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Abstract: In this work, we revisit Boltzmann’s distribution function, which, together with the
Boltzmann equation, forms the basis for the kinetic theory of gases and solutions to problems in
hydrodynamics. We show that magnetic fields may be included as an intrinsic constituent of the
distribution function by theoretically motivating, deriving and analyzing its complex-valued version
in its most general form. We then validate these considerations by using it to derive the equations of
ideal magnetohydrodynamics, thus showing that our method, based on Boltzmann’s formalism, is
suitable to describe the dynamics of charged particles in magnetic fields.
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1. Introduction

The main quantity considered in the kinetic theory of gases is the distribution function
for which the time evolution is governed by the Boltzmann equation. Both together are
used to describe the microscopic properties of gases by extracting the relevant quantities
and their dynamics by calculating the corresponding moments [1].

Many important problems in modern fields of physics require not only the study of
the dynamics of gases consisting of neutral particles, but also the consideration of fluids
consisting of charged particles in electric and magnetic fields, such as electron clouds,
ionized gas, plasma, ionized interstellar matter in astrophysics and others.

Up to now, the main approach to study the kinetics of charged particles is the direct
combination of kinetic and electromagnetic equations. Initially, this was suggested by
Vlasov, who included electromagnetic terms in the kinetic equation, thus deriving the
Vlasov equations [2]. In this approach, electromagnetic forces are introduced phenomeno-
logically as external Lorentz forces and require the solution of the full set of Maxwell
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equations. However, there have been also attempts to implement the electromagnetic
forces directly into the distribution function, even though this kind of approach always
has to consider the difficulty that magnetic field forces behave like axial vectors. In [3],
a flux-splitting approach was suggested, focusing, however, more on the computational
aspects rather than the physical background. Further progress was made by [4] who tried
to incorporate the magnetic field into the distribution function. This, however, also required
a modification of the transport equation such that the magnetic field cannot be regarded as
an intrinsic part of the kinetic formalism, as is the case in the work presented here. Finally,
in [5], based on [6], it was suggested to introduce a separate distribution function for the
magnetic field and then to analyze it, using specific lattice kinetic schemes.

In previous works of the author of the present paper and his collaborators, the basic
idea of a complex-valued distribution function [7] was introduced. Then, in [8–10], we
derived and analyzed the kinetically consistent scheme to solve the resulting time evolution
equations, while in later works, we focused on the numerical implementation, specifically
on high-performance computational systems [11,12].

In this paper, we present the theoretical foundation and the general form of the
extended complex-valued distribution function. On the one hand, this includes the deriva-
tion of the physical terms from first principles of the kinetic theory. On the other hand,
we prove the validity of this distribution function through the calculation of the correct
magnetohydrodynamic (MHD) quantities and the corresponding equations via its mo-
ments (the magnetic field now being one of them) and the moments of the Boltzmann
equation, respectively.

Another reason for this study is that, despite the known difficulties faced by any
attempt to solve the Boltzmann equation, nowadays, it is possible to explore its solution,
using numerical methods on high-performance computational systems. The two most
promising approaches are, on the one hand, the lattice Boltzmann schemes (LBS), which
use numerical schemes for the study of the evolution of the distribution function and
calculate the macroscopic quantities as its moments [13], and, on the other hand, the kinetic
consistent schemes (KCS), which derive the hydrodynamic equations from the Boltzmann
equation [14]. Therefore, any further progress in this field is based on the development of
algorithms for the numerical solution of problems in physics, using LBS and KCS [8].

This paper is organized as follows: In Section 2, we briefly recapitulate the general
concepts of the distribution function and the corresponding Boltzmann equation. Subse-
quently, in Section 3, we introduce and analyze the novel, complex-valued distribution
function in order to directly include magnetic fields in the most natural and intuitive way.
Finally, in Section 4, we summarize our findings and provide a short outlook on possible
future developments.

2. The Distribution Function and the Boltzmann Equation

In this section, we want to recapitulate the basic concepts of the distribution function
and the Boltzmann equation. The basis of these concepts was first introduced by Boltzmann
in 1872 [15], and the following discussion may be found in various textbooks on kinetic
theory, for example [14,16]

The kinetic theory describes the dynamics of gases via the time evolution of the distri-
bution function f (x, ξ, t) (where x and ξ denote elements of the single-particle position and
momentum phase space, respectively), which is governed by the Boltzmann equation [1]:

∂ f (x, ξ, t)
∂t

+ ξ · ∇ f (x, ξ, t) = C( f ) , (1)

where C( f ) is the collision integral, a non-linear integral operator describing the collisions
of particles. Note that we consider the case without external forces, as our goal is to show
that the formalism presented in this work naturally includes magnetic fields as an internal
contribution to the distribution function.
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The equilibrium state of gases is described by a Maxwellian distribution function
for which the collision integral vanishes. In order to obtain this distribution function at
equilibrium, we use the Boltzmann H-theorem [15,17] for which the relevant quantities are
discussed in the following. Assuming the charged particles to be spherical, the gas state is
uniform and the velocity distribution function f is independent of x, y, z. In this case, the
Boltzmann equation reduces to the following:

∂ f
∂t

=
∫ (

f fin f 1,fin − f f 1
)

vreldσd3v1 , (2)

where vrel =
∣∣v− v1

∣∣ is the relative initial velocity between the two colliding particles, dσ
is the differential collision cross section, v1 is the velocity of the second particle, and the
superscript fin symbol indicates the final states after the collision.

According to the Boltzmann H-theorem, the distribution function should, at equilib-
rium, minimize the integral quantity H given by the following [15]:

H =
∫

f ln f d3v . (3)

from which we obtain the following:

dH
dt

=
∫

∂

∂t
( f ln f )d3v =

∫
(1 + ln f )

∂ f
∂t

d3v . (4)

Plugging in Equation (2) provides the following:

dH
dt

=
∫
(1 + ln f )

[∫ (
f fin f 1,fin − f f 1

)
vreldσd3v1

]
d3v

=
1
2

∫ (
2 + ln f + ln f 1

)[∫ (
f fin f 1,fin − f f 1

)
vreldσd3v1

]
d3v

=
1
2

∫ [
2 + ln( f f 1)

](
f fin f 1,fin − f f 1

)
vreldσd3v1d3v

=
1
4

∫ [
2 + ln( f f 1)

](
f fin f 1,fin − f f 1

)
+
[
2 + ln( f fin f 1,fin)

](
f f 1 − f fin f 1,fin

)
vreldσd3v1d3v

=
1
4

∫ [
ln( f f 1)− ln( f fin f 1,fin)

](
f fin f 1,fin − f f 1

)
vreldσd3v1d3v

=
1
4

∫
ln
(

f f 1

f fin f 1,fin

)(
f f 1 − f fin f 1,fin

)
vreldσd3v1d3v .

(5)

At equilibrium without external forces, according to the H-theorem, we have the following:

dH
dt

= 0 , (6)

from which the following relation is obtained.

ln f0 + ln f 1
0 = ln f fin

0 + ln f 1,fin
0 (7)

Since the sum of the natural logarithms of the distribution functions before and after
the collision is the same, this relation shows that ln f is an invariant of the collision and can
be expressed as the sum of the kinetic invariants:

ln f0 = α0 + α1 · ξ + α2ξ2 , (8)
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where, on the right hand side, the first, second and third terms correspond to the conserva-
tion of the number of particles/total mass, momentum and energy, respectively. This may
be rewritten in the following form:

ln f0 = ln β0 − β1(ξ − β2)
2 (9)

for

β0 = exp

(
α0 −

α2
1

4α2

)
, β1 = −α2 , β2 = − α1

2α2
, (10)

or
α0 = ln β0 − β1β2

2 , α1 = 2β1β2 , α2 = −β1 (11)

such that the distribution function has the form of a Gaussian function as follows [17]:

f0 = β0 exp
[
−β1(ξ − β2)

2
]

. (12)

The macroscopic observables, such as density, momentum and energy density ε, are
defined by the moments of the distribution function with respect to the particle velocity,
i.e., by the integrations as follows:

ρ = m
∫

φ0(ξ) f0(x, ξ, t)d3ξ , (13)

ρu = m
∫

φ1(ξ) f0(x, ξ, t)d3ξ , (14)

ε = m
∫

φ2(ξ) f0(x, ξ, t)d3ξ , (15)

where
φj(ξ) = [φ0, φ1, φ2] =

[
1, ξ, ξ2/2

]
(16)

are the kinetic invariants of the ith moment, ρ is the mass density, m is the particle mass, u
is the velocity field and ε is the energy density, as follows:

ε =
3
2

ρ

m
kBT +

1
2

ρu2 . (17)

In order to fulfill the conditions (13)–(15), Equation (12) has to take the form of a
Maxwellian distribution as follows:

f0 =
ρm1/2

(2πkBT)3/2 exp
{
− m

2kBT
(ξ − u)2

}
, (18)

which may be checked by plugging into the equation; see, for example, [14].

3. The Complex-Valued Distribution Function

As shown in the following, our main result is the direct incorporation of the electro-
magnetic interaction in the distribution function.

3.1. Motivation

In order to motivate this, we consider the simple case of a single particle with charge
q and mass m moving in a homogeneous magnetic field with strength B, oriented, with-
out loss of generality, along the z axis, i.e., B = Bez. As is well known from classical
electrodynamics [18], the Lorentz Force FL is given by the following:

FL = q(E + v× B) (19)

where v is the particle velocity, E is the electric and B is the magnetic field.
Here, it is important to note that the electric field behaves like a polar vector such

that its contribution to the particle velocity can be described as the contribution to the drift
velocity of an ensemble of charged particles. The magnetic field, on the other hand, is
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more complicated due to the axial behavior of the corresponding interaction and may be
considered to be a contribution to the statistical velocity, as the particles only change their
direction but preserve the value of velocity and energy. Therefore, from here on, we only
discuss the contribution of the magnetic field.

In order to illustrate the effect of the magnetic field interaction, Equation (19) may be
transformed into a system of differential equations as follows:

m
∂vx

∂t
= qvyB , m

∂vy

∂t
= −qvxB ,

∂vz

∂t
= 0 . (20)

This describes a circular motion parallel to the x-y-plane with the angular frequency
ω = qB/m. Note that ω ∝ B.

Following [19], we now introduce the complex notation by multiplying the second
equation of (20) by i and adding it to the first equation of (20), which, after minor rearrange-
ments, gives the following:

∂

∂t
(
vx + ivy

)
= −iω

(
vx + ivy

)
, (21)

and may be solved, giving the following:

vc(t) = v0e−iωt , (22)

where vc = vx + ivy, v0 is the initial (real) velocity (here, without loss of generality, we omit
a possible complex phase shift).

In order to assess the contribution of the magnetic field, we now consider the velocity
change, compared to the unmagnetized case (i.e., vc = v0 = const) within an infinitesimal
time interval dt (or, in a more general sense, the deflection, due to the magnetic field,
compared to linear propagation over the time interval dt):

vc(dt) = v0e−iωdt ' v0(1− iωdt) = v0 − i
qv0dt

m
B . (23)

As one can see, the change in the movement from linear to circular due to the magnetic
field indeed may be achieved by shifting the velocity along the imaginary axis, whereby
the shift is proportional to the magnetic field.

3.2. The Complex-Valued Maxwellian Distribution Function

From the considerations above, which consider a single particle and a constant mag-
netic field, we now, for the general case, conclude that the quantity ξ may be complex in
order to introduce magnetic terms to the distribution function, i.e., the following:

ξ = <ξ + i=ξ . (24)

Substituting this into Equation (8) gives the relation for the complex-valued Maxwellian
distribution function in f ′0 as follows:

ln f ′0 = α′0 + α′1 · ξ + α′2ξ2 = α′0 + α′1 · (<ξ + i=ξ)+α′2ξ2

= α′0 + α′1 · <ξ + iα′1 · =ξ + α′2(<ξ + i=ξ)2 ,
(25)

Therefore, we now have four terms corresponding to four invariants:

– α′0 represents the number of particles/total mass;
– α′1 · <ξ stands for the momentum density;
– iα′1 · =ξ is connected to the magnetic field;
– α′2(<ξ + i=ξ)2 is related to the (total) energy density, now also including the magnetic

contributions.
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Note that for the magnetic field itself and the energy density term, the invariants are
complex, which is due to the fact that in both cases, the (axial) vector behavior plays a role
for their time evolution (s. below). This confirms the validity of our approach.

On the other hand, the transformation (24) may be also carried out directly for expres-
sion (12), giving the following:

f ′0 = β′0 exp
[
−β′1

(
ξ − β′2

)2
]
= β′0 exp

[
−β′1

(
<ξ + i=ξ − β′2

)2
]

. (26)

3.3. Moments of the Complex-Valued Boltzmann Distribution Function

In order to have the most general form of the integration invariants for the moments
of the Boltzmann equation, i.e., taking into account possible complex contributions that are
not present in the case of real variables, we generalize them from the form given in (16)
as follows:

φj(ξ) = [1, ξ, ξ2/2] (27)

to
φ′j(ξ) = [φ′0, φ′1, φ′2] = [1, ξ + iγ′1=ξ,

1
2

(
ξ2 + iγ′2<ξ · =ξ

)
] (28)

From the interpretation of the new invariants above, we will now derive the values
for the different β′i introduced in (26) from the moments of the distribution function f0.
It should be noted here that the introduction of φ′j as (28) is the most general form of
the extension of (16) to the complex plane. In contrast to previous works [7–12], in the
following, we will derive the most general conditions on the parameters γ′1 and γ′2, while
also providing a convenient choice for them for illustration purposes.

The set of conditions for the 0th moment is given by the following:

m<
∫

φ′0 f ′0d3ξ = m<
∫

f ′0d3ξ = ρ , (29)

m=
∫

φ′0 f ′0d3ξ = m=
∫

f ′0d3ξ = 0 , (30)

of which the latter one arises due to the fact that the integral of a distribution function over
ξ is interpreted as the cumulative probability and hence, has to be real, while the former
condition ensures the normalization of f0 such that the total probability is equal to 1.

Therefore, using the standard rules of integration of complex-valued Gaussian func-
tions (cf. [20]), one obtains the following:

m
∫

φ′0 f ′0d3ξ = m
∫

1 · f ′0d3ξ =
∫

mβ′0 exp
[
−β′1

(
ξ − β′2

)2
]
d3ξ = mβ′0

√
π

β′1

3
, (31)

from which, using (29), we can conclude the following:

mβ′0

√
π

β′1

3
= ρ , (32)

and, using (30), we have the following:

β′0, β′1 ∈ R . (33)

The requirements on the first moment are given by the following:

m<
∫

φ′1 f ′0d3ξ = <
∫

m
(
ξ + iγ′1=ξ

)
f0d3ξ = ρu , (34)

m=
∫

φ′1 f ′0d3ξ = =
∫

m
(
ξ + iγ′1=ξ

)
f0d3ξ = κ′ρvA , (35)
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where vA is the Alfvén velocity given by the following:

vA =
B
√

µ0ρ
(36)

for the magnetic field strength B and the vacuum permeability µ0; κ′ is a factor connected
to the general ratio of magnetic to kinetic terms. The introduction of the magnetic field
using the Alfvén velocity is a natural choice, it being a key quantity in MHD, characterizing
a so-called Alfvén wave, which is a fundamental phenomenon in magnetized plasmas [21].
Note, however, that it is also possible to carry out this introduction of the magnetic field
using another quantity with the dimension of a velocity, as long as it is proportional to B,
which was motivated in Section 3.1.

For the first moment (i.e., for φ′1), again, using the rules for Gaussian integration,
we obtain the following:

m
∫

φ′1 f ′0d3ξ = m
∫ (

ξ + iγ′1=ξ
)

f0d3ξ = m
∫ (

ξ + iγ′1=ξ
)

β0 exp
[
−β′1

(
ξ − β′2

)2
]
d3ξ

= mβ′0

√
π

β′1

3(
β′2 + iγ′1=β′2

)
,

(37)

which, using (32), becomes

m
∫ (

ξ + iγ′1=ξ
)

f0d3ξ = ρ(β′2 + iγ′1=β′2) , (38)

and, therefore, from (34) and (35), we obtain the following:

β′2 = u + i
κ′

1 + γ′1
vA = u + i

κ′

1 + γ′1

B
√

µ0ρ
, (39)

implying the condition β′2 ∈ C3. This is a very important conclusion since, as may be seen
from this together with (33), it means that β2 is the only complex factor in the distribution
function and, therefore, is solely responsible for the shift of the result along the imaginary
axis. Furthermore, since the choice of κ′ does not influence the validity of the distribution
function (as β2 does not appear in condition (32)), it may be chosen arbitrarily for each
integration; here, this means that each moment has its own κ′ value, which we hereinafter
denote as κ′j, where j is the number of the moment.

In order to have the most convenient form for the expression of the magnetic field, we
choose γ′1 = 0, and, furthermore, in order to obtain the magnetic field itself, the following:

κ′1 = κ′′1

√
ρ

µ0
, (40)

where κ′′1 is an arbitrary constant (i.e., independent of x and t).
Finally, for the third moment, we have the following requirement:

m<
∫

φ′2 f ′0d3ξ = m<
∫ 1

2

(
ξ2 + iγ′2<ξ · =ξ

)
f0d3ξ = ε , (41)

for which ε is the total energy density given by the following:

ε =
3
2

p +
1
2

ρu2 +
B2

2µ0
, (42)
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where the three terms correspond to the internal, kinetic and magnetic energy, respectively,
with the following being the hydrodynamic pressure:

p =
ρ

m
kBT (43)

It is more convenient, however, to express ε in terms of the total pressure P given by
the following:

P = p +
B2

2µ0
, (44)

such that (42) may be expressed as follows:

ε =
3
2

P +
1
2

ρu2 − B2

4µ0
. (45)

Then, the second moment, again using Gaussian integration, yields the following:

m<
∫ 1

2
(ξ2 + iγ′2<ξ · =ξ) f0d3ξ = m<

∫ 1
2

(
ξ2 + iγ′2<ξ · =ξ

)
β′0 exp

[
−β′1

(
ξ − β′2

)2
]
d3ξ

=
1
2

mβ′0

√
π

β′1

3[( 3
2β′1

+ β′22

)]
,

(46)

which, using (32) and (39), gives the following:

m<
∫ 1

2
(ξ2 + iγ′2<ξ · =ξ) f0d3ξ =

ρ

2

[(
3

2β′1
+ u2 − κ′22

B2

µ0ρ

)]
, (47)

such that from (41), we obtain the following:

3
2

P− B2

4µ0
=

3ρ

4β′1
− κ′22

B2

2µ0
, (48)

which may be transformed into the following:

β′1 =

[
2

P
ρ
+

1
3

(
2κ′22 − 1

) B2

µ0ρ

]−1

. (49)

In order for the equation to reproduce the correct energy density, we choose κ′2 = 1/
√

2
such that we obtain the following simple relation:

β′1 =
ρ

2P
. (50)

and therefore, from (32), we obtain the following:

β′0 =
ρ

m

√
ρ

2πP

3

, (51)

such that the equilibrium function f ′0 from (26) becomes the following:

f ′0 =
ρm1/2

(2πkBT′)3/2 exp
{
− m

2kBT′
[
ξ −

(
u + iκ′vA

)]2} , (52)

where T′ is the temperature including the magnetic term, i.e., the following:

T′ =
mP
kBρ

=
m
(

p + B2

2µ0

)
kBρ

. (53)
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3.4. Moments of the Boltzmann Equation for the Complex-Valued Distribution Function

Before calculating the moments of the Boltzmann Equation, we summarize the findings
of the previous section. The form of the new complex distribution function is given by
the following:

f ′0 =
ρm1/2

(2πkBT′)3/2 exp
{
− m

2kBT′
[
ξ −

(
u + iκ′vA

)]2} , (54)

and the corresponding quantities may be calculated from its moments as follows:

ρ = <
∫

m f ′0d3ξ , (55)

0 = =
∫

m f ′0d3ξ , (56)

ρu = <
∫

mξ f ′0d3ξ , (57)

B =
1
κ′1
=
∫

mξ f0d3ξ , (58)

ε = <
∫ 1

2
m
(

ξ2 + iγ′2<ξ · =ξ
)

f0d3ξ (59)

In order to obtain the time evolution equations, we now calculate the same moments
for the Boltzmann equation. The zeroth moment (i.e., for φ′0) of the Boltzmann Equation (1)
for C( f ) = 0 gives the following relation:

∫
m

∂ f ′0(x, ξ, t)
∂t

d3ξ +
∫

mξ · ∇ f ′0(x, ξ, t)d3ξ = 0 , (60)

which, after carrying out the integral, gives the following:

∂ρ

∂t
+∇ ·

(
ρu + iκ′0

√
ρ

µ0
B
)
= 0 , (61)

where the concept of κ′ is introduced in Equation (35), while the κ′j is discussed after
Equation (39). Considering the real and imaginary parts, as was done in (29) and (30), and
furthermore setting κ′0 = κ′′0

√
µ0/ρ, where κ′′0 is independent of x and t, one obtains the

two following relations:

∂ρ

∂t
+∇ · (ρu) = 0 , (62)

∇ · B = 0 , (63)

which correspond to the (mass) continuity equation and the divergence freedom of the
magnetic field, respectively.

The first moment of the Boltzmann equation (i.e., for φ′1) is calculated according to
the following:∫

m
(
ξ + iγ′1=ξ

)∂ f0(x, ξ, t)
∂t

d3ξ +
∫

m
(
ξ + iγ′1=ξ

)
ξ · ∇ f0(x, ξ, t)d3ξ = 0 , (64)

which, for the different components i, results in the following:

∂

∂t

[
ρui + iκ′1

√
ρ

µ0
B
]
+

∂

∂xj

[(
Pδij + ρuiuj −

BiBj

µ0

)
+ iκ′1

(
ujBi − uiBj

)]
= 0 . (65)
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Taking the real and imaginary parts of this equation, together with (40), then gives
the following equations:

∂(ρui)

∂t
+

∂

∂xj

[(
Pδij + ρuiuj −

BiBj

µ0

)]
= 0 , (66)

∂Bi
∂t

+
∂

∂xj

[(
ujBi − uiBj

)]
= 0 , (67)

which correspond to the momentum and the induction equation, respectively. Note that
the Einstein summation is used in Equations (65)–(67).

Finally, the second moment of the Boltzmann equation (i.e., for φ′2) is calculated,
according to (59) as follows:

<
∫ 1

2
m
(

ξ2 + iγ′2<ξ · =ξ
)∂ f ′0(x, ξ, t)

∂t
d3ξ +<

∫ 1
2

m
(

ξ2 + iγ′2<ξ · =ξ
)

ξ · ∇ f ′0(x, ξ, t)d3ξ = 0 , (68)

which, using κ′2 = 1/
√

2 from above and setting γ′2 = 2 (thus fixing the last unknown
parameter) results in the following:

∂

∂t

[
3
2

P +
1
2

ρu2 − B2

4µ0

]
+

∂

∂xj

[(
5
2

P +
1
2

ρu2 − B2

4µ0

)
uj − u · B

Bj

µ0

]
= 0 , (69)

which corresponds to the energy conservation equation [22].

4. Conclusions and Outlook

In this work, we derived and verified a novel complex-valued Maxwellian distribution
function f ′0, for which the imaginary part represents the magnetic fields directly as an
intrinsic part of the distribution function. This is the central result of our work, as until now,
in order to derive the equations of MHD, it was necessary to introduce the magnetic field
as an external interaction. This is insofar unsatisfactory, as both the magnetic fields and the
kinetic quantities are integral components of MHD and, therefore, there is no conceptual
reason to consider the former as external and the latter as internal contributions. Here,
we have presented an elegant way to combine both into a unified formalism. Since our
method may be considered a generalization of the hydrodynamic case, in the future, kinetic
consistent schemes, for example, may be used to derive all possible terms of non-ideal
MHD, similar to what was done for hydrodynamics. Again, this enables us to derive
all possible viscous terms directly from the Boltzmann equation instead of introducing
them as external terms, i.e., in the most natural way, thus validating and extending the
current approach.

It is important to note that the introduction of complex quantities is necessary to take
into account the axial-vector behavior of the magnetic field. In particular, in this work, we
presented the full physics derivation from first principles and obtained the most general
form of the new distribution function, which does not require any further assumptions,
given by the following:

f ′0 =
ρm1/2

(2πkBT′)3/2 exp
{
− m

2kBT′
[
ξ −

(
u + iκ′vA

)]2} , (70)

with the summation invariants to calculate its corresponding moments being the following:

φj(ξ)
′ =

[
φ′0(ξ), φ′1(ξ), φ′2(ξ)

]
=

[
1, ξ,

1
2

(
ξ2 + 2i<ξ · =ξ

)]
, (71)

and the corresponding κ′j-values being the following:

κ′j =
[
κ′0, κ′1, κ′2

]
=
[
κ′′0
√

µ0/ρ, κ′′1
√

µ0/ρ, 1/
√

2
]

, (72)
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where κ′′0 and κ′′1 are arbitrary constants such that the corresponding dimensions are given
by
[
κ′′0
√

µ0/ρ
]
=
[
κ′′1
√

µ0/ρ
]
= 1 .

It was furthermore shown that calculating the corresponding moments of the Boltz-
mann equation using f ′0 gives the correct equations of ideal MHD, thereby confirming the
correctness of our approach. This is, therefore, the most natural way to introduce magnetic
fields since by doing so all relevant quantities of MHD are introduced via the distribution
function itself and not via an external interaction. It should be noted here that for the
way we have constructed the complex-valued distribution function and the corresponding
mechanism, the classical Boltzmann equation remains valid, the only difference being
that the velocity ξ is assumed to be complex instead of real. The proposed method of the
complex-valued distribution function may be applied to solve MHD problems by applying
KCS and LBS on high-performance computational systems [23].

In the future, it would be interesting to investigate the possibility of extending our
formalism to the relativistic case. This, in principle, is straightforward; however, it is
conceivable for the parameters γ′j and κ′j to have different conditions defining them for
which the relations found in this work will be the limiting case for non-relativistic velocities.
This, however, requires a full retracing of every step (and its validity) presented here
(which might be challenging, due to the more complicated mathematics involved), starting
from the relativistic form of the distribution function and the corresponding Boltzmann
equation, for example, in the form presented in [24]. Again, while previous approaches of
considering magnetic fields within the kinetic framework of the distribution function do
exist (see, for example, [25,26]), it would be desirable to obtain the equations of relativistic
MHD from first principles, with the magnetic field being an intrinsic property of the
distribution function.

Another interesting aspect to be studied is the relevance of quantum–mechanical
effects. Again, this is possible by starting off with the basic form of the formalism, i.e., with
the Uehling–Uhlenbeck equation for which the collision integral is modified in order to
accommodate, in particular, the effect of the spin on the collision process. By subsequently
introducing the complex-valued distribution function and calculating the corresponding
moments, in principle, the modifications of MHD by quantum physics may be calculated.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (agreement no. 075-02-2021-1748).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is grateful to Boris Chetverushkin, Academician of the Russian
Academy of Sciences, for valuable comments during the completion of this work.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

KCS Kinetic Consistent Schemes
LBS Lattice Boltzmann Schemes
MHD Magnetohydrodynamics

References
1. Boltzmann, L. Lectures on Gas Theory; University of California Press: Oakland, CA, USA, 1964.
2. Vlasov, A.A. The Vibrational Properties of an Electron Gas. Zh. Eksp. Teor. Fiz. 1938, 8, 291. [CrossRef]
3. Croisille, J.P.; Khanfir, R.; Chanteur, G. Numerical Simulation of the MHD Equations by a Kinetic-Type Method. J. Sci. Comp.

1995, 10, 81–92. [CrossRef]

http://doi.org/10.1070/PU1968v010n06ABEH003709
http://dx.doi.org/10.1007/BF02087961


Mathematics 2021, 9, 2382 12 of 12

4. Huba, J.D.; Lyon, J.G. A New 3D MHD Algorithm: The Distribution Function Method. J. Plasma Phys. 1999, 61, 391–405.
[CrossRef]

5. Dellar, P.J. Lattice Kinetic Schemes for Magnetohydrodynamics. J. Comp. Phys. 2002, 179, 95–126. [CrossRef]
6. Bouchut, F. Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws. J. Stat.

Phys. 1999, 95, 113–170. [CrossRef]
7. Chetverushkin, B.N.; D’Ascenzo, N.; Saveliev, V.I. Kinetically Consistent Magnetogasdynamics Equations and their Use in

Supercomputer Computations. Dokl. Math. 2014, 90, 495–498. [CrossRef]
8. Chetverushkin, B.N.; D’Ascenzo, N.; Saveliev, A.V.; Saveliev, V.I. Novel Kinetically Consistent Algorithm for Magneto Gas

Dynamics. Appl. Math. Lett. 2017, 72, 75–81. [CrossRef]
9. Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. A Quasi-Gasdynamic Model for the Description of Magnetogasdynamic

Phenomena. Comp. Math. Math. Phys. 2018, 58, 1384–1394. [CrossRef]
10. Chetverushkin, B.; D’Ascenzo, N.; Ishanov, S.; Saveliev, V. Hyperbolic Type Explicit Kinetic Scheme of Magneto Gas Dynamics

for High Performance Computing Systems. Rus. J. Num. Anal. Math. Mod. 2015, 30, 27–36. [CrossRef]
11. Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. Compact Quasi-Gasdynamic System for High-Performance Computations.

Comp. Math. Math. Phys. 2019, 59, 493–500. [CrossRef]
12. Chetverushkin, B.N.; Saveliev, A.V.; Saveliev, V.I. Kinetic Algorithms for Modeling Conductive Fluids Flow on High-Performance

Computing Systems. Dokl. Math. 2019, 100, 577–581. [CrossRef]
13. Succi, S. The Lattice Boltzmann Equation for Fluid Mechanics and Beyond; Oxford University Press: Oxford, UK, 2001.
14. Chetverushkin, B.N. Kinetic Schemes and Quasi-Gas Dynamic System of Equations; CIMNE: Barcelona, Spain, 2008.
15. Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Kinetische Theorie II 1872, 66, 275–370.
16. Gombosi, T.I. Gaskinetic Theory; Cambridge University Press: Cambridge, UK, 1994.
17. Landau, L.D.; Lifshitz, E.M. Physical Kinetics; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1971; Volume 10.
18. Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 1998.
19. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 2011;

Volume 2.
20. Bronstein, I.N.; Semendyayev, K.A.; Musiol, G.; Muehlig, H. Handbook of Mathematics; Springer: Berlin/Heidelberg, Germany, 2007.
21. Alfvén, H. Existence of Electromagnetic-Hydrodynamic Waves. Nature 1942, 150, 405–406. [CrossRef]
22. Webb, G. Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws; Springer: Berlin/Heidelberg,

Germany, 2018.
23. Ahern, S. Scientific Application Requirements for Leadership Computing at the Exascale; Technical Report TM-2007/238; ORNL:

Oak Ridge, TN, USA, 2007.
24. Cercignani, C.; Kremer, G.M. The Relativistic Boltzmann Equation: Theory and Applications; Springer: Berlin/Heidelberg,

Germany, 2002.
25. Goto, K. Relativistic Magnetohydrodynamics. Prog. Theor. Phys. 1958, 20, 1–14. [CrossRef]
26. Tam, K.; Kiang, D. The Relativistic Boltzmann Equation and the Equations of Magnetohydrodynamics with Radiative Reaction.

Prog. Theor. Phys. 1979, 62, 1245–1252. [CrossRef]

http://dx.doi.org/10.1017/S0022377899007503
http://dx.doi.org/10.1006/jcph.2002.7044
http://dx.doi.org/10.1023/A:1004525427365
http://dx.doi.org/10.1134/S1064562414050214
http://dx.doi.org/10.1016/j.aml.2017.04.015
http://dx.doi.org/10.1134/S0965542518080055
http://dx.doi.org/10.1515/rnam-2015-0003
http://dx.doi.org/10.1134/S0965542519030060
http://dx.doi.org/10.1134/S1064562419060206
http://dx.doi.org/10.1038/150405d0
http://dx.doi.org/10.1143/PTP.20.1
http://dx.doi.org/10.1143/PTP.62.1245

	Introduction
	 The Distribution Function and the Boltzmann Equation
	 The Complex-Valued Distribution Function
	Motivation
	The Complex-Valued Maxwellian Distribution Function
	Moments of the Complex-Valued Boltzmann Distribution Function
	Moments of the Boltzmann Equation for the Complex-Valued Distribution Function

	Conclusions and Outlook
	References

