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Abstract: Fractional optimal control problems via a wide class of fractional operators with a general
analytic kernel are introduced. Necessary optimality conditions of Pontryagin type for the considered
problem are obtained after proving a Gronwall type inequality as well as results on continuity and
differentiability of perturbed trajectories. Moreover, a Mangasarian type sufficient global optimality
condition for the general analytic kernel fractional optimal control problem is proved. An illustrative
example is discussed.
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1. Introduction

Fractional Calculus, as a generalization of the traditional calculus through derivation
and integration of an arbitrary order, is a rapidly growing field of mathematical research.
Indeed, due to the existence of many different fractional operators in the literature, there is
an interest in defining a more general class of fractional operators, which include existing
operators as particular cases. This is important in the sense that with a general framework
of operators it might be possible to establish a mathematical theory for this general for-
malism, rather than considering specific models with particular results. In this direction,
Fernandez, Özarslan and Baleanu proposed in 2019 a fractional integral operator, based on
a general analytic kernel, that includes a number of existing and known operators [1]. Since
this seminal work of 2019, several interesting results appeared, e.g., determination of source
terms for fractional Rayleigh–Stokes equations with random data [2], new analytic proper-
ties of tempered fractional calculus [3], simulation of nonlinear dynamics with fractional
neural networks arising in the modeling of cognitive decision making processes [4], new
numerical methods for variable order fractional nonlinear quadratic integro-differential
equations [5], and analysis of impulsive ϕ-Hilfer fractional differential equations [6]. Here,
we investigate, for the first time in the literature, optimal control problems that involve
a combined Caputo fractional derivative with a general analytic kernel in the sense of
Fernandez, Özarslan and Baleanu.

The subject of combined fractional derivatives deals with the issue of combining the
past and the future of the modelling process into one single operator. This is done by
a convex combination of the left and right fractional derivatives. The idea was firstly
introduced in [7] by Malinowska and Torres, following a previous idea of Klimek [8], and
then further investigated by the authors in [9–11]. See also [12–14] and references therein.
As mentioned in [9], one advantage of combining fractional derivatives lie in the fact that
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they allow to describe a more general class of variational problems. Thus, it seems natural
to consider optimal control problems that involve combined fractional derivatives with a
general analytic kernel.

It should be mentioned that there is a rich literature on optimal control with fractional
operators. Recent results include, for example: (i) sensitivity properties of optimal control
problems governed by nonlinear Hilfer fractional evolution inclusions in Hilbert spaces [15];
(ii) existence of a solution for a class of fractional delayed stochastic differential equations
with non-instantaneous impulses and fractional Brownian motions [16]; (iii) an optimal
control analysis of a fractional COVID-19 epidemic model to minimize the infection and
maximize susceptible individuals under the Atangana–Baleanu fractional operator in the
Caputo sense [17]; (iv) a Pontryagin maximum principle for optimal control problems
with concentrated parameters for a degenerate differential equation with the Caputo
operator [18]; etc. However, no available results on optimal control, with combined general
analytic kernels, exist in the literature. For non-combined general analytic kernels, optimal
control results are scarce and restricted to the recent publication [19]. There, a weak
version of Pontryagin’s Maximum Principle for optimal control problems involving a
general analytic kernel is given but the emphasis is on the classical setting of the calculus
of variations (e.g., isoperimetric variational problems) and with results valid only in the
class of piece-wise continuous differentiable state trajectories and piece-wise continuous
controls [19]. In contrast, our current results are more general, being valid in the class
of absolutely continuous state trajectories and L2 controls. Moreover, results of [19] are
valid only in the absence of constraints on the values of the controls; that is, the controls
take values in all the Euclidean space while here we are able to deal with more general
and challenge situations when the controls may take values in any time-dependent close
convex set of L2.

The manuscript is organized as follows. Section 2 presents preliminary notions and
results needed in the sequel, and follows the original results of the paper (Sections 3 and
4). In Section 3, we prove two results that are fundamental in the development of our
work: a duality relation (Lemma 5) and integration by parts formulas (Lemma 7). The
main results appear then in Section 4, where we state and prove a Gronwall type inequality
(Theorem 1) and, as application to this inequality, we prove two results: a result on the
continuity of solutions (see Lemma 8 and Corollary 1) and a necessary optimality condition
of Pontryagin type to an optimal control problem with a general analytic kernel in the sense
of Fernandez, Özarslan and Baleanu (Theorem 2). We end Section 4 by proving a sufficient
condition for global optimality (Theorem 3). An example, illustrating the applicability
of the obtained results, is given (see Examples 1 and 2). Finally, Section 5 give the main
conclusions of the paper, including some possible future directions of research.

2. Preliminaries

In this section, we recall the definitions of fractional operators based on general
analytic kernels and state some of their properties, relevant to our work.

Definition 1 (See [1]). Let [a, b] be a real interval, α be a real parameter in [0, 1], β be a complex
parameter with non-negative real part, and R be a positive number satisfying R > (b− a)Re(β).
Let A be a complex function, analytic on the disc D(0, R), and defined on this disc by the locally
uniformly convergent power series

A(x) =
∞

∑
n=0

anxn.

The left and right-sided fractional integrals with general analytic kernels of a locally integrable
function x : [a, b]→ R (that is, x ∈ L1([a, b],R)) are defined by

A Iα,β
a+ x(t) :=

∫ t

a
(t− s)α−1 A

(
(t− s)β

)
x(s)ds
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and
A Iα,β

b− x(t) :=
∫ b

t
(s− t)α−1 A

(
(s− t)β

)
x(s)ds,

respectively.

Notation 1. For any analytic function A as in Definition 1, we define AΓ as

AΓ(x) :=
∞

∑
n=0

anΓ(βn + α)xn.

Lemma 1 (Series formula [1]). For any integrable function x ∈ L1([a, b],R), the following
uniformly convergent series formulas for A Iα,β

a+ x and for A Iα,β
b− x as functions on [a, b] hold:

A Iα,β
a+ x(t) :=

∞

∑
n=0

anΓ(βn + α)RL Iα+nβ
a+ x(t)

and
A Iα,β

b− x(t) :=
∞

∑
n=0

anΓ(βn + α)RL Iα+nβ
b− x(t),

where A Iα+nβ
a+ and A Iα+nβ

b− are, respectively, the left and right-sided Riemann–Liouville fractional
integrals of order α + nβ.

Lemma 2 (Theorem 2.5 of [1]). With all notations as in Definition 1, we have a well bounded
operator

A Iα,β
a+ : L1([a, b],R)→ L1([a, b],R)

for any fixed α and β with Re(α), Re(β) > 0. Moreover, the operator norm denoted by ‖ · ‖ is
obtained as

∥∥∥A Iα,β
a+

∥∥∥ = sup
f∈L1([a,b],R)

∥∥∥A Iα,β
a+ f

∥∥∥
1

‖ f ‖1
= (b− a)α M, M = sup

|x|<(b−a)α

A(x).

In addition, similar results hold for the right-sided operator given in Definition 1, that is, the
operator A Iα,β

b− is bounded on L1([a, b],R) with operator norm at most (b− a)α M.

Lemma 3 (Semi group property [1]). Let a, b, A be as in Definition 1, and fix α1, α2, β ∈ C with
non-negative real parts. The semigroup property

A Iα1,β
a+ ◦A Iα2,β

a+ x(t) =A Iα1+α2,β
a+ x(t) =A Iα2+α1,β

a+ x(t) =A Iα2,β
a+ ◦A Iα1,β

a+ x(t)

is uniformly valid (regardless of α1, α2, β and x) if and only if the condition

∑
m+n=k

an(α1, β)am(α2, β)Γ(α1 + nβ)Γ(α2 + nβ) = ak(α1 + α2, β)Γ(α1 + α2 + kβ)

is satisfied for all non-negative integers k.

A similar result to that of Lemma 3 holds for the right-sided Riemann–Liouville
fractional integral operator given in Definition 1.

Next, we give some recalls on fractional derivatives with general analytic kernel in
the sense of Riemann–Liouville and Caputo.

Let a, b, α, β and A be as in Definition 1 and denote

Lα,β([a, b],R) :=
{

x ∈ L1([a, b],R) : Ā I1−α,β
a+ x, Ā I1−α,β

b− x ∈ AC([a, b],R)
}

,
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where AC([a, b],R) represents the set of absolutely continuous functions on [a, b].

Definition 2 (See [1]). The left and right Rieman–Liouville fractional derivatives with general
analytic kernels, of a function x ∈ Lα,β([a, b],R), are defined by

A
RLDα,β

a+ x(t) =
d
dt

(
Ā I1−α,β

a+ x(t)
)

and A
RLDα,β

b− x(t) = − d
dt

(
Ā I1−α,β

b− x(t)
)

,

where function Ā used on the right-hand side is an analytic function defined by

Ā(x) =
∞

∑
n=0

ānxn

and such that AΓ · ĀΓ = 1.

Now, let us denote by ACα,β([a, b],R) the set of absolutely continuous functions that
can be represented as

x(t) = x(a) +Ā Iα,β
a+ f (t) and x(t) = x(b) +Ā Iα,β

b− f (t), (1)

for some function f ∈ Lα,β([a, b],R).

Definition 3. The left and right Caputo fractional derivatives with general analytic kernels, of a
function x ∈ ACα,β([a, b],R), are defined by

A
C Dα,β

a+ x(t) =
d
dt

[
Ā I1−α,β

a+ (x(t)− x(a))
]

and
A
C Dα,β

b− x(t) = − d
dt

[
Ā I1−α,β

b− (x(t)− x(b))
]
,

where function Ā used on the right-hand side is an analytic function given by Ā(x) = ∑∞
n=0 ānxn

and such that AΓ · ĀΓ = 1.

We would like to emphasize that, from (1) and by using the semi group property
(Lemma 3), one has

Ā I1−α,β
a+ (x(t)− x(a)) =Ā I1,β

a+ f (t) and Ā I1−α,β
b− (x(t)− x(b)) =Ā I1,β

b− f (t).

Therefore, by Definition 3 and the fact that f ∈ Lα,β([a, b],R), it is obvious that A
C Dα,β

a+ and
A
C Dα,β

b− belong to L1([a, b],R).

Lemma 4 (See, e.g., [20,21]). Let h : Rn → R be a continuously differentiable function. Then h
is a concave function if and only if it satisfies the so called gradient inequality:

h(θ1)− h(θ2) ≥ ∇h(θ1)(θ1 − θ2)

for all θ1, θ2 ∈ Rn.

3. Fundamental Properties

We prove rules of fractional integration by parts for the general analytic kernel opera-
tors. Firstly, we show a duality formula for the integral operator (Lemma 5). Then, we use
the duality formula to prove the fractional integration by parts formulas for the general
analytic kernel fractional operators (Lemma 7).
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Lemma 5 (Duality relation). Let α and β be as in Definition 1 with |α + β| ≥ 1. For any
functions x(t) and y(t), t ∈ [a, b], with x, y ∈ L1([a, b],R), the following duality relation holds:

∫ b

a
x(t)A Iα,β

a+ y(t)dt =
∫ b

a
y(t)A Iα,β

b− x(t)dt.

Proof. By the series formula, we know that

∫ b

a
x(t)A Iα,β

a+ y(t)dt =
∫ b

a
x(t)

∞

∑
n=0

anΓ(βn + α)RL Iα+nβ
a+ y(t)dt. (2)

Since the series in the right hand side of (2) is uniformly convergent, it follows that

∫ b

a
x(t)A Iα,β

a+ y(t)dt =
∞

∑
n=0

anΓ(βn + α)
∫ b

a
x(t)RL Iα+nβ

a+ y(t)dt

and, by the well-known duality of the Riemann–Liouville integral operators, which is valid
under assumption |α + β| ≥ 1 (cf. Lemma 2.7(a) of [22]), we have

∫ b

a
x(t)RL Iα+nβ

a+ y(t)dt =
∫ b

a
y(t)RL Iα+nβ

b− x(t)dt

for any n ∈ N, which leads to

∞

∑
n=0

anΓ(βn + α)
∫ b

a
x(t)RL Iα+nβ

a+ y(t)dt =
∞

∑
n=0

anΓ(βn + α)
∫ b

a
y(t)RL Iα+nβ

b− x(t)dt.

Therefore, we obtain that∫ b

a
x(t)A Iα,β

a+ y(t)dt =
∫ b

a
y(t)A Iα,β

b− x(t)dt.

This concludes the proof.

Lemma 6. Let x ∈ ACα,β([a, b],R). The left and right sided Caputo fractional derivatives, as
defined in Definition 3, coincide with the following representation:

A
C Dα,β

a+ x(t) =Ā I1−α,β
a+ x

′
(t) and A

C Dα,β
b− x(t) = −

(
Ā I1−α,β

b− x
′
(t)
)

.

Proof. We have, by Definition 3, that

A
C Dα,β

a+ x(t) =
d
dt

[
Ā I1−α,β

a+ (x(t)− x(a))
]
.

Using the series formula (Lemma 2), it follows that

A
C Dα,β

a+ x(t) =
d
dt

{
∞

∑
n=0

ānΓ(βn + 1− α)RL Iβn+1−α
a+ (x(t)− x(a))

}

=
d
dt

{
∞

∑
n=0

ānΓ(βn + 1− α)

[
1

Γ(βn + 1− α)

∫ t

a
(t− s)βn−α(x(s)− x(a))ds

]}
.
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Moreover, by the classical integration by parts formula, we have

∫ t

a
(t− s)βn−α(x(s)− x(a))ds =

[
− 1

βn + 1− α
(t− s)βn+1−α(x(s)− x(a))

]t

a

+
∫ t

a

1
βn + 1− α

(t− s)βn+1−α d
ds

(x(s)− x(a))ds

=
∫ t

a

1
βn + 1− α

(t− s)βn+1−αx
′
(s)ds.

Therefore,

A
C Dα,β

a+ x(t) =
d
dt

{
∞

∑
n=0

ānΓ(βn + 1− α)

×
[

1
Γ(βn + 1− α)

∫ t

a

1
βn + 1− α

(t− s)βn+1−αx
′
(s)ds

]}
. (3)

Since the series is uniformly convergent, we can differentiate with respect to t to obtain

A
C Dα,β

a+ x(t) =
∞

∑
n=0

ānΓ(βn + 1− α)

[
1

Γ(βn + 1− α)

∫ t

a
(t− s)βn−αx

′
(s)ds

]
=

∞

∑
n=0

ānΓ(βn + 1− α)
[

RL Iβn+1−α
a+ x

′
(t)
]
=Ā I1−α,β

a+ x
′
(t).

In a similar way, it is possible to derive the right sided representation.

The next result is, as we shall see, an important tool for proving necessary optimality
conditions to optimal control problems.

Lemma 7 (Integration by parts formula). Let α and β be as in Definition 1 with |α + β| ≥ 1,
x ∈ Lα,β([a, b],R) and y ∈ ACα,β([a, b],R). Then, the following two formulas hold:

∫ b

a
x(t)A

C Dα,β
a+ y(t)dt =

[
y(t)Ā I1−α,β

b− x(t)
]b

a
+
∫ b

a
y(t)A

RLDα,β
b− x(t)dt (4)

and ∫ b

a
x(t)A

C Dα,β
b− y(t)dt =

[
−y(t)Ā I1−α,β

a+ x(t)
]b

a
+
∫ b

a
y(t)A

RLDα,β
a+ x(t)dt. (5)

Proof. By definition,

∫ b

a
x(t)A

C Dα,β
a+ y(t)dt =

∫ b

a
x(t)Ā I1−α,β

a+ y′(t)dt

and, by the duality formula of Lemma 5, it follows that

∫ b

a
x(t)Ā I1−α,β

a+ y′(t)dt =
∫ b

a
y′(t)Ā I1−α,β

b− x(t)dt.

Using (standard) integration by parts, we obtain that

∫ b

a
y′(t)Ā I1−α,β

b− x(t)dt =
[
y(t)Ā I1−α,β

b− x(t)
]b

a
−
∫ b

a
y(t)

d
dt

(
Ā I1−α,β

b− x(t)
)

dt,

which leads to the desired formula. The proof of (5) is similar.
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4. Main Results

In this section, following the definition given in [7], we propose a combined fractional
operator for a general analytic kernel and study the related optimal control problem.

Definition 4. Let γ ∈ [0, 1]. The combined fractional operator with general analytic kernel is
defined by

A
C Dα,β,γ

a,b = γA
C Dα,β

a+ + (1− γ)A
C Dα,β

b− .

Note that A
C Dα,β,0

a,b = A
C Dα,β

b− and A
C Dα,β,1

a,b = A
C Dα,β

a+ . The operator is obviously linear.
Using Lemma 7, with x ∈ Lα,β([a, b],R) and y ∈ ACα,β([a, b],R), we can easily establish
the following integration by parts formula:

∫ b

a
x(t)A

C Dα,β,γ
a,b y(t)dt = γ

[
y(t)Ā I1−α,β

b− x(t)
]b

a

+ (1− γ)
[
−y(t)Ā I1−α,β

a+ x(t)
]b

a
+
∫ b

a
y(t)A

RLDα,β,1−γ
a,b x(t)dt, (6)

where A
RLDα,β,γ

a,b = γA
RLDα,β

a+ + (1− γ)A
RLDα,β

b− .
In the following subsection, we prove a new integral inequality of Gronwall type that

will be useful to investigate continuity of solutions to our optimal control problem.

4.1. Gronwall’s Inequality

Gronwall’s inequality is an important integral inequality that is often used to prove
qualitative and quantitative properties of solutions to differential equations. Very recently,
there were several works devoted to this subject in the field of fractional calculus: see,
e.g., [23,24] and references therein. The next result is a new Gronwall type inequality for a
fractional integral operator with a general analytic kernel.

Theorem 1 (Gronwall’s inequality). Let f (·), u(·) ∈ L1([a, b],R) be non-negative and g(·) be
a non-negative monotonic increasing continuous function on [a, b] satisfying

max
t∈[a,b]

g(t) <
1

(b− a)α−1M
with M = sup

|x|<(b−a)α

A(x).

If
u(t) ≤ f (t) + g(t)

(
A Iα,β,γ

a,b u
)
(t), t ∈ [a, b] a.e., (7)

then for almost all t ∈ [a, b] we have

u(t) ≤ f (t) +
∞

∑
k=1

[g(t)]k
[(

A Iα,β,γ
a,b

)k
( f )
]
(t),

where A Iα,β,γ
a,b = γA Iα,β

a+ + (1− γ)A Iα,β
b− with γ ∈ [0, 1] and we use the composition of operators’

notation: (
A Iα,β,γ

a,b

)k
= ◦k

i=1

(
A Iα,β,γ

a,b

)
i
.

Proof. Since the operator A Iα,β,γ
a,b is a non-decreasing operator, as linear combination of

non-decreasing operators, it follows that(
A Iα,β,γ

a,b u
)
(t) ≤ A Iα,β,γ

a,b

(
f (·) + g(t)

(
A Iα,β,γ

a,b u
))

(t)

=
(

A Iα,β,γ
a,b f

)
(t) + g(t)

[(
A Iα,β,γ

a,b

)2
(u)
]
(t).
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Now, we substitute this previous inequality into (7), to obtain that

u(t) ≤ f (t) + g(t)
(

A Iα,β,γ
a,b f

)
(t) + [g(t)]2

[(
A Iα,β,γ

a,b

)2
(u)
]
(t).

Repeating this procedure up to N times, we get

u(t) ≤ f (t) +
N−1

∑
k=1

(g(t))k
[(

A Iα,β,γ
a,b

)k
( f )
]
(t) + (g(t))N

[(
A Iα,β,γ

a,b

)N
(u)
]
(t).

Therefore, when N → ∞, one has

u(t) ≤ f (t) +
∞

∑
k=1

(g(t))k
[(

A Iα,β,γ
a,b

)k
( f )
]
(t) + lim

N→∞
(g(t))N

[(
A Iα,β,γ

a,b

)N
(u)
]
(t).

To obtain the desired result, it remains to show that the series

∞

∑
k=1

(g(t))k
[(

A Iα,β,γ
a,b

)k
( f )
]
(t)

converges and the limit

lim
N→∞

(g(t))N
[(

A Iα,β,γ
a,b

)N
(u)
]
(t)

is equal to zero. Let us study the composition of operators
(

A Iα,β,γ
a,b

)k
. For this purpose,

note that, by Lemma 2, the operators A Iα,β
a+ and A Iα,β

b− are both bounded on L1([a, b],R).
Therefore, because L1([a, b],R) is a norm vector space, we have that the linear combination
γA Iα,β

a+ + (1− γ)A Iα,β
b− = A Iα,β,γ

a,b is also a bounded operator on L1([a, b],R) having the same
operator norm, precisely∥∥∥A Iα,β,γ

a,b f
∥∥∥

1
6 (b− a)α M‖ f ‖1, f ∈ L1([a, b],R).

As a consequence, if f ∈ L1([a, b],R), then for any fixed integer k we have that the compo-

sition
(

A Iα,β,γ
a,b

)k
( f ) ∈ L1([a, b],R) and is bounded in the sense that∥∥∥∥(A Iα,β,γ

a,b

)k
f
∥∥∥∥

1
6 [(b− a)α M]k‖ f ‖1, f ∈ L1([a, b],R).

Moreover, using the mean value theorem, we have that there exists t ∈ [a, b] such that∣∣∣∣(A Iα,β,γ
a,b

)k
( f )(t)

∣∣∣∣ = 1
(b− a)

∥∥∥∥(A Iα,β,γ
a,b

)k
f
∥∥∥∥

1
.

Hence, we obtain that∣∣∣∣(A Iα,β,γ
a,b

)k
( f )(t)

∣∣∣∣ 6 1
(b− a)

[(b− a)α M]k‖ f ‖1, f ∈ L1([a, b],R),

and it follows that∣∣∣∣∣ ∞

∑
k=1

(g(t))k
(

A Iα,β,γ
a,b

)k
( f )(t)

∣∣∣∣∣ ≤ ‖ f ‖1

∞

∑
k=1

[
(b− a)α−1MN

]k
, f ∈ L1([a, b],R),
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where N = max
t∈[a,b]

g(t). Finally, the series converges since, by assumptions,

N <
1

(b− a)α−1M
.

Moreover, according to the necessary condition of convergence of an infinite series, one
deduces that

lim
k→∞

(g(t))k
(

A Iα,β,γ
a,b

)k
( f )(t) = 0.

This concludes the proof.

4.2. Applications

In this subsection, we prove several important results: continuity of solutions to
optimal control problems (Lemma 8), which is an application of our Gronwall’s inequality
(Theorem 1); differentiability of the perturbed trajectories (Corollary 1); and a necessary
optimality condition of Pontryagin type to problem (8) (Theorem 2), which happens to be
an application of the results on continuity, differentiability, and integration by parts. First
of all, let us define the optimal control problem that we will be studying.

We consider an analytic kernel fractional optimal control problem, which consists in
finding a control u ∈ Ω(t) ⊆ L2([a, b],R) and its corresponding state trajectory x ∈ ACα,β

solution to the following problem:

J[x(·), u(·)] =
∫ b

a
L(t, x(t), u(t))dt −→ max,

A
C Dα,β,γ

a,b x(t) = f (t, x(t), u(t)), t ∈ [a, b], |α + β| ≥ 1,

x(·) ∈ ACα,β, u(·) ∈ Ω(t) ⊆ L2, a.e. t ∈ [a, b],

x(a) = xa,

(8)

where Ω(t) is a closed convex subset of L2 and functions L and f are assumed to be
continuously differentiable in all their three arguments, that is, f ∈ C1 and L ∈ C1.
In particular, f is locally Lipschitz with Lipschitz constant K. By solution of the analytic
kernel fractional optimal control problem (8), we mean a pair (x(·), u(·)) ∈ ACα,β ×Ω(t)
satisfying the control system A

C Dα,β,γ
a,b x(t) = f (t, x(t), u(t)), t ∈ [a, b], the initial condition

x(a) = xa, and giving maximum value to functional J. This solution is given by Theorem 3.

Lemma 8 (Continuity of solutions). Let uε be a control perturbation around the optimal control
u∗, that is, for all t ∈ [a, b], uε(t) = u∗(t) + εh(t), where h(·) ∈ L2([a, b],R) is a variation and
ε ∈ R. Denote by xε its corresponding state trajectory, solution of

A
C Dα,β,γ

a,b xε(t) = f (t, xε(t), uε(t)), xε(a) = xa. (9)

If K <
1

(b− a)α−1M
, where K is the Lipschitz constant of f , then xε converges to the optimal state

trajectory x∗ when ε tends to zero, that is, x∗ is continuous.

Proof. From Equation (9), we have∣∣∣ A
C Dα,β,γ

a,b xε(t)−A
C Dα,β,γ

a,b x∗(t)
∣∣∣ = | f (t, xε(t), uε(t))− f (t, x∗(t), u∗(t))|.

Abbreviating f ε − f ∗ = f (t, xε(t), uε(t)) − f (t, x∗(t), u∗(t)), it follows, by definition of
combined operators (4), that∣∣∣γ( A

C Dα,β
a+ xε(t)−A

C Dα,β
a+ x∗(t)

)
+ (1− γ)

(
A
C Dα,β

b− xε(t)−A
C Dα,β

b− x∗(t)
)∣∣∣ = | f ε − f ∗|. (10)



Mathematics 2021, 9, 2355 10 of 17

Next, since γ ∈ [0, 1], we obtain from (10) the two separate inequalities∣∣∣ A
C Dα,β

a+ xε(t)−A
C Dα,β

a+ x∗(t)
∣∣∣ ≤ | f ε − f ∗| (11)

and ∣∣∣ A
C Dα,β

b− xε(t)−A
C Dα,β

b− x∗(t)
∣∣∣ ≤ | f ε − f ∗|. (12)

Therefore, considering (12), we can deduce the integral relation

|xε(t)− x∗(t)| ≤ Ā Iα,β
b− (| f ε − f ∗|).

By the Lipschitz property of f , we determine that for each t ∈ [a, b], there exists B1, B2 ⊂ R,
neighbourhood of x∗(t), u∗(t), respectively, and such that

|xε(t)− x∗(t)| ≤ Ā Iα,β
b− (K|xε(t)− x∗(t)|+ K|εh(t)|)

= K|ε|Ā Iα,β
b− (|h(t)|) + KĀ Iα,β

b− (|xε(t)− x∗(t)|).

Now, applying Gronwall’s inequality (Theorem 1), with γ = 0, we have

|xε(t)− x∗(t)| ≤ K|ε|Ā Iα,β
b− (|h(t)|) +

∞

∑
k=1

Kk
[

Ā Ikα,β
b−

(
K|ε|Ā Iα,β

b− (|h(t)|)
)]

= |ε|K
[

Ā Iα,β
b− (|h(t)|) +

∞

∑
k=1

Kk
(

Ā I(k+1)α,β
b− (|h(t)|)

)]
.

Moreover, using a similar method of reasoning, we may consider (11) and obtain

|xε(t)− x∗(t)| ≤ |ε|K
[

Ā Iα,β
a+ (|h(t)|) +

∞

∑
k=1

Kk
(

Ā I(k+1)α,β
a+ (|h(t)|)

)]
.

Hence, summing altogether, we get

|xε(t)− x∗(t)| ≤ 1
2
|ε|KΥ(t),

where

Υ(t) =
[(

Ā Iα,β
a+ +Ā Iα,β

b−

)
(|h(t)|)

]
+

[
∞

∑
k=1

Kk
(

Ā Iα,β
a+ +Ā Iα,β

b−

)
(|h(t)|)

]
, t ∈ [a, b].

Finally, when ε→ 0, we obtain xε(t)→ x∗(t) for all t ∈ [a, b].

Corollary 1 (Differentiability of the perturbed trajectory). There exists a function η defined on
[a, b] such that

xε(t) = x∗(t) + εη(t) + o(ε).

Proof. Since f ∈ C1, we have that

f (t, xε, uε) = f (t, x∗, u∗) + (xε − x∗)
∂ f (t, x∗, u∗)

∂x
+ (uε − u∗)

∂ f (t, x∗, u∗)
∂u

+ o(|xε − x∗|, |uε − u∗|).
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Observe that uε − u∗ = εh(t), uε → u∗ when ε → 0, and, by Lemma 8, we have xε → x∗

when ε→ 0. Thus, the residue term can be expressed in terms of ε only, that is, the residue
is o(ε). Therefore,

A
C Dα,β,γ

a,b xε = A
C D

α,β,γ
a,b x∗ + (xε − x∗)

∂ f (t, x∗, u∗)
∂x

+ εh(t)
∂ f (t, x∗, u∗)

∂u
+ o(ε),

which leads to

lim
ε→0

 A
C Dα,β,γ

a,b (xε − x∗)

ε
− (xε − x∗)

ε

∂ f (t, x∗, u∗)
∂x

− h(t)
∂ f (t, x∗, u∗)

∂u

 = 0,

that is,

A
C Dα,β,γ

a,b

(
lim
ε→0

xε − x∗

ε

)
= lim

ε→0

(xε − x∗)
ε

∂ f (t, x∗, u∗)
∂x

+ h(t)
∂ f (t, x∗, u∗)

∂u
.

Now, it remains to prove the existence of the limit lim
ε→0

xε − x∗

ε
=: η. It is easy to see that

the limit η exists, as a solution of the following fractional differential equation:
A
C Dα,β,γ

a,b η(t) = ∂ f (t,x∗ ,u∗)
∂x η(t) + ∂ f (t,x∗ ,u∗)

∂u h(t),

η(a) = 0.

This ends the proof.

The following result is a necessary optimality condition for the analytic kernel frac-
tional optimal control problem (8).

Theorem 2 (Pontryagin Maximum Principle for (8)). If (x∗(·), u∗(·)) is an optimal pair for (8),
then there exists λ ∈ Lα,β([a, b],R), called the adjoint function variable, such that the following
conditions hold in the interval [a, b]:

• the optimality condition

u∗ maximizes, over Ω(t), the function, u 7→ H(t, x∗(t), u, λ(t)); (13)

• the adjoint equation
A
RLDα,β,1−γ

a,b λ(t) =
∂H
∂x

(t, x∗(t), u∗(t)); (14)

• the transversality condition

(1− γ)Ā I1−α,β
a+ λ(b) + γĀ I1−α,β

b− λ(b) = 0, (15)

where Ā is such that AΓ(x∗) · ĀΓ(x∗) = 1 and H(t, x, u, λ) = L + λ f .

Proof. Let (x∗(·), u∗(·)) be solution of problem (8), and h ∈ L2([a, b],R) be a variation,
that is,

h ∈ V :=
{

v ∈ L2 : u∗ + εv ∈ Ω(t), for any ε > 0 sufficiently small
}

.

Set uε(t) = u∗(t) + εh(t), so that uε ∈ Ω(t) and let xε be the state corresponding to the
control uε, that is, the solution of

A
C Dα,β,γ

a,b xε(t) = f (t, xε(t), uε(t)), xε(a) = xa. (16)



Mathematics 2021, 9, 2355 12 of 17

Note that uε(t)→ u∗(t) for all t ∈ [a, b] whenever ε→ 0. Furthermore,

∂uε(t)
∂ε

∣∣∣∣
ε=0

= h(t). (17)

Something similar is also true for xε: this is justified by Lemma 8. Indeed, because f ∈ C1

with Lipschitz constant K satisfying K <
1

(b− a)α−1M
, it follows from Lemma 8 that, for

each fixed t, xε(t)→ x∗(t) as ε→ 0. Moreover, by Corollary 1, the derivative
∂xε(t)

∂ε

∣∣∣∣
ε=0

exists for each t. The objective functional at (xε, uε) is

J(xε, uε) =
∫ b

a
L(t, xε(t), uε(t))dt.

Next, we introduce the adjoint function λ. Let λ(·) be in Lα,β([a, b],R), to be determined.
By the integration by parts Formula (6),

∫ b

a
λ(t) ·AC Dα,β,γ

a,b xε(t)dt = γ
[

xε(t) ·Ā I1−α,β
b− λ(t)

]b

a
+ (1− γ)

[
xε(t) ·Ā I1−α,β

a+ λ(t)
]b

a

+
∫ b

a
xε(t) ·ARL Dα,β,1−γ

a,b λ(t)dt

and one has

∫ b

a
λ(t) ·AC Dα,β,γ

a,b xε(t)dt− γ
[

xε(t) ·Ā I1−α,β
b− λ(t)

]b

a
− (1− γ)

[
xε(t) ·Ā I1−α,β

a+ λ(t)
]b

a

−
∫ b

a
xε(t) ·ARL Dα,β,1−γ

a,b λ(t)dt = 0.

Adding this zero to the expression of J(xε, uε) gives

φ(ε) = J(xε, uε)

=
∫ b

a

[
L(t, xε(t), uε(t)) + λ(t) ·AC Dα,β,γ

a,b xε(t)− xε(t) ·ARL Dα,β,1−γ
a,b λ(t)

]
dt

− xε(b) ·
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

]
+ xε(a) ·

[
(1− γ)Ā I1−α,β

a+ λ(a) + γĀ I1−α,β
b− λ(a)

]
,

which by (16) is equivalent to

φ(ε) = J(xε, uε)

=
∫ b

a

[
L(t, xε(t), uε(t)) + λ(t) · f (t, xε(t), uε(t))− xε(t) ·ARL Dα,β,1−γ

a,b λ(t)
]
dt

− xε(b) ·
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

]
+ xε(a) ·

[
(1− γ)Ā I1−α,β

a+ λ(a) + γĀ I1−α,β
b− λ(a)

]
.

Since the maximum of J occurs at (x∗, u∗) = (x0, u0), we have that for every feasible
direction’s variation (i.e., h ∈ V), the derivative of φ(ε) with respect to ε at ε = 0 must be
negative [25], that is,
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0 > φ′(0) =
d
dε

J(xε, uε)|ε=0 =
∫ b

a

[
∂L
∂x

∂xε(t)
∂ε

∣∣∣∣
ε=0

+
∂L
∂u

∂uε(t)
∂ε

∣∣∣∣
ε=0

+λ(t)
(

∂ f
∂x

∂xε(t)
∂ε

∣∣∣∣
ε=0

+
∂ f
∂u

∂uε(t)
∂ε

∣∣∣∣
ε=0

)
−A

RL Dα,β,1−γ
a,b λ(t)

∂xε(t)
∂ε

∣∣∣∣
ε=0

]
dt

−
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

] ∂xε(b)
∂ε

∣∣∣∣
ε=0

,

where the partial derivatives of L and f with respect to x and u are evaluated at (t, x∗(t), u∗(t)).
Rearranging the terms and using (17), we obtain that

∫ b

a

[(
∂L
∂x

+ λ(t)
∂ f
∂x
−A

RL Dα,β,1−γ
a,b λ(t)

)
∂xε(t)

∂ε

∣∣∣∣
ε=0

+

(
∂L
∂u

+ λ(t)
∂ f
∂u

)
h(t)

]
dt

−
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

] ∂xε(b)
∂ε

∣∣∣∣
ε=0

6 0.

Setting H = L + λ f , it follows that

∫ b

a

[(
∂H
∂x
−A

RL Dα,β,1−γ
a,b λ(t)

)
∂xε(t)

∂ε

∣∣∣∣
ε=0

+
∂H
∂u

h(t)
]

dt

−
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

] ∂xε(b)
∂ε

∣∣∣∣
ε=0

6 0,

where the partial derivatives of H are evaluated at (t, x∗(t), u∗(t), λ(t)). Now, choosing

A
RLDα,β,1−γ

a,b λ(t) =
∂H
∂x

, with
[
(1− γ)Ā I1−α,β

a+ λ(b) + γĀ I1−α,β
b− λ(b)

]
= 0,

that is, given the adjoint Equation (14) and the transversality condition (15), it yields

∫ b

a

∂H
∂u

(t, x∗(t), u∗(t), λ(t))h(t)dt 6 0.

Since this inequality holds for any feasible direction’s variation h(·) ∈ V, we obtain that
the partial derivative ∂H

∂u (t, x∗(t), u∗(t), λ(t)) belongs to the normal cone to Ω(t) at u∗ (see,
e.g., p. 45 of [26]), that is, mathematically,

∂H
∂u

(t, x∗(t), u∗(t), λ(t)) ∈ NΩ(t)(u
∗),

meaning that u∗ maximizes u 7→ H(t, x∗(t), u, λ(t)) over Ω(t), which is exactly the opti-
mality condition (13). This completes the proof.

Remark 1. If Ω(t) = L2, then NΩ(t)(u∗) = 0, and the optimality condition (13) is reduced to

∂H
∂u

(t, x∗(t), u∗(t), λ(t)) = 0,

which gives the particular result obtained in [19] (see also [27], in a different context).

Definition 5. The candidates to solutions of (8), obtained by the application of our Theorem 2, will
be called (Pontryagin) extremals.
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Example 1. Let us consider the following optimal control problem:

J[x(·), u(·)] =
∫ 2

0
−
(

x(t)− t3
)2
−
(

u(t)− t(t− 2)
ln t

)2

dt −→ max,

A
C D

1
2 ,3i,γ
0,2 x(t) =

1
2

x(t) +
1
2

u(t), t ∈ [0, 2],

x(·) ∈ AC
1
2 ,3i([0, 2],R), u(·) ∈ L2([a, b],R),

x(0) = 0,

(18)

with

A(x) =
∞

∑
n=0

xn

exp(
√

2)n!
= exp(x−

√
2), for which M = sup

|x|<
√

2

exp(x−
√

2) = 1.

Identifying (18) with (8), we have the following correspondence: a = 0; b = 2; α =
1
2

; β = 3i;

f (t, x, u) =
1
2

x +
1
2

u; and L(t, x, u) = −
(

x− t3
)2
−
(

u− t(t− 2)
ln t

)2

. Note that f ∈ C1

is Lipschitz-continuous in both variables x and u with Lipschitz constant K =
1
2

. Also, the

inequality K <
1

(b− a)α−1M
holds, that is,

1
2
<
√

2 is satisfied. Thus, by Lemma 8, for any

control perturbation the corresponding state trajectory converges to the optimal state solution.
Moreover, by defining the Hamiltonian function as

H(t, x, u, λ) = −
(

x− t3
)2
−
(

u− t(t− 2)
ln t

)2

+
1
2

λ(x + u), (19)

and applying Theorem 2, it follows:

• from the optimality condition
∂H
∂u

= 0 (recall Remark 1), that

λ(t) = 4
(

u(t)− t(t− 2)
ln t

)
; (20)

• from the adjoint equation A
RLD

1
2 ,3i,1−γ
0,2 λ(t) =

∂H
∂x

, that

A
RLD

1
2 ,3i,1−γ
0,2 λ(t) = −2

(
x(t)− t3

)
+

1
2

λ(t); (21)

• from the transversality condition

(1− γ)Ā I1−α,β
a+ λ(b) + γĀ I1−α,β

b− λ(b) = 0,

that (
(1− γ)Ā I

1
2 ,3i
0+ + γĀ I

1
2 ,3i
2−

)
λ(2) = 0. (22)

In conclusion, we easily see that (20)–(22) are satisfied by the triple

x(t) = t3, u(t) =
t(t− 2)

ln t
, and λ(t) ≡ 0, (23)

which is the Pontryagin extremal: a candidate to the solution of the given problem (18).
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4.3. Sufficient Condition for Global Optimality

We now prove a Mangasarian type theorem for the general analytic kernel fractional
optimal control problem (8).

Theorem 3 (Sufficient global optimality condition). Consider the general analytic kernel
fractional optimal control problem (8) with Ω(t) = L2. If (x, u) → L(t, x, u) and (x, u) →
f (t, x, u) are concave and (x̃, ũ, λ) is a Pontryagin extremal with λ(t) ≥ 0, t ∈ [a, b], then

J[x̃, ũ] ≥ J[x, u]

for any admissible pair (x, u), that is, the pair (x̃, ũ) is the solution to problem (8).

Proof. Since L is concave as a function of x and u, we have by the gradient inequality
(Lemma 4) that

L(t, x̃(t), ũ(t))− L(t, x(t), u(t)) ≥ ∂L
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t))

+
∂L
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))

for any control u and its associated trajectory x. This gives

J[x̃(·), ũ(·)]− J[x(·), u(·)] =
∫ b

a
[L(t, x̃(t), ũ(t))− L(t, x(t), u(t))]dt

≥
∫ b

a

[
∂L
∂x

(t, x̃(t), ũ(t)) · (x̃(t)− x(t)) +
∂L
∂u

(t, x̃(t), ũ(t)) · (ũ(t)− u(t))
]

dt

=
∫ b

a

[
∂L̃
∂x
· (x̃(t)− x(t)) +

∂L̃
∂u
· (ũ(t)− u(t))

]
dt,

(24)

where L̃ = L(t, x̃(t), ũ(t)). From the adjoint Equation (14), we can write

∂L
∂x

(t, x̃(t), ũ(t)) = A
RLDα,β,1−γ

a,b λ(t)− λ(t)
∂ f
∂x

(t, x̃(t), ũ(t)),

while from the optimality condition (13) (recall Remark 1) we have

∂L
∂u

(t, x̃(t), ũ(t)) = −λ(t)
∂ f
∂u

(t, x̃(t), ũ(t)).

It follows from (24) that

J[x̃(·), ũ(t)]− J[x(·), u(·)]

≥
∫ b

a

[(
A
RLDα,β,1−γ

a,b λ(t)− λ(t)
∂ f̃
∂x

)
· (x̃(t)− x(t))− λ(t)

∂ f̃
∂u
· (ũ(t)− u(t))

]
dt, (25)

where f̃ = f (t, x̃(t), ũ(t)). Next, by using the integration by parts Formula (6), we get

∫ b

a
λ(t) ·AC Dα,β,γ

a,b (x̃(t)− x(t))dt = γ
[
(x̃(t)− x(t)) · Ā I1−α,β

b− λ(t)
]b

a

+ (1− γ)
[
(x̃(t)− x(t)) · Ā I1−α,β

a+ λ(t)
]b

a
+
∫ b

a
(x̃(t)− x(t)) ·ARL Dα,β,1−γ

a,b λ(t)dt,
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meaning that

∫ b

a
(x̃(t)− x(t)) ·ARL Dα,β,1−γ

a,b λ(t)dt =
∫ b

a
λ(t) ·AC Dα,β,γ

a,b (x̃(t)− x(t))dt

− γ
[
(x̃(t)− x(t)) ·Ā I1−α,β

b− λ(t)
]b

a
− (1− γ)

[
(x̃(t)− x(t)) ·Ā I1−α,β

a+ λ(t)
]b

a
. (26)

Substituting (26) into (25), we get

J[x̃(·), ũ(·)]− J[x(·), u(·)] ≥
∫ b

a
λ(t)

[
f̃ − f − ∂ f̃

∂x
(x̃(t)− x(t))− ∂ f̃

∂u
(ũ(t)− u(t))

]
dt.

Finally, taking into account that λ(t) ≥ 0 and f is concave in both x and u, we conclude
that J[x̃(·), ũ(·)]− J[x(·), u(·)] ≥ 0.

Example 2. It is easily proved from Theorem 3 that the Pontryagin extremal (23),

x(t) = t3, u(t) =
t(t− 2)

ln t
, and λ(t) ≡ 0,

candidate to the solution of the optimal control problem (18), found in Example 1 from the application
of Theorem 2, is indeed a solution to the problem (it is a global maximizer): in this case, the
Hamiltonian defined in (19) is a concave function with respect to both variables x and u and,
furthermore, λ(t) ≥ 0 for all t ∈ [a, b].

5. Conclusions

In this paper, we investigated, for the first time in the literature, optimal control
problems with combined general analytic kernels. Main results provide strong necessary
optimality conditions of Pontryagin type, valid in the class of absolutely continuous state
trajectories and L2 controls that may take values in any time-dependent close convex set.
Other results include a new Gronwall inequality and a sufficient optimality condition for
global maximizers. While our results provide non-trivial and useful analytical results, as
here shown with a simple illustrative example, to address real-world applications it will be
necessary to develop numerical methods that implement the obtained results. This opens
several possible future directions of research and will be addressed elsewhere.
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3. Fernandez, A.; Ustaoğlu, C. On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 2020, 366, 112400,
14. doi:10.1016/j.cam.2019.112400.

4. Hadian Rasanan, A.H.; Bajalan, N.; Parand, K.; Rad, J.A. Simulation of nonlinear fractional dynamics arising in the mod-
eling of cognitive decision making using a new fractional neural network. Math. Methods Appl. Sci. 2020, 43, 1437–1466.
doi:10.1002/mma.5981.

5. Babaei, A.; Jafari, H.; Banihashemi, S. Numerical solution of variable order fractional nonlinear quadratic integro-
differential equations based on the sixth-kind Chebyshev collocation method. J. Comput. Appl. Math. 2020, 377, 112908, 13.
doi:10.1016/j.cam.2020.112908.

6. Kucche, K.D.; Kharade, J.P. Analysis of impulsive ϕ-Hilfer fractional differential equations. Mediterr. J. Math. 2020, 17, 163.
doi:10.1007/s00009-020-01575-7.

7. Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal.
2011, 14, 523–537. doi:10.2478/s13540-011-0032-6.

8. Klimek, M. Fractional sequential mechanics—Models with symmetric fractional derivative. Czechoslov. J. Phys. 2001, 51, 1348–1354.
doi:10.1023/A:1013378221617.

9. Malinowska, A.B.; Torres, D.F.M. Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl.
Math. Comput. 2012, 218, 5099–5111. doi:10.1016/j.amc.2011.10.075.

10. Malinowska, A.B.; Torres, D.F.M. Towards a combined fractional mechanics and quantization. Fract. Calc. Appl. Anal. 2012,
15, 407–417. doi:10.2478/s13540-012-0029-9.

11. Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus with classical and combined Caputo derivatives.
Nonlinear Anal. 2012, 75, 1507–1515. doi:10.1016/j.na.2011.01.010.

12. El-Nabulsi, R.A. Calculus of variations with hyperdifferential operators from Tabasaki-Takebe-Toda lattice arguments. Rev. R.
Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2013, 107, 419–436. doi:10.1007/s13398-012-0086-2.

13. Feng, Y.Y.; Yang, X.J.; Liu, J.G. On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative.
Chin. J. Phys. 2020, 66, 269–276. doi:10.1016/j.cjph.2020.05.006.

14. Tavares, D.; Almeida, R.; Torres, D.F.M. Combined fractional variational problems of variable order and some computational
aspects. J. Comput. Appl. Math. 2018, 339, 374–388. doi:10.1016/j.cam.2017.04.042.

15. Jiang, Y.; Zhang, Q.; Chen, A.; Wei, Z. Sensitivity Analysis of Optimal Control Problems Governed by Nonlinear Hilfer Fractional
Evolution Inclusions. Appl. Math. Optim. 2021, 84, 3045–3082. doi:10.1007/s00245-020-09739-3.

16. Kumar, S.; Upadhyay, A. Optimal control problem for fractional stochastic delayed systems with noninstantaneous impulses.
IMA J. Math. Control Inform. 2021, 38, 855–880. doi:10.1093/imamci/dnab014.

17. Khan, A.; Zarin, R.; Humphries, U.W.; Akgül, A.; Saeed, A.; Gul, T. Fractional optimal control of COVID-19 pandemic model
with generalized Mittag-Leffler function. Adv. Differ. Equ. 2021, 387. doi:10.1186/s13662-021-03546-y.

18. Bandaliyev, R.A.; Mamedov, I.G.; Abdullayeva, A.B.; Safarova, K.H. Optimal control problem for a degenerate fractional
differential equation. Lobachevskii J. Math. 2021, 42, 1239–1247. doi:10.1134/s1995080221060056.

19. Ndaïrou, F.; Torres, D.F.M. Weak Pontryagin’s Maximum Principle for Optimal Control Problems Involving a General Analytic
Kernel. arXiv 2021, arXiv:2109.02136.

20. Magaril-Il’yaev, G.G.; Tikhomirov, V.M. Convex Analysis: Theory and Applications; American Mathematical Society: Providence, RI,
USA, 2003; Volume 222, pp. viii+183. doi:10.1007/bf03321011.

21. Rockafellar, R.T. Convex Analysis; Princeton Mathematical Series, No. 28; Princeton University Press: Princeton, NJ, USA, 1970;
pp. xviii+451.

22. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics
Studies Series; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, pp. xvi+523.

23. Ding, X.L.; Cao-Labora, D.; Nieto, J.J. A new generalized Gronwall inequality with a double singularity and its applications to
fractional stochastic differential equations. Stoch. Anal. Appl. 2019, 37, 1042–1056. doi:10.1080/07362994.2019.1640612.

24. Liu, X.; Peterson, A.; Jia, B.; Erbe, L. A generalized h-fractional Gronwall’s inequality and its applications for nonlinear h-fractional
difference systems with ‘maxima’. J. Differ. Equ. Appl. 2019, 25, 815–836. doi:10.1080/10236198.2018.1551382.

25. Okelo, N.B. On certain conditions for convex optimization in Hilbert spaces. Khayyam J. Math. 2019, 5, 108–112.
doi:10.22034/kjm.2019.88084.

26. Barbu, V. Mathematical Methods in Optimization of Differential Systems; Mathematics and its Applications Series; Kluwer Academic
Publishers Group: Dordrecht, The Netherlands, 1994; Volume 310, pp. x+259. doi:10.1007/978-94-011-0760-0.

27. Ndaïrou, F.; Torres, D.F.M. Distributed-Order Non-Local Optimal Control. Axioms 2020, 9, 124. doi:10.3390/axioms9040124.

https://doi.org/10.1016/j.cam.2019.112400
https://doi.org/10.1002/mma.5981
https://doi.org/10.1016/j.cam.2020.112908
https://doi.org/10.1007/s00009-020-01575-7
https://doi.org/10.2478/s13540-011-0032-6
https://doi.org/10.1023/A:1013378221617
https://doi.org/10.1016/j.amc.2011.10.075
https://doi.org/10.2478/s13540-012-0029-9
https://doi.org/10.1016/j.na.2011.01.010
https://doi.org/10.1007/s13398-012-0086-2
https://doi.org/10.1016/j.cjph.2020.05.006
https://doi.org/10.1016/j.cam.2017.04.042
https://doi.org/10.1007/s00245-020-09739-3
https://doi.org/10.1093/imamci/dnab014
https://doi.org/10.1186/s13662-021-03546-y
https://doi.org/10.1134/s1995080221060056
https://doi.org/10.1007/bf03321011
https://doi.org/10.1080/07362994.2019.1640612
https://doi.org/10.1080/10236198.2018.1551382
https://doi.org/10.22034/kjm.2019.88084
https://doi.org/10.1007/978-94-011-0760-0
https://doi.org/10.3390/axioms9040124

	Introduction
	Preliminaries
	Fundamental Properties
	Main Results
	Gronwall's Inequality
	Applications
	Sufficient Condition for Global Optimality

	Conclusions
	References

