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Abstract: To control the spread of mosquito-borne diseases, one goal of the World Mosquito Pro-
gram’s Wolbachia release method is to replace wild vector mosquitoes with Wolbachia-infected ones,
whose capability of transmitting diseases has been greatly reduced owing to the Wolbachia infection.
In this paper, we propose a discrete switching model which characterizes a release strategy including
an impulsive and periodic release, where Wolbachia-infected males are released with the release ratio
α1 during the first N generations, and the release ratio is α2 from the (N + 1)-th generation to the
T-th generation. Sufficient conditions on the release ratios α1 and α2 are obtained to guarantee the
existence and uniqueness of nontrivial periodic solutions to the discrete switching model. We aim to
provide new methods to count the exact numbers of periodic solutions to discrete switching models.

Keywords: discrete switching model; Wolbachia; the infection frequency; mosquito population;
existence and uniqueness; periodic solutions

1. Introduction

The global incidence of dengue is placing more than 50% of the world’s population at
risk, and affects more than 100 countries around the world [1]. As a mosquito-borne disease,
dengue viruses are transmitted through the bites of infected Aedes female mosquitoes,
including Aedes aegypti and Aedes albopictus, which act as the main vectors of dengue. There
are four serotypes of dengue viruses. As the repeated proof of the antibody-dependent
enhancement phenomenon between different serotypes, the application of the dengue
vaccine has been halted [2,3]. Furthermore, no effective drugs are available for dengue
viruses, especially for severe cases, including dengue hemorrhagic fever and dengue
shock syndrome. Hence, the most straightforward way to control dengue is to eradicate
mosquitoes by spraying insecticide or removing mosquito breeding sites, but neither
method works effectively due to the appearance of insecticide resistance and difficulty in
eradicating breeding sites [4].

Luckily, the World Mosquito Program’s Wolbachia release method is helping commu-
nities worldwide to control and prevent the spread of mosquito-borne diseases. The en-
dosymbiotic bacteria Wolbachia occurs naturally in 60% of insect species, which are safe
for humans and the environment. As the successful establishment of Wolbachia in Aedes
mosquitoes through microinjection [5,6], Wolbachia-driven mosquito control techniques
have become one of the effective biological control methods. The Wolbachia bacteria is
maternally inherited, which can induce a special mechanism called “cytoplasmic incom-
patibility”(CI), resulting in early developmental arrest of the embryo when infected male
mosquitoes mate with uninfected female mosquitoes [5–9]. By using CI, and the maternal
transmission of Wolbachia, one of the World Mosquito Program’s Wolbachia release methods
aims to replace the wild vector mosquitoes with Wolbachia infected ones, whose capability
of transmitting diseases has been greatly reduced owing to the Wolbachia infection [5–9].
Taking the release in Australia as an example, back to 2011, Wolbachia-infected mosquitoes
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were released to replace the natural Aedes populations in Cairns, reaching a near-fixation of
Wolbachia in a few months [9,10]. Similar field trials have also been carried out in Brazil,
Vietnam, Indonesia, etc. Post surveillance has shown that in areas where Wolbachia is
self-sustaining at a high level, there have been no dengue outbreaks.

Prior to area-wide releases, cage experiments are essential for designing effective
and affordable release strategies. Motivated by the experimental observation in [7] that
supplemental male release in every generation can accelerate the Wolbachia invasion, we
develop a general discrete model which is based on the classic models in [11–16], which
focused on Wolbachia spread dynamics in cage mosquito populations without supplemental
releases. All these discrete models only include a one-time release of both Wolbachia-infected
females and males, which generated an unstable equilibrium, below which the Wolbachia
infections will disappear, and above which, Wolbachia invasion is successful.

The generalized model developed in Section 2 covers the models in [11–16] as special
cases. Particularly, we focus on a periodic and impulsive release strategy, where Wolbachia-
infected males are released with the release ratio α1 during the first N generations, and the
release ratio from generation N + 1 to generation T is α2. This leads to a discrete switching
model. Very recently, this release strategy was investigated thoroughly, in [17–19], by using
ordinary differential equation models, leaving the study of discrete models, which are
well suited for cage experiment absence. In Section 3, sufficient conditions to guarantee
the existence of at least one T-periodic solution are obtained for the discrete switching
model. Although our numerical example shows that the T-periodic solution is also unique
when it exists, we failed to prove it theoretically for general N and T, and methods used
in [17–19] are not applicable for discrete models. However, we only succeed to prove that
this numerical observation holds for the special case N = 1 and T = 2. The whole paper is
enveloped with a brief discussion about the insight of our main results in Section 4.

2. Model Development

Motivated on experimental observations in [5–9], and our previous works [20–23], we
assume that (i) the maternal leakage rate is µ: among offspring from infected females, where
1− µ of them are infected, and µ of them are uninfected; (ii) CI intensity is sh: among eggs
produced from wild pregnant female mosquitoes mated with infected males, sh of them will
not hatch, and the hatch rate of other three compatible crosses is 1; (iii) equal sex determination:
the birth ratio of male-to-female is 1:1, irrelevant of their mothers infection status. Thus, we
assume that at the n-th generation, the number of infected female/male mosquitoes is In,
and the number of uninfected female/male mosquitoes is Un. The infection frequency
is then defined by xn = In/(In + Un). At the n + 1-th generation, the dynamic of the
mosquitoe population is interfered upon by the supplemental release of infected males,
whose abundance is assumed to be mn(In + Un). Here, mn can be interpreted as the release
ratio of released males to the total number of female or male mosquitoes.

Although the supplemental release of the infected males causes temporary biased
male-to-female ratios at the n-th generation, we assume that the sex ratio of the newly
borne population at the (n + 1)-th generation is 1:1, due to the assumption of equal sex
determination. With the release of these infected males, the production rate, as well as the
infection frequency, is reduced. Since infected females are not supplementally released,
the proportions of infected and uninfected females at the n-th generation are still xn
and 1− xn, respectively. With mn(In + Un) infected males added at the n-th generation,
the proportion of infected males goes from xn to:

In + mn(In + Un)

In + Un + mn(In + Un)
=

xn + mn

1 + mn
,

and the proportion of uninfected males goes from 1− xn to:

Un

In + Un + mn(In + Un)
=

1− xn

1 + mn
.
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At the (n + 1)-th generation, the infection status of infected offspring is independent
on the male partner’s infection status, the proportion of infected individuals is (1− µ)
(1− s f )xn, where s f represents the fitness cost of infected females relative to uninfected
ones, that is, if the fitness of Wolbachia-free mosquitoes is 1, then the fitness of infected
mosquitoes is reduced to 1− s f . We should mention here, that in our model, s f counts the
fitness costs caused by Wolbachia infection, such as fecundity reduction, egg viability, hatch
rate decrease, and mean longevity [5–9]. Meanwhile, the maternal transmission leakage
rate µ reduces the proportion of infected mosquitoes from (1− s f )xn to (1− µ)(1− s f )xn.
And the contribution of infected mothers to uninfected proportion is µ(1− s f )xn.

On the uninfected offspring, we need to consider CI. Under the random mating
assumption [11,13,14,16], the mating probability for a female mating with an uninfected

male is
1− xn

1 + mn
, and the hatch rate is 1, which is reduced to 1− sh if the father is infected,

with the mating probability then being
xn + mn

1 + mn
. Hence, the contribution of uninfected

mothers to the proportion of uninfected mosquitoes at the (n + 1)-th generation is:

(1− sh)(1− xn)
xn + mn

1 + mn
+ (1− xn)

1− xn

1 + mn
.

To sum up, we have our general model as:

xn+1 =
(1− µ)(1− s f )(1 + mn)xn

shx2
n −

(
s f + sh + mn(s f − sh)

)
xn + 1 + (1− sh)mn

, (1)

with n = 1, 2, · · · .
The generalized model (1) covers the models in [11–16] as special cases. For example,

the first discrete model studying Wolbachia infection frequency with laboratory data and
parameters was developed in 1959 by Caspari and Watson [11], who were motivated by the
CI mechanism in mosquitoes. The model in [11] is a special case of model (1) with µ = 0
and mn ≡ 0, which produces an unstable equilibrium point s f /sh such that only when the
initial infection frequency surpasses s f /sh can Wolbachia invasion be guaranteed. After that,
the discrete model for Wolbachia spread dynamics has been put on the shelf for more than
15 years until 1975. Fine [12,13] observed the maternal leakage from Wolbachia-infected
mothers and introduced the maternal leakage rate µ into the model in [11] as the third
crucial parameter. Again, the model in [12,13] is a special case of model (1) with mn ≡ 0.
For mn ≡ 0, since the 1990’s, systematic studies have been carried out by Hoffmann and
Turelli on Wolbachia spread dynamics in Drosophila simulans [14–16]. The dynamics can
be completely determined by the position of the unstable equilibrium frequency, which
can be explicitly expressed in terms of s f , sh and µ. Once prior information on s f , sh
and µ is known, the unstable equilibrium frequency determines the fate of the Wolbachia
invasion. After that, discrete models in [11–16] have been seldom revisited due to their
clear dynamics, until 2019, when we introduced the notion of supplementary releases into
the discrete model [24] for the first time, as in model (1), with mn ≡ α.

Although model (1) is simple in its form, it can generate much richer dynamics than
the models in previous works. In the current work, we begin with the easiest case with
sh = 1 and µ = 0, i.e., the CI is complete and the maternal transmission is perfect. In this
case, model (1) is reduced to:

xn+1 =
(1− s f )(1 + mn)xn

x2
n −

[
1 + s f −mn(1− s f )

]
xn + 1

, (2)

with n = 1, 2, · · · . Particularly, when mn ≡ α, model (2) is further reduced to:
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∆xn = xn+1 − xn =
xn(1− xn)

[
xn + α(1− s f )− s f

]
x2

n −
[
1 + s f − α(1− s f )

]
xn + 1

, n = 1, 2, · · · . (3)

By defining:

α∗ =
s f

1− s f
,

From Theorems 3.1–3.3 in [24] with µ = 0 and sh = 1, we can obtain the following lemma.

Lemma 1 ([24]). For α ≥ 0, model (3) has a zero equilibrium point x∗0 = 0 and a Wolbachia
fixation equilibrium point x∗1 = 1. Furthermore,

(1) when α ∈ [0, α∗), model (3) has an unstable equilibrium point x̂(α) = s f − α(1− s f ), which
serves as a threshold value on the initial frequency x1: if x1 ∈ (0, x̂(α)), then xn → 0 as
n→ ∞, whereas for x1 ∈ (x̂(α), 1), xn → 1 as n→ ∞.

(2) when α ≥ α∗, we have ∆xn > 0 for any x1 ∈ (0, 1), i.e., the equilibrium x∗1 = 1 is globally
asymptotically stable.

Here, we aim to study the case that a periodic and impulsive release strategy, in each
release period T, Wolbachia-infected male mosquitoes are released with mn = α1 during the
first N generations for n ∈ Z(1+ kT, kT + N), and mn = α2 for n ∈ Z(kT + N + 1, (k+ 1)T).
Then the model switches between:

xn+1 =
(1− s f )(1 + α1)xn

x2
n − [1 + s f − α1(1− s f )]xn + 1

:= F(xn), (4)

for n ∈ Z(1 + kT, kT + N), and:

xn+1 =
(1− s f )(1 + α2)xn

x2
n − [1 + s f − α2(1− s f )]xn + 1

:= G(xn), (5)

for n ∈ Z(kT + N + 1, (k + 1)T). We assume that α2 < α1 holds without loss of generality
throughout the paper.

It’s easy to see that when α2 ≥ α∗, we get ∆xn > 0. Therefore, for any x1 ∈ (0, 1), {xn}
is strictly monotonously increasing to 1, and we can reach our first result as follows.

Theorem 1. When α2 ≥ α∗, the trivial equilibrium 0 of model (4) and (5) is unstable, and Wol-
bachia fixation equilibrium point 1 is globally asymptotically stable.

3. At Least One Nontrivial T-Periodic Solution to (4) and (5)

Let {xn}∞
n=1 := {xn(1, u)}∞

n=1 denote the solution of model (4) and (5) with initial
value x1 = u > 0. Then {xn}N+1

n=2 satisfies (4) with the initial value x1 = u and x2 = F(u),
which offers:

h̄(u) := xN+1 = F(N)(u) (6)

by induction. Initiated from xN+1, {xn}T+1
n=N+2 satisfies (5) with xn = G(n−N−1)(xN+1). Hence,

h(u) := xT+1 = G(T−N)(xN+1) = G(T−N)(h̄(u)) = G(T−N)(F(N)(u)). (7)

Thus, the dynamics of model (4) and (5) depends on the switching frquency between
Equations (4) and (5). If models (4) and (5) have a T-periodic solution initiated from u,
then h(u) = u. Therefore, finding the periodic solutions of models (4) and (5) is equivalent
to finding the fixed points of h. From (6), (7), and the facts that F(0) = G(0) = 0 and
F(1) = G(1) = 1, we get:

h(0) = h̄(0) = 0, h(1) = h̄(1) = 1, (8)
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which means that 0 and 1 are two fixed points of h, or equivalently, models (4) and (5) has
0 and 1 as two trivial T-periodic solutions.

Next, we seek sufficient conditions to guarantee that models (4) and (5) have at least
one nontrivial T-periodic solution. We begin with the case α2 < α1 < α∗.

In this case, Lemma 1 implies that both (4) and (5) produce bistable dynamics with the
existence of unstable equilibrium points, denoted by x̂(α1) and x̂(α2) with x̂(αi) = s f −
αi(1− s f ) for i = 1, 2, respectively. Since α1 > α2, we reach x̂(α1) < x̂(α2). Furthermore,
Lemma 1 implies that,

h̄(u) ≤ u, h(u) < h̄(u)⇒ h(u) < u, for u ∈ (0, x̂(α1)],

h̄(u) > u, h(u) ≥ h̄(u)⇒ h(u) > u, for u ∈ [x̂(α2), 1).
(9)

The continuity of h(u) in u guarantees that h has at least one fixed point in (x̂(α1), x̂(α2)).
Therefore, we have:

Lemma 2. When α2 < α1 < α∗, model (4) and (5) has at least one nontrivial T-periodic solution
initiated from (x̂(α1), x̂(α2)).

For the case α2 < α∗ ≤ α1, similarly from Lemma 1, we have:

h̄(u) > u, h(u) ≥ h̄(u)⇒ h(u) > u, for u ∈ [x̂(α2), 1). (10)

However, the sign of h(u)− u is indefinite for u ∈ (0, x̂(α2)). This leads us to calculate
h′(0). Since h(0) = 0, we reach:

h′(0) = lim
u→0

h(u)
u

= lim
u→0

h(u)
h̄(u)

· h̄(u)
u

, (11)

where:

lim
u→0

h̄(u)
u

= lim
u→0

F(N)(u)

F(N−1)(u)
·

F(N−1)(u)

F(N−2)(u)
· · ·

F(u)
u

. (12)

Since:

lim
u→0

F(i)(u)

F(i−1)(u)
= lim

u→0

F(F(i−1)(u))

F(i−1)(u)
=

(1− s f )(1 + α1)F(i−1)(u)

F(i−1)(u)
= (1− s f )(1 + α1),

for i = 1, 2, · · · , N with F(0)(u) = u. Therefore, from (12),

lim
u→0

h̄(u)
u

= (1− s f )
N(1 + α1)

N . (13)

Similarly,

lim
u→0

h(u)
h̄(u)

= lim
u→0

G(T−N)(h̄(u))
G(T−N−1)(h̄(u))

· G(T−N−1)(h̄(u))
G(T−N−2)(h̄(u))

· · · G(h̄(u))
h̄(u)

=(1− s f )
T−N(1 + α2)

T−N .

(14)

Hence, combining (11), (13), and (14), we have:

h′(0) = lim
u→0

h(u)
u

= (1− s f )
T(1 + α1)

N(1 + α2)
T−N ,

which implies that when α1, α2 lie in:

D =
{
(α1, α2)|(1 + α1)

N(1 + α2)
T−N <

1
(1− s f )T

}
, (15)
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we have h′(0) < 1. Therefore, there exists δ > 0 such that:

h(u) < u, for u ∈ (0, δ), (16)

where δ is sufficiently small. Recalling that h(x̂(α2)) > x̂(α2), there exists at least one
u∗ ∈ [δ, x̂(α2)) such that:

h(u∗) = u∗, h′(u∗) ≥ 1, and h(u) < u for u ∈ (0, u∗).

The above analysis leads to another sufficient condition for the existence of nontrivial
T-periodic solutions to the models (4) and (5) as follows.

Lemma 3. If (α1, α2) ∈ D and α2 < α∗ ≤ α1, then models (4) and (5) have at least one nontrivial
T-periodic solution with u lying in [δ, x̂(α2)), where δ is defined in (16).

Combining the results shown in Lemmas 2 and 3, sufficient conditions to guarantee the
existence of nontrivial T-periodic solutions to the models (4) and (5) are stated as follows.

Theorem 2. Models (4) and (5) have at least one nontrivial T-periodic solution, if one of the
following two conditions holds,

(i) α2 < α1 < α∗, (ii) α2 < α∗ ≤ α1 and (α1, α2) ∈ D, (17)

where D is defined in (15).

The following example displays that when the conditions in (17) hold, the T-periodic
solution not only exists, but also may be unique.

Example 1. Let s f = 0.3. Then α∗ =
s f

1− s f
≈ 0.4286. When we take N = 2 and T = 5, models

(4) and (5) read:

xn+1 =


0.7(1 + α1)xn

x2
n − (1.3− 0.7α1)xn + 1

, n ∈ Z(5k + 1, 5k + 2),

0.7(1 + α2)xn

x2
n − (1.3− 0.7α2)xn + 1

, n ∈ Z(5k + 3, 5(k + 1)).
(18)

Letting α1 = 0.2 and α2 = 0.1. Then (i) in (17) holds. By randomly selecting 400 points for
u ∈ [0, 1], we solve (18) in Matlab and plot h(u)− u against u in Figure 1A. The initial value
for the unique nontrivial periodic solution is dotted in red. Similarly, when taking α1 = 0.5 and
α2 = 0.1, we have:

(1 + α1)
2(1 + α2)

3 = 2.9948 <
1

(1− s f )5 = 5.9499,

and hence (ii) in (17) holds. Figure 1B again displays that the nontrivial fixed point of h(u)− u
lying in u ∈ (0, 1) is unique.

0 0.2 0.4 0.6 0.8 1

u

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y
=

h
(u

)-
u

(A) 
1
=0.2, 

2
=0.1

0 0.2 0.4 0.6 0.8 1

u

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y=
h

(u
)-

u

(B) 
1
=0.5, 

2
=0.1

Figure 1. Numerical simulations displaying the dynamics of y = h(u)− u against u. Panel (A) is for the
case with the release ratios α1 and α2 satisfying (i) in (17). And the release ratios in panel (B) meet (ii) in (17).
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Although the uniqueness of the nontrivial periodic solutions in (18) is verified as
the uniqueness of the nontrivial fixed points in h(u), we failed to theoretically prove this
observation for the general N and T. In the next section, we prove the uniqueness of the
nontrivial fixed points of h(u), or equivalently, the uniqueness of the nontrivial periodic
solutions to models (4) and (5) for the special case with N = 1 and T = 2. Methods to
prove the conclusion for the general N and T are still pending.

A Unique Nontrivial T-Periodic Solution for N = 1 and T = 2

We claim that when N = 1 and T = 2, condition (17) is also sufficient to guarantee
that the nontrivial periodic solution to the models (4) and (5) is unique, i.e.,

Theorem 3. For N = 1 and T = 2, model (4) and (5) admits a unique nontrivial periodic solution
initiated from u ∈ (0, 1), when (17) holds.

To make the proof of Theorem 3 compact, we provide the following two lemmas as the
preliminary analysis. The first one is devoted to the calculation h′(u) at u satisfying h(u) = u.

Lemma 4. For u ∈ Γ := {u ∈ (0, 1) : h(u) = u}, we have:

h′(u) =
(1− u)2(1 + u) f (u)
(1− s f )(1 + α2)Q2

1(u)
, (19)

where:
f (u) =− [1 + s f − α2(1− s f )]u2 + [α1(1 + α2)(1− s f )

2 − α2(1− s2
f ) + 1 + s2

f ]u

+ 1− s f + α2(1− s f ).
(20)

Proof. Let xn = xn(1, x1) be the solution of models (4) and (5) initiated from x1 = u ∈ (0, 1).
Therefore from (4) and (6), we have:

h̄(u) = x2 =
(1− s f )(1 + α1)u

u2 − [1 + s f − α1(1− s f )]u + 1
:=

P1(u)
Q1(u)

, (21)

and from (5) and (7), we get:

h(u) = x3 =
(1− s f )(1 + α2)h̄(u)

h̄2(u)− [1 + s f − α2(1− s f )]h̄(u) + 1
:=

P2(h̄(u))
Q2(h̄(u))

. (22)

Then, taking the derivative on both sides of (21) with respect to u, we get:

h̄′(u) =
P′1(u)
Q1(u)

−
P1(u)Q′1(u)

Q2
1(u)

=
h̄(u)[P′1(u)−Q′1(u)h̄(u)]

P1(u)
. (23)

Similarly, taking the derivative on both sides of (22) with respect to h̄(u), we get:

h′(h̄(u)) =
h(u)[P′2(h̄(u))−Q′2(h̄(u))h(u)]

P2(h̄(u))
. (24)

Combining (23) and (24), for u ∈ Γ, we reach:

h′(u) =
h̄(u)[P′1(u)−Q′1(u)h̄(u)]

P1(u)
·

u[P′2(h̄(u))−Q′2(h̄(u))u]
P2(h̄(u))

=
[P′1(u)Q1(u)− P1(u)Q′1(u)] · [P′2(h̄(u))Q1(u)− uQ1(u)Q′2(h̄(u))]

(1− s f )2(1 + α1)(1 + α2)Q2
1(u)

=
A(u) · B(u)

(1− s f )2(1 + α1)(1 + α2)Q2
1(u)

,
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where:
A(u) = P′1(u)Q1(u)− P1(u)Q′1(u) = (1− s f )(1 + α1)(1− u2),

and:

B(u) = P′2(h̄(u))Q1(u)− uQ1(u)Q′2(h̄(u))

= (1− s f )(1 + α2) + [α1(1 + α2)(1− s f )
2 − α2(1− s f )(2 + s f ) + (1 + s f )s f ]u

− {[1 + s f − α1(1− s f )][1 + s f − α2(1− s f )] + (1− s f )(1− α2 + 2α1)}u2

+ [1 + s f − α2(1− s f )]u3

= (1− u) f (u),

which leads to (19), proving the lemma.

The uniqueness of the nontrivial periodic solutions to models (4) and (5) stated in
Theorem 3 will be proved by the uniqueness of the nontrivial fixed points of the Poincaré
map h(u). To this end, the comparison between h′(u) and 1 for u ∈ Γ will be visited often.
Tedious but simple calculations offer:

h′(u) < 1⇔ u(α1 + 1)(1− s f )g(u) < 0⇔ g(u) < 0,

where:
g(u) = a0 + a1u + a2u2 + a3u3 + a4u4, (25)

with:

a0 = (1 + α2)(1− s f )[1 + s f − α1(1− s f )] + (1 + s f )− α2(1− s f ),

a1 = − [1 + s f − α1(1− s f )][1 + s f − α2(1− s f )]− 2(1 + α1)(1− s f )

− {[1 + s f − α1(1− s f )]
2 + 2}(1 + α2)(1− s f ),

a2 = 3(1− s f )(1 + α2)[1 + s f − α1(1− s f )],

a3 = 2(1− s f )(α1 − α2) + [1 + s f − α1(1− s f )][1 + s f − α2(1− s f )],

a4 = − [1 + s f − α2(1− s f )].

(26)

Similarly, we have:

h′(u) > 1⇔ g(u) > 0, and h′(u) = 1⇔ g(u) = 0.

Hence, the relation between h′(u) and 1 for u ∈ Γ is totally determined by the sign of
the quartic polynomial g(u). The next lemma shows that when α2 < α∗, g(u) is strictly
decreasing in u.

Lemma 5. When α2 < α∗, we have g′(u) < 0 for all u ∈ [0, 1].

Proof. We firstly prove that:

g′(0) < 0, and g′(1) < 0. (27)

In fact, since:
g′(u) = a1 + 2a2u + 3a3u2 + 4a4u3,

we get:
g′(1) = −(α2 + 1)(α1 + 1)2(1− s f )

3 < 0,
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and:

g′(0) =− (1− s f )
3α2

1α2 + (1− s f )
2(1 + 2s f )α1α2 + (1− s f )

2(1 + 2s f )α1

− (1− s f )
3α2

1 − (1− s f )(s2
f + s f + 2)α2 − (1 + s f )2(2− s f )− 4(1− s f )

=− [α2(1− s f )b1 + (1− s f )b2 + b3],

(28)

where:

b1 =

[
(1− s f )α1 −

1 + 2s f

2

]2

+
7
4
> 0, b2 =

[
(1− s f )α1 −

(
s f +

1
2

)]2
> 0,

and:
b3 =

23
4
− 7

4
s f > 0.

Therefore, g′(0) < 0 and (27) holds.
We next prove that g′(u) < 0 for all u ∈ (0, 1). From:

g′′(u) = 2a2 + 6a3u + 12a4u2, (29)

where a2, a3, a4 are defined in (26). Hence,

g′′(0) = 2a2 = 6(1− s f )(1 + α2)[1 + s f − α1(1− s f )], (30)

whose sign is indefinite. However,

g′′(1) = 12a4 + 6a3 + 2a2

= − 12[1 + s f − α2(1− s f )] + 6[1 + s f − α1(1− s f )][1 + s f − α2(1− s f )]

+ 12(1− s f )(α1 − α2) + 6(1− s f )(1 + α2)[1 + s f − α1(1− s f )]

= − 12[1 + s f − α2(1− s f ) + (1− s f )(α2 − α1)]

+ 6[1 + s f − α1(1− s f )][1 + s f − α2(1− s f ) + (1− s f )(1 + α2)]

= − 12[1 + s f − α1(1− s f )] + 12[1 + s f − α1(1− s f )] = 0.

Furthermore, the x-coordinate of the vertex of g′′(u) = 0, denoted by Γx, is:

Γx = − a3

4a4
=

2(1− s f )(α1 − α2) + (1 + s f − α1(1− s f ))(1 + s f − α2(1− s f ))

4(1 + s f − α2(1− s f ))

:=
T(α1, α2)

4(1 + s f − α2(1− s f ))
.

It is easy to see that 1 + s f − α2(1− s f ) > 0 since α2 < α∗. Regarding the sign of T(α1, α2),
we have:

T(α1, α2) = 2(1− s f )(α1 − α2) + (1 + s f − α1(1− s f ))(1 + s f − α2(1− s f ))

= 2α1(1− s f )− 2α2(1− s f ) + (1 + s f )(1 + s f − α2(1− s f ))

− α1(1− s f )(1 + s f − α2(1− s f ))

= α1(1− s f )(1− s f + α2(1− s f )) + (1 + s f )
2 − α2(1− s f )(3 + s f )

> α1(1− s f )(1− s f + α2(1− s f )) + (1 + s f )
2 − α∗(1− s f )(3 + s f )

= α1(1− s f )(1− s f + α2(1− s f )) + (1 + s f )
2 − s f (3 + s f )

= α1(1− s f )(1− s f + α2(1− s f )) + 1− s f > 0.

Therefore we have Γx > 0 when α2 < α∗. The facts a4 < 0, Γx > 0 and g′′(1) = 0 imply
that the function g′′(u) defined in (29) belongs to one of the following cases.
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(i) If Γx ∈ (0, 1) and g′′(0) ≥ 0, then g′′(u) > 0 for u ∈ (0, 1).
(ii) If Γx ∈ (0, 1) and g′′(0) < 0, then there exists a unique ū ∈ (0, 1) such that g′′(u) ≤ 0

for u ∈ (0, ū] and g′′(u) > 0 for u ∈ (ū, 1).
(iii) If Γx ≥ 1, then g′′(u) ≤ 0 for u ∈ (0, 1).

The function y = g′(u) is strictly increasing from g′(0) < 0 to g′(1) < 0 for u ∈ (0, 1)
for case (i). For case (ii), function y = g′(u) decreases from g′(0) < 0 to g′(ū), and then
increases from g′(ū) to g′(1) < 0 for u ∈ (ū, 1). For case (iii), function y = g′(u) is strictly
decreasing from g′(0) < 0 to g′(1) < 0 for u ∈ (0, 1). For all these three cases, we have
g′(u) < 0 for u ∈ [0, 1]. The proof is completed.

Proof of Theorem 3. We assume that models (4) and (5) have another nontrivial T-periodic
solution initiated from u2 ∈ (u1, x̂(α2)) by contradiction. See Figure 2 for illustration.

Figure 2. The situations for models (4) and (5) with two periodic solutions. Panel (A) is for the case
(i) in (31), and Panel (B) is for the case (ii) in (31), respectively.

Then two cases occur:

(i) h′(u1) = 1 and h′(u2) ≥ 1, (ii) h′(u1) ≥ 1 and h′(u2) = 1. (31)

On case (i), we have h′(u1) = 1, h′(u2) ≥ 1, which lead to g(u1) = 0 and g(u2) ≥ 0, this
contradicts the conclusion in Lemma 5 . In case (ii), we get h′(u1) ≥ 1, h′(u2) = 1, which goes
well with the monotonicity of function y = g(u). To achieve a contradiction, we rewrite:

h(u) = h(u, α1), h̄(u) = h̄(u, α1), and g(u) = g(u, α1)

to consider the monotonicity of these functions in α1.
From (21), we arrive at:

∂h̄(u, α1)

∂α1
=

(1− s f )(1− u)2u

Q2
1(u)

. (32)

Then, from (22) and (32), we have:

∂h(u, α1)

∂α1
=

∂

∂h̄(u, α1)

(
P2(h̄(u, α1))

Q2(h̄(u, α1))

)
· ∂h̄(u, α1)

∂α1

=
(1− s f )

2(1− u)2(1− h̄(u, α1))
2h̄(u, α1)u

Q2
1(u)Q

2
2(h̄(u, α1))

> 0,

which implies that h(u, α1) is strictly increasing in α1 ≥ 0. Hence, the function h(u, α1)− u
is also strictly increasing in α1.
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Finding ε small enough, such that α1 − ε > α2, from the monotonicity of h(u, α1)− u
respect of α1, we observe that the curve h(u, α1 − ε) totally lies below h(u, α1)− u except at
u = 0, which admits three zeros, u1 < v1 < v2 < u2 < v3 with:

∂h(u, α1 − ε)

∂u

∣∣∣
u=v1

≥ 1,
∂h(u, α1 − ε)

∂u

∣∣∣
u=v2

≤ 1,
∂h(u, α1 − ε)

∂u

∣∣∣
u=v3

≥ 1.

See Figure 2B for illustration. This implies that g(v1, α1 − ε) ≥ 0, g(v2, α1 − ε) ≤ 0
and g(v3, α1 − ε) ≥ 0, which contradicts the monotonicity of g(u, α1 − ε) in u, proving
the Theorem.

4. Discussion

The endosymbiotic bacterium Wolbachia was first identified in 1924, which naturally
infects 60% of insect species. In mosquitoes, Wolbachia often induces CI which results
in early embryonic death when Wolbachia-infected males mate with uninfected females.
However, Wolbachia-infected females produce viable and infected embryos owing to the
mechanism of maternal transmission, irrelevant of the paternal infection status. The CI
mechanism and maternal transmission of Wolbachia bring a reproductive advantage of
infected mosquitoes over uninfected ones. Regarding Wolbachia release, the infected males
can sterilize uninfected females through CI, and the release of infected females can increase
Wolbachia infection frequency in mosquito populations through maternal transmission.
To date, two release strategies have been applied in field trials: population suppression by only
releasing infected males to sterilize wild females, and population replacement by releasing
both infected females and males so that wild mosquitoes are replaced by infected ones.

The field trials of both population suppression and population replacement have been
implemented in several countries, including Australia, Brazil, and China, which shows that
Wolbachia release is becoming a safe and sustainable approach to controlling mosquito popula-
tions and mosquito-borne disease transmission. Particularly, since March 2015, by combining
the incompatible and sterile insect techniques (IIT-SIT), Wolbachia-infected male mosquitoes
have been released on two isolated islands in south of Guangzhou city. The implementation of
IIT-SIT in 2016 and 2017 eradicated more than 95% of wild-type Aedes albopictus populations [25].
As collaborates, we took charge in mathematical modeling in this project, and our discrete
mathematical model driven by semi-field cage experiments “accurately described and predicted
target population dynamics in the semi-field cage experiments, and supported the notion that a 5:1
over-flooding ratio of HC (the name of the Wolbachia strain) to wild-type males is sufficient for effective
population suppression and/or elimination”.

The notion of supplemental releases is motivated by the implementation of incompatible
and sterile insect techniques combined to eliminate mosquitoes in Guangzhou, Guangdong
China since 2015 [25], where supplementary releases are frequently carried out to guarantee
the population suppression. Very recently, we summarized works on Wolbachia spread
dynamics since 1959 in [26] and proposed some open questions on the periodic and
impulsive release strategies. We took our first try in [27] to answer one of them. This is
a continual study aiming to count the exact numbers of nontrivial periodic solutions to
the discrete switching model, which is a challenging task to achieve due to the lack of
effective methods.

In [17–19], the authors developed mosquito population suppression models by switch-
ing to ordinary differential equation (ODE) models in each release waiting period T. The
global dynamics of these models were elegantly described by using the corresponding
Pioncaré maps h(u), where u is the initial point. By solving the initial value problems in
the first T-periodic interval [0, T), the explicit expression of h(u) was obtained, and then
the existence, and uniqueness of the periodic solutions to the ODE models was equiv-
alent to the existence and uniqueness of the fixed points to the map h(u). Particularly,
at u ∈ Γ = {u|h(u) = u}, h′(u) can also be explicitly expressed in u, which is a key step to
showing the uniqueness of the periodic solutions to the ODE models.
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Following this procedure, we obtained sufficient conditions to guarantee that the
models (4) and (5) have at least one nontrivial periodic solution in Theorem 2. However,
this method of proving the uniqueness does not work for the discrete models developed
in this paper except for the case N = 1 and T = 2 under which the comparison between
h′(u) and 1 can be translated to the comparison between a quartic polynomial g(u) and
0. By developing the qualitative property of g(u), sufficient conditions to guarantee the
existence and uniqueness of the discrete switching model were obtained in Theorem 3.
Unfortunately, for the general N and T, as shown in (7), the Poincaré map h(u) is a
composite function whose explicit expression is absent. Furthermore, when calculating
h′(u) for the general N and T, we find that it is an impossible mission to get a similar
expression as shown in (19). This drives us to seek new methods to treat the general cases
in our future research.
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