, 1] such that |u(i)(t0)| ≤ K0, i = 0, . . . , n − 1. Of course,
one has

u(n−1)(t) = u(n−1)(t0) +
∫ t

t0

u(n)(s) ds,

and, in conjunction with above, the inequality

|u(n−1)(t)| ≤ |u(n−1)(t0)|+
∫ 1

0
|u(n)(s)| ds < K0 + ||Lu||Z.

Suppose that one has
|u(n−i)(t)| < iK0 + ||Lu||Z.

Then

|u(n−i−1)(t)| < K0 +
∫ 1

0
|u(i)(s)| ds < K0 + iK0 + ||Lu||Z = (i + 1)K0 + ||Lu||Z.

This results in

||u||X ≤ ||Lu||Z + nK0 < ||Nu||Z + nK0 ≤ ||h0||Z +
n

∑
i=1
||hi|Z||u||X + nK0

and so

||u||X ≤
||h0||Z + nK0

1−∑n
i=1 ||hi||Z

meaning Ω1 is bounded.

Define Ω2 = {u ∈ ker L : Nu ∈ Im L}. Then u = cψκ̂1 for some c ∈ R. Since
Nu ∈ Im L = ker Q, B(GNu) = 0. By (H3), |c| ≤ K1; that is, Ω2 is bounded.

Define J : Im Q→ ker L by

Jg(t) = BG(g)ψκ̂1 .

Then J(ch)(t) = cBG(h)ψκ̂1 = cψκ̂1 , meaning we have an isomorphism.
Let Ω3 = {u ∈ ker L : λu + (1 − λ)JQNu = 0, λ ∈ [0, 1]}. Let u be denoted by

uc = cψκ̂1 . Then λu + (1− λ)JQNu = 0 implies λuc + (1− λ)JQNuc = 0. If λ = 0 then
JQNuc = 0; that is, u ∈ Ω2, which is bounded. If λ = 1, then c = 0. If λ ∈ (0, 1) then,
by (H3),

0 < λc2 = −(1− λ)cB(GNuc) < 0,

which is a contradiction. Thus Ω3 is bounded.
Let Ω be open and bounded such that ∪3

i=1Ωi ⊂ Ω. Then the first two assumptions of
Theorem 2 are fulfilled. Lemma 3 states that L is Fredholm of index zero. We are left with
only determining the third assumption of Theorem 2.

We apply the degree property of invariance under a homotopy to

H(u, λ) = λIu + (1− λ)JQNu, (u, λ) ∈ X× [0, 1].
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If u ∈ ker L ∩ ∂Ω, then

deg(JQN|ker L∩∂Ω, Ω ∩ ker L, 0) = deg(H(·, 0), Ω ∩ ker L, 0)

= deg(H(·, 1), Ω ∩ ker L, 0)

= deg(I, Ω ∩ ker L, 0)

6= 0.

Thus a solution exists on dom L ∩Ω.

Remark 6. Considering H(u, λ) = −λIu + (1− λ)JQNu and Ω3 = {u ∈ ker L : −λu +
(1− λ)JQNu = 0, λ ∈ [0, 1]}, the proof holds similarly for the case where one swaps out (H3) with
(H4) there exists a constant K1 > 0 such that if |c| > K1 then cB(GNuc) < 0 where uc = cψκ̂1 .

The method seen in Theorem 4 cannot be used if (H1) goes unfulfilled, since a reduc-
tion of order technique cannot be utilized. In order to attempt a different approach, we will
need the following norm estimates.

Lemma 5. The map KP : Im L→ dom L ∩ ker P satisfies

||KPg||X ≤ C||g||Z

where

C =
1

(n− 1)!
+ ||M−1||

n

∑
i=2
||ψκ̂i ||X ||K

−1
b ||

(
n−1

∑
k=1
||Blk ||

2

)1/2

.

In particular,
||(KPg)(j)||0 ≤ Aj||g||Z,

for j = 0, . . . , n− 1 where

Aj =
1

(n− j)!
+ ||M−1||

n

∑
i=2
||ψ(i)

κ̂i
||0||K−1

b ||
(

n−1

∑
k=1
||Blk ||

2

)1/2

.

By (15) we obtain

||KPg||X ≤ ||φ(g)||X + ||G(g)||X ≤ ||φ(g)||X +
1

(n− 1)!
||g||Z.

Recall that φ(g) = ∑n
i=2(M−1κ̂0)iψκ̂i , and note that ||κ̂0|| ≤ ||K−1

b ||||Ĝb(g)||, where || · ||
stands both for the Euclidean norm on Rn−1 or, without loss of clarity, the compatible
matrix norm. Hence, recalling Ĝb(g) = [Blk G(g)]Tk=1,...,n−1, we obtain

||κ̂0|| ≤ ||K−1
b ||||Ĝ(g)|| ≤ ||K−1

b ||
(

n−1

∑
k=1
||Blk ||

2

)1/2

||G(g)||X

≤ ||K−1
b ||

(
n−1

∑
k=1
||Blk ||

2

)1/2

||g||Z.

Hence,

||φ(g)||X ≤
n

∑
i=2
|(M−1κ̂0)i|||ψκ̂i ||X

≤ ||M−1||
n

∑
i=2
||ψκ̂i ||X ||K

−1
b ||

(
n−1

∑
k=1
||Blk ||

2

)1/2

||g||Z.
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The combination nets us C. For Aj, simply note that we would do the above but for a
specific derivative under the max norm, and not move to || · ||X .

Now, we change one of the leading assumptions to the main result, (H1), where here
j ∈ {0, . . . , n− 1}:
(H5) There exists a constant K0 > 0 such that u ∈ dom L\ ker L with |u(j)(t)| > K0 implies
QNu 6= 0 in [0, 1].

Theorem 5. For j ∈ {0, . . . , n− 1}, if (B1), (B2), (H2), (H3) (or (H4)), and (H5) hold, then the
functional problem (1), (2) has at least one solution provided ψ

(j)
κ̂1
6= 0 on [0, 1] and

D∗
(

n

∑
i=1
||δi||Z

)
< 1

where

D∗ =
Aj||ψκ̂1 ||X

min
t∈[0,1]|ψ(j)

κ̂1
|
+ C.

Proof. Consider u ∈ Ω1 as outlined in Theorem 4, with u = u1 + u2, u1 = Pu, u2 =
(I − P)u = KPLu = λKPNu. We have, by Lemma 5,

||u(j)
2 ||0 ≤ Aj||Nu||Z, ||u2||X ≤ C||Nu||Z.

Now, u1 = u− u2, so that |(Pu)(j)(t0)| = |u
(j)
1 (t0)| ≤ |u(t0)|+ |u

(j)
2 (t0)| < K0 + Aj||Nu||Z.

We have
|u(j)

1 (t0)| = |〈ρ̂1, L̂u〉||ψ(j)
κ̂1
| < K0 + Aj||Nu||Z.

In particular,

|〈ρ̂1, L̂u〉| ≤
Aj||Nu||Z

min
t∈[0,1]|ψ(j)

κ̂1
|
,

meaning

||u1||X = ||Pu||X ≤ (K0 + Aj||Nu||Z)
||ψκ̂1 ||X

mint∈[0,1] |ψ
(j)
κ̂1
|

and so

||u||X ≤ ||u1||X + ||u2||X

< C1 +

 Aj||ψκ̂1 ||X
mint∈[0,1] |ψ

(j)
κ̂1
|
+ C

||Nu||Z

< C2 +

 Aj||ψκ̂1 ||X
mint∈[0,1] |ψ

(j)
κ̂1
|
+ C

( n

∑
i=1
||δi||Z

)
||u||X

< C2 + D∗
(

n

∑
i=1
||δi||Z

)
||u||X

and therefore Ω1 is bounded. The rest of the proof replicates that of Theorem 4.

5. Example

Consider
Lu(t) = u(4)(t) = A(1 + u(t) + 2 sin(u′′(t) + u′′′(t))
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under the conditions

B1(u) =
5
3

u′′′(1) +
5
3

u′′(1/3)− u′(2/3) = 0,

B2(u) = 2u′′′(0)− 1
6

u′′(1/3) + u′(2/3)− u(1) = 0,

B3(u) = −
1
3

u′′′(0) +
1
6

u′′(1/3) + 2u′(2/3)− u(1) = 0,

B4(u) =
10
3

u′′′(0) +
5
2

u′′(1/3)− u(1) = 0.

One obtains

K =


2 1 −1 0
2 0 0 −1
0 1 1 −1
4 2 −1 −1

,

kerK = span


1
3


1
0
2
2


, kerK′ = span


√

15
15


3
1
1
−2


,

ImK = span


√

10
30


4
3
−7
4

,

√
21

21


−2
2
−2
−3

,

√
14

42


−2
9
5
2


,

ImK′ = span


√

5
15


2
0
−5
4

,

√
5

5


−2
0
0
1

,


0
−1
0
0


,

with the fundamental solution set being of course
{

t3

6 , t2

2 , t, 1
}

and so

ψκ̂1(t) =
1

18

(
t3 + 12t + 12

)
,

ψκ̂2(t) =
√

5
45

(
t3 − 15t + 12

)
,

ψκ̂3(t) =
√

5
15

(
3− t3

)
,

ψκ̂4(t) = −
1
2

t2.

We see that h(t) =
√

15
5 suffices for B(Gh) = 1 and so we have

Pu(t) =
1

54
(
u′′′(0) + 2u′(0) + 2u(0)

)(
12 + 12t + t3

)
,

Qg(t) =
1
5
(3B1(G(g)) + B2(G(g)) + B3(G(g))− 2B4(G(g)))

=
∫ 1

0
g(s) ds

are suitable projectors.
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Because of kerK′, we have that 3B1 + B2 + B3 − 2B4 = 0, which we will use shortly.
For the generalized inverse, we have

Kb =

1 −1 0
0 0 −1
1 1 −1

, K−1
b =

1
2

 1 −1 1
−1 −1 1
0 −2 0

,

κ̂0 =


0

− 1
2 (B1(G(g))− B2(G(g))) + B3(G(g)))

1
2 (B2(G(g)) + B3(G(g))− B4(G(g)))

B3(G(g))

,

M−1κ̂0 =


1
3 (B1(G(g)) + 3B2(G(g))− B3(G(g)))

−
√

5
30 (5B1(G(g))− 3B2(G(g))− 5B3(G(g)))√

5
5 B2(G(g))

1
2 (B1(G(g))− B2(G(g)) + B3(G(g)))


so that

KP(g)(t) =− 1
270

(5B1(G(g))− 3B2(G(g))− 5B3(G(g)))(t3 − 15t + 12)

+
1
15

B2(G(g))(3− t3)− 1
4
(B1(G(g))− B2(G(g)) + B3(G(g))t2 + G(g).

We know that the proposed κ̂0 is a solution to the problem Kκ̂0 = −Ĝ(g) by a simple
calculation and noting that −B4(G(g)) = − 1

2 (3B1(G(g)) + B2(G(g)) + B3(G(g))). Now,
clearly LKPg = g, and so we wish to show the reverse. Utilizing

B1(G(u(4))) = u′(0)− u′′(0)− 2u′′′(0),

B2(G(u(4))) = u(0)− 2u′′′(0),

B3(G(u(4))) = u(0)− u′′(0)− u′(0),

one has

KP(u(4))(t) =
[
− 1

135
(5u′(0)− 4u(0)− 2u′′′(0)))(t3 − 15t + 12)

+
1
15

(u(0)− 2u′′′(0))(3− t3)

+
1
2

u′′(0)t2
]
+

[
u(t)− 1

6
u′′′(0)t3 − 1

2
u′′(0)t2 − u′(0)t− u(0)

]
.

Note then that the above becomes, after expanding amongst the basic polynomials,
u(t)− Pu(t) and thus with u ∈ dom L ∩ ker P,

KP(Lu)(t) = u(t)

and so indeed KPg is the generalized inverse. The result above establishes an example of
the proof of Lemma 4, notably in how KP(g) is well defined by utilizing the Bi functionals
and Lu = u(4).
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We attempt to secure a possible solution in view of Theorem 5. If u(t) > 4 then Nu > 1
and if u(t) < −4 then Nu < −1; we see that K0 = 4 is appropriate for (H5) with j = 0 as
the polynomials noted within the integrals for Q are all strictly positive. We also see that

cB(GNuc) =
A
18

∫ 1

0

[
18c + c2(s3 + 12s + 12) + 36c sin

( c
3
(s + 1)

)]
ds

=
A
18

[
73c2

4
+ 18c + 108

(
cos
( c

3

)
− cos

(
2c
3

))]
Note the the last term is bounded in c and for large K in terms of magnitude, the above will
be strictly positive for all values of c for which |c| > K; namely, K = 15,552

73 could suffice.
In addition, with Theorem 5 in mind, we know that ψκ̂1(t) 6= 0 on [0, 1], and so we could
determine a small enough A so that the theorem is fulfilled. A solution exists.

Remark 7. It should be noted that for the given example, we utilized j = 0. If we had used j = 1
(which is initially allowable since ψ′κ̂1

(t) 6= 0 on [0, 1]) we would run into a problem as a bound on
u′ would not constitute a bound on Nu since its placed inside a sin(x) term. Now, if we considered
some alternative problem such as with

N∗u = A(1 + u′(t) + sin(u′′(t) + u′′′(t))

then we could have used j = 1 instead. This would change some of the argumentation for
cB(GN∗uc) but not much; we would still obtain a quadratic form and so as long as |c| is large
enough there is no problem. This would not be true for j = 2 however as we would obtain
ψ′′κ̂1

(0) = 0.

6. Conclusions

We considered the nonlinear n-th order boundary value problem at resonance subject
to abstract linear functional conditions and developed a method that allows us to study
all resonance scenarios of order one. In particular, we implemented a general construc-
tive method for deriving existence criteria in the framework of the coincidence degree
approach. The method is linear-algebraic and thus has applications to similar problems of
fractional order.
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