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Abstract: We investigate the existence and uniqueness of positive solutions to an integral equation
involving convex or concave nonlinearities. A numerical algorithm based on Picard iterations is
provided to obtain an approximation of the unique solution. The main tools used in this work are
based on partial-ordering methods and fixed-point theory. Our results are supported by examples.
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1. Introduction

Our aim in this paper is to study the nonlinear integral equation

ϑ(σ) = ξ(σ, ϑ(σ)) +
∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds, σ ∈ R, (1)

where ` > 0 is a constant. When ξ ≡ 0 and µ ≡ 1, (1) reduces to

ϑ(σ) =
∫ σ

σ−`
λ(s, ϑ(s)) ds, σ ∈ R. (2)

Equation (2) was proposed in [1] as a mathematical model to analyze the observed periodic
outbreaks of certain infectious diseases. Namely, for a given population, ϑ(σ), `, and
λ(σ, ϑ(σ)) represent, respectively, the proportion of infectious individuals at time σ, the
length of time for which an individual is infective, and the proportion of new infective
individuals per unit of time.

Several investigations of Equation (2) have been carried out. In [1], sufficient con-
ditions ensuring the existence of nontrivial periodic solutions to (2), as well as sufficient
conditions for which all solutions to (2) approach zero as σ→ ∞, were provided. In [2,3],
using Krasnosel’skii-type fixed point theorems, the existence of at least one nontrivial
periodic solution to (2) was proved under certain conditions on λ. The same question
was investigated in [4] using fixed-point index theory. In [5,6], the question of points
of bifurcations of positive periodic solutions to (2) was studied. For other contributions
related to the study of (2), see, e.g., [7–10] and the references therein.

Various interesting contributions dealing with generalized variants of (2) have been
performed by many authors. In [11], the existence of positive almost periodic solutions to
integral equations of the form

ϑ(σ) =
∫ σ

σ−`(ϑ(σ))
λ(s, ϑ(s)) ds, σ ∈ R,
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has been studied. In [12], the neutral integral equation

ϑ(σ) = γϑ(σ− `) + (1− γ)
∫ σ

σ−`
λ(s, ϑ(s)) ds, σ ∈ R,

has been considered. In [13], the existence of multiple periodic solutions to integral
equations of the form

ϑ(σ) =
∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds, σ ∈ R,

has been investigated using various fixed-point theorems. For more contributions related
to generalized variants of (2), see, e.g., [14–22] and the references therein.

In [23], sufficient conditions for the existence of a principal solution to a nonlinear
Volterra integral equation of the second kind on the half-line and on a finite interval have
been derived. Furthermore, a method for computing the boundary of an interval outside
of which the solution can blow up has been proposed (see also [24]). In [25], the local
solvability and blow-up of solutions to an abstract nonlinear Volterra integral equation
have been investigated. Recently, in [26], the authors proposed a new method and a tool to
validate the numerical results of Volterra integral equations with discontinuous kernels in
linear and nonlinear forms obtained from the Adomian decomposition method.

In this paper, Equation (1) is investigated. Namely, using partial-ordering methods
and a fixed-point theorem for monotone and convex/concave operators defined in a
normal solid cone, we derive sufficient conditions, ensuring the existence and uniqueness
of positive solutions. Moreover, in order to approximate the solution, a numerical algorithm
based on Picard iterations is provided.

The main tools of partial-ordering methods and fixed-point theory that will be used in
this paper are presented in Section 2. The main results, as well as their proofs, are presented
in Section 3. Finally, some examples are studied in Section 4.

2. Preliminaries

Let B be a Banach space over R with respect to a certain norm ‖ · ‖B. We denote, by
0B, the zero vector of B. Let C ⊂ B (C 6= {0B}) be nonempty, closed, and convex. We say
that C is a cone in B, if

• αC ⊂ C for all α ≥ 0;
• −C ∩ C = {0B}.

Here, for α ∈ R, αC denotes the subset of B defined by

αC = {αz : z ∈ C}.

Let C be a cone in B. Then C induces a partial-order �C in B defined by

x �C y⇐⇒ y− x ∈ C,

for all x, y ∈ B. We use the notation x ≺C y to indicate that x �C y and x 6= y. For x ≺C y,
the segment [x, y] is defined by

[x, y] = {z ∈ B : x �C z �C y}.

The notation x �C̊ y indicates that y− x ∈ C̊, where C̊ is the interior of C. If C̊ 6= ∅, We say
that C is a solid cone. We say that C is normal, if there exists ρ ≥ 1 such that

0B �C x �C y =⇒ ‖x‖B ≤ ρ‖y‖B,

for all x, y ∈ B.
Let S : A ⊂ B→ B be a given operator. Then,
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(i) S is nondecreasing, if

x, y ∈ A, x �C y =⇒ Sx �C Sy.

(ii) S is nonincreasing, if
x, y ∈ A, x �C y =⇒ Sx �C Sy.

(iii) S is convex, if A is a convex set and

η ∈ (0, 1), x, y ∈ A =⇒ S(ηx + (1− η)y) �C ηSx + (1− η)Sy.

(iv) S is concave, if A is a convex set and

η ∈ (0, 1), x, y ∈ A =⇒ S(ηx + (1− η)y) �C ηSx + (1− η)Sy.

Lemma 1 (see [27]). Suppose that C is a normal solid cone and S : [x, y]→ B is increasing, where
x, y ∈ B and x ≺C y. Assume that one of the following conditions is satisfied:

(i) S is concave, Sx �C̊ x and Sy �C y.
(ii) S is convex, Sx �C x and Sy �C̊ y.

Then,

(I) S has a unique fixed point z ∈ [x, y].
(II) There exist γ > 0 and 0 < θ < 1, such that for all z0 ∈ [x, y], the sequence {zn}n≥0 defined

by
zn+1 = Szn, for all n

converges to z and satisfies

‖zn − z‖B ≤ γθn, for all n.

3. Existence and Uniqueness Results
3.1. Case 1. ξ(σ, ·) and λ(σ, ·) Are Concave

Theorem 1. Assume that the following conditions hold:

(i) µ ∈ C(R×R, [0, ∞)).
(ii) There exist 0 ≤ m` < M` such that

m` ≤
∫ σ

σ−`
µ(σ, s) ds ≤ M`, σ ∈ R.

(iii) There exist 0 < h < H such that ξ, λ ∈ C(R× [h, H],R).
(iv) For all σ ∈ R, the functions ξ(σ, ·), λ(σ, ·) : [h, H]→ R are concave and nondecreasing.
(v) There exist αξ , βξ ∈ R and αλ, βλ ≥ 0, such that

ξ(σ, h) ≥ αξ h, ξ(σ, H) ≤ βξ H, λ(σ, h) ≥ αλh, λ(σ, H) ≤ βλ H,

for all σ ∈ R.
(vi) αξ + αλm` > 1 and βξ + βλ M` ≤ 1.

Then, the integral Equation (1) has a unique continuous solution ϑ∗, such that

h ≤ ϑ∗(σ) ≤ H, σ ∈ R.

Moreover, there exist γ > 0 and 0 < θ < 1, such that for any continuous function z0 satisfying
h ≤ z0(σ) ≤ H, σ ∈ R, the sequence {zn}n≥0 defined by

zn+1(σ) = ξ(σ, zn(σ)) +
∫ σ

σ−`
µ(σ, s)λ(s, zn(s)) ds, σ ∈ R
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converges uniformly to ϑ∗ and satisfies

sup
σ∈R
|zn(σ)− ϑ∗(σ)| ≤ γθn, for all n.

Proof. Let us introduce the set

B =

{
ϑ ∈ C(R) : sup

σ∈R
|ϑ(σ)| < ∞

}
.

Then (B, ‖ · ‖B) is a Banach space, where

‖ϑ‖B = sup
σ∈R
|ϑ(σ)|, ϑ ∈ B.

Let
C = {ϑ ∈ B : ϑ(σ) ≥ 0, σ ∈ R}.

Then, C is a normal solid cone in B, and its interior is given by

C̊ =

{
ϑ ∈ B : inf

σ∈R
ϑ(σ) > 0

}
.

The partial order induced by C is defined by

x �C y⇐⇒ x(σ) ≤ y(σ), σ ∈ R,

for all x, y ∈ B. Let x ≡ h and y ≡ H. For ϑ ∈ [x, y], let

S(ϑ)(σ) = ξ(σ, ϑ(σ)) +
∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds, σ ∈ R.

We shall prove that
S([x, y]) ⊂ B. (3)

Let ϑ ∈ [x, y]. We first show that Sϑ ∈ C(R). Let σ0 ∈ R and σ0 − δ < σ < σ0 + δ for some
δ > 0. Then,∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds =

∫ σ0+δ

σ0−δ−`
X[σ−`,σ](s)µ(σ, s)λ(s, ϑ(s)) ds,

where X[σ−`,σ] is the characteristic function of [σ− `, σ]. By (i), we have

lim
σ→σ0

X[σ−`,σ](s)µ(σ, s)λ(s, ϑ(s)) = X[σ0−`,σ0]
(s)µ(σ0, s)λ(s, ϑ(s)), σ0− δ− ` ≤ s ≤ σ0 + δ

and ∣∣∣X[σ−`,σ](s)µ(σ, s)λ(s, ϑ(s))
∣∣∣ ≤ Ck|λ(s, ϑ(s)|, σ0 − δ− ` ≤ s ≤ σ0 + δ,

where

Ck = sup{µ(σ1, σ2) : (σ1, σ2) ∈ [σ0 − δ, σ0 + δ]× [σ0 − δ− `, σ0 + δ]}.

Moreover, by (iii) we have ∫ σ0+δ

σ0−δ−`
|λ(s, ϑ(s))| ds < ∞.
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Then by the dominated convergence theorem, it holds that

lim
σ→σ0

∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds =

∫ σ0+δ

σ0−δ−`
X[σ0−`,σ0]

(s)µ(σ, s)λ(s, ϑ(s)) ds

=
∫ σ0

σ0−δ
µ(σ0, s)λ(s, ϑ(s)) ds,

which shows the continuity of the function σ 7→
∫ σ

σ−` µ(σ, s)λ(s, ϑ(s)) ds at σ0. Since σ0 is
arbitrary, the continuity holds in R. On the other hand, it follows from the continuity of ξ
(see (iii)) that the function σ 7→ ξ(σ, ϑ(σ)) is continuous in R. Then Sϑ ∈ C(R). Next, we
show that Sϑ is a bounded function. Using that µ ≥ 0, the monotone properties of ξ and λ
(see (iv)), (ii) and (v), we obtain

αξ x ≤ ξ(σ, x) ≤ ξ(σ, ϑ(σ)) ≤ ξ(σ, y) ≤ βξy, σ ∈ R (4)

and
αλxm` ≤

∫ σ

σ−`
µ(σ, s)λ(s, ϑ(s)) ds ≤ βλyM`, σ ∈ R. (5)

Combining (4) with (5), we obtain

x(αξ + αλm`) ≤ (Sϑ)(σ) ≤ y(βξ + βλ M`), σ ∈ R,

which shows that Sϑ is bounded. Therefore, Sϑ ∈ B and (3) is proved.
Next, we show that S : [x, y]→ B is nondecreasing with respect to �C . Let x, y ∈ [x, y]

be such that x(σ) ≤ y(σ) for all σ ∈ R. Using the fact that µ ≥ 0 and the monotone
properties of ξ and λ, it holds that

ξ(σ, x(σ)) ≤ ξ(σ, y(σ)), σ ∈ R (6)

and ∫ σ

σ−`
µ(σ, s)λ(s, x(s)) ds ≤

∫ σ

σ−`
µ(σ, s)λ(s, y(s)) ds, σ ∈ R. (7)

Then, by (6) and (7), we get

ξ(σ, x(σ)) +
∫ σ

σ−`
µ(σ, s)λ(s, x(s)) ds ≤ ξ(σ, y(σ)) +

∫ σ

σ−`
µ(σ, s)λ(s, y(s)) ds, σ ∈ R,

i.e., (Sx)(σ) ≤ S(y)(σ) for all σ ∈ R. Consequently, the operator S : [x, y] → B is
nondecreasing.

Next, we show the concavity of the operator S. Let 0 < η < 1 and x, y ∈ [x, y]. By the
concavity of ξ(σ, ·) and λ(σ, ·), σ ∈ R (see (iv)) and, using the fact that µ ≥ 0, we obtain

ξ(σ, ηx(σ) + (1− η)y(σ)) ≥ ηξ(σ, x(σ)) + (1− η)ξ(σ, y(σ)) (8)

and ∫ σ

σ−`
µ(σ, s)λ(s, ηx(s) + (1− η)y(s)) ds ≥ η

∫ σ

σ−`
µ(σ, s)λ(s, x(s)) ds

+(1− η)
∫ σ

σ−`
µ(σ, s)λ(s, y(s)) ds, (9)

for all σ ∈ R. Hence, it follows from (8) and (9) that

S(ηx + (1− η)y)(σ) ≥ η(Sx)(σ) + (1− η)(Sy)(σ), σ ∈ R,

which proves that S : [x, y]→ B is concave.
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Now, using that µ ≥ 0, (ii), (v) and (vi), for all σ ∈ R, we obtain

(Sx)(σ) = ξ(σ, h) +
∫ σ

σ−`
µ(σ, s)λ(s, h) ds

≥ αξ h + αλh
∫ σ

σ−`
µ(σ, s) ds

≥ h(αξ + αλm`) (10)

> h = x(σ),

which yields
Sx �C̊ x.

Moreover, for all σ ∈ R we have

(Sy)(σ) = ξ(σ, H) +
∫ σ

σ−`
µ(σ, s)λ(s, H) ds

≤ βξ H + βλ H
∫ σ

σ−`
µ(σ, s) ds

≤ H(βξ + βλ M`) (11)

≤ H = y(σ),

which implies that
Sy �C y.

Finally, applying Lemma 1 and observing that any fixed point of S is a solution to (1), the
conclusion of Theorem 1 follows.

3.2. Case 2. ξ(σ, ·) and λ(σ, ·) Are Convex

Theorem 2. Assume that the following conditions hold:

(i) µ ∈ C(R×R, [0, ∞)).
(ii) There exist 0 ≤ m` < M`, such that

m` ≤
∫ σ

σ−`
µ(σ, s) ds ≤ M`, σ ∈ R.

(iii) There exist 0 < h < H, such that ξ, λ ∈ C(R× [h, H],R).
(iv) For all σ ∈ R, the functions ξ(σ, ·), λ(σ, ·) : [h, H]→ R are convex and nondecreasing.
(v) There exist αξ , βξ ∈ R and αλ, βλ ≥ 0, such that

ξ(σ, h) ≥ αξ h, ξ(σ, H) ≤ βξ H, λ(σ, h) ≥ αλh, λ(σ, H) ≤ βλ H,

for all σ ∈ R.
(vi) αξ + αλm` ≥ 1 and βξ + βλ M` < 1.

Then, the integral Equation (1) has a unique continuous solution ϑ∗, such that

h ≤ ϑ∗(σ) ≤ H, σ ∈ R.

Moreover, there exist γ > 0 and 0 < θ < 1 such that, for any continuous function z0 satisfying
h ≤ z0(σ) ≤ H, σ ∈ R, the sequence {zn}n≥0 defined by

zn+1(σ) = ξ(σ, zn(σ)) +
∫ σ

σ−`
µ(σ, s)λ(s, zn(s)) ds, σ ∈ R

converges uniformly to ϑ∗ and satisfies

sup
σ∈R
|zn(σ)− ϑ∗(σ)| ≤ γθn, for all n.
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Proof. From the proof of Theorem 1, the mapping S : [x, y]→ B is nondecreasing. Using
the convexity of ξ(σ, ·) and λ(σ, ·) (see (iv)), we deduce that S is convex. Moreover, by (10)
and (vi), we have

(Sx)(σ) ≥ h(αξ + αλm`) ≥ h = x(σ), σ ∈ R

and
(Sy)(σ) ≤ H(βξ + βλ M`) < H = y(σ), σ ∈ R.

Then Sx �C x and Sy �C̊ y. Finally, using Lemma 1, the conclusion of Theorem 2
follows.

4. Some Examples

Consider the nonlinear integral equation

ϑ(σ) = 2(1 + e−|σ|)
√

ϑ(σ) +
1

100`

∫ σ

σ−`
e−(σ−s)2

(
3s2ϑ(s)

10(s2 + 1)
+ (sin s)2

√
ϑ(s)

)
ds, σ ∈ R, (12)

where ` > 0 is a constant.

Corollary 1. There exists a unique continuous solution ϑ∗ to (12), such that

1 ≤ ϑ∗(σ) ≤ 100, σ ∈ R.

Moreover, there exist γ > 0 and 0 < θ < 1, such that for any continuous function z0 satisfying
1 ≤ z0(σ) ≤ 100, σ ∈ R, the sequence {zn}n≥0 defined by

zn+1(σ) = 2(1 + e−|σ|)
√

zn(σ) +
1

100`

∫ σ

σ−`
e−(σ−s)2

(
3s2zn(s)

10(s2 + 1)
+ (sin s)2

√
zn(s)

)
ds

for all σ ∈ R, converges uniformly to ϑ∗ and satisfies

sup
σ∈R
|zn(σ)− ϑ∗(σ)| ≤ γθn, for all n.

Proof. Notice that (12) is a special case of (1) with

ξ(σ, u) = 2(1 + e−|σ|)
√

u, σ ∈ R, u ≥ 0,

µ(σ, s) = e−(σ−s)2
, σ, s ∈ R,

λ(σ, u) =
1

100`

(
3σ2u

10(σ2 + 1)
+ (sin σ)2√u

)
, σ ∈ R, u ≥ 0.

Moreover, we have µ ∈ C(R×R, [0, ∞)) and

0 ≤
∫ σ

σ−`
µ(σ, s) ds =

∫ σ

σ−`
e−(σ−s)2

ds ≤
∫ σ

σ−`
1 ds = `.

This shows that conditions (i) and (ii) of Theorem 1 are satisfied with

m` = 0 and M` = `.

Next, we have ξ, λ ∈ C(R× [0, ∞),R), and for all σ ∈ R the functions

ξ(σ, ·), λ(σ, ·) : [0, ∞)→ R

are concave and nondecreasing. Moreover, for all σ ∈ R,

ξ(σ, 1) = 2(1 + e−|σ|) ≥ 2, ξ(σ, 100) = 20(1 + e−|σ|) ≤ 40 <
3
5
× 100
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and

λ(σ, 1) ≥ 0, λ(σ, 100) =
1

100`

(
30σ2

σ2 + 1
+ 10(sin σ)2

)
≤ 2

5`
<

1
5`
× 100.

Then, conditions (iv) and (v) of Theorem 1 are satisfied with

h = 1, H = 100, αξ = 2, βξ =
3
5

, αλ = 0, βλ =
1
5`

.

Observe also that

αξ + αλm` = αξ = 2 > 1, βξ + βλ M` =
3
5
+

1
5
=

4
5
< 1.

Then, condition (vi) of Theorem 1 is satisfied. Therefore, the conclusion of Corollary 1
follows from Theorem 1.

Consider now the integral equation

ϑ(σ) =
3

4`3 e−`
2
∫ σ

σ−`
(σ− s)2e(σ−s)2

(
2s2 + 1
s2 + 1

)(
ϑ(s) + e−ϑ(s)

)
ds, σ ∈ R, (13)

where ` > 0 is a constant.

Corollary 2. For sufficiently small h > 0 and sufficiently large H, the integral Equation (13) has
a unique continuous solution ϑ∗ such that

h ≤ ϑ∗(σ) ≤ H, σ ∈ R.

Moreover, there exist γ > 0 and 0 < θ < 1 such that, for any continuous function z0 satisfying
h ≤ z0(σ) ≤ H, σ ∈ R, the sequence {zn}n≥0 defined by

zn+1(σ) =
3

4`3 e−`
2
∫ σ

σ−`
(σ− s)2e(σ−s)2

(
2s2 + 1
s2 + 1

)(
zn(s) + e−zn(s)

)
ds, σ ∈ R

converges uniformly to ϑ∗ and satisfies

sup
σ∈R
|zn(σ)− ϑ∗(σ)| ≤ γθn, for all n.

Proof. Note that (13) is a special case of (1) with

ξ(σ, u) = 0, σ ∈ R, u ≥ 0,

µ(σ, s) = (σ− s)2e(σ−s)2
, σ, s ∈ R,

λ(σ, u) =
3

4`3 e−`
2
(

2σ2 + 1
σ2 + 1

)(
u + e−u), σ ∈ R, u ≥ 0.

Moreover, we have µ ∈ C(R×R, [0, ∞)) and

(σ− s)2 ≤ µ(σ, s) = (σ− s)2e(σ−s)2 ≤ (σ− s)2e`
2
, σ ∈ R, σ− ` ≤ s ≤ σ,

which yields ∫ σ

σ−`
(σ− s)2 ds ≤

∫ σ

σ−`
µ(σ, s) ds ≤ e`

2
∫ σ

σ−`
(σ− s)2 ds,

that is,
`3

3
≤
∫ σ

σ−`
µ(σ, s) ds ≤ `3

3
e`

2
.
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Then, conditions (i) and (ii) of Theorem 2 are satisfied with

m` =
`3

3
and M` =

`3

3
e`

2
.

Moreover, we have λ ∈ C(R× [0, ∞),R), and for all σ ∈ R the function

λ(σ, ·) : [0, ∞)→ R

is convex and nondecreasing. On the other hand, taking a sufficiently small h > 0 so that

1 +
e−h

h
≥ 4e`

2
,

it holds that

λ(σ, h) =
3

4`3 h

[
e−`

2
(

2σ2 + 1
σ2 + 1

)(
1 +

e−h

h

)]
≥ 3

`3 h, σ ∈ R.

Next, taking H that is sufficiently large so that

e−H

H
<

1
2

,

we obtain

λ(σ, H) =
3

4`3 e−`
2
(

2σ2 + 1
σ2 + 1

)(
H + e−H

)
≤ 3

2`3 e−`
2
H
(

1 +
e−H

H

)
≤ 9

4`3 e−`
2
H.

Therefore, the conditions (iv) and (v) of Theorem 2 are satisfied with

αξ = βξ = 0, αλ =
3
`3 , βλ =

9
4`3 e−`

2
.

We have also

αξ + αλm` =
3
`3

`3

3
= 1, βξ + βλ M` =

9
4`3 e−`

2 `3

3
e`

2
=

3
4
< 1.

Then, condition (vi) of Theorem 2 is satisfied. Finally, the conclusion of Corollary 2 follows
from Theorem 2.

5. Conclusions

The integral Equation (1) is investigated in this paper. Using some techniques from
partial-ordering methods and a fixed-point theorem for concave (and convex) monotone
operators (see Lemma 1), the existence and uniqueness of positive solutions is proved.
Namely, we investigated two cases. In the first case, it is supposed that ξ(σ, ·) and λ(σ, ·)
are concave functions. In the second case, ξ(σ, ·) and λ(σ, ·) are supposed to be convex. In
both cases, sufficient conditions ensuring the existence and uniqueness of positive solutions
are provided, as well as a numerical algorithm converging to the solution (see Theorems 1
and 2). We also provided some examples to illustrate our results (see Section 4). Comparing
these with the existence results from the literature, to the best of our knowledge, the study
of (1) with convex and concave nonlinearities was not previously investigated.
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