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1. Introduction

In 1997, Alexander Vardy proved that for general binary linear code, computing
the minimum weight is an NP-hard problem, and the corresponding decision problem
is NP-complete [1]. The popular practical algorithms are based on a maximum number
of generating matrices G1, G2, . . . , Gs with disjoint sets of systematic coordinates. Some
are the Brouwer–Zimmermann algorithm and its various modifications for cyclic codes,
quasi-cyclic codes, divisible codes, etc. (see [2–5]). Such algorithms are implemented in the
software package MAGMA [6].

The basic idea is that after taking 1, 2, . . . , l linear combinations of the rows of all
matrices, all codewords with weight ≤ w (depending on l) will be generated, provided
there are any. Additionally, if so far the lightest generated codeword has a weight w + 1,
then the minimum distance d(C) is equal to w + 1. The problem we are considering here
is which matrices among G1, G2, . . . , Gs to use and which linear combinations of their
rows to take so that the number of the codewords generated is minimal. We propose a
new modification of the Brouwer–Zimmermann algorithm that allows the generation of
fewer codewords than the algorithm implemented in MAGMA. The MAGMA algorithm is
described by M. Grassl in [4] and is implemented in the function MINIMUMWEIGHT(C).
The advantages of the proposed approach are very visible in code with length n, close
but less than 2k, where k is the dimension. This can be seen in the table of experimental
results. The number of required vector operations in some cases is many times smaller in
our algorithm compared to the algorithms we know.

In Section 2, we present some important properties of the minimum weight of linear
code and a short description of the Brouwer–Zimmermann algorithm. We give the the-
oretical basis of our method in Section 3. Section 4 is devoted to the new algorithm that
we propose. The first difference between our algorithm and the BZ algorithm is that the
Brouwer–Zimmermann algorithm uses overlapping information sets, but we partition the
set of coordinate positions into disjoint sets called systematic sets (full and reduced). For
each of the considered sets, the algorithm constructs a corresponding generator matrix of
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the code (this holds for both algorithms). Another important difference is in the number
of considered linear combinations of rows of generator matrices needed to calculate the
minimum weight. If the length n is not divisible by the dimension k, our algorithm needs
fewer codewords to obtain the value of d(C). We list and explain some computational
results in Section 5.

2. Preliminaries

Let Fq be a finite field with q elements and Fn
q be the n-dimensional vector space over

Fq. A linear [n, k]q code C is a k-dimensional subspace of the vector space Fn
q . A matrix

whose rows form a basis of C is called a generator matrix of this code.
The (Hamming) distance d(x, y) between two vectors x, y ∈ Fn

q is the number of
coordinate positions in which they differ, and the (Hamming) weight wt(x) of a vector
x ∈ Fn

q is the number of its nonzero coordinates. The minimum distance of a linear code
is the smallest distance between two different codewords, and the minimum weight is the
smallest weight among all non-zero codewords of the code. If C is a linear code, then its
minimum weight and minimum distance are equal. An [n, k, d]q code is a linear code over
Fq with minimum distance d. Then d ≤ n, but there are much better upper bounds for the
minimum weight. In our algorithm, we use the Singleton bound, namely, d ≤ n− k + 1.

The most widely used algorithm for computing the minimum weight of a linear [n, k]q
code was designed by A. Brouwer and subsequently extended by K.-H. Zimmermann.
The literature about this problem refers to it as the Brouwer–Zimmermann algorithm,
abbreviated the BZ algorithm (see [2,4] for its description). The BZ algorithm was outlined
in [5], where the authors proposed its extension, which consists of a good (sometimes best
possible) sequence of information sets for a given code. We propose another extension
to the BZ algorithm which is related to the linear combinations needed to compute the
minimum weight of the given code.

The main idea of the BZ algorithm is to enumerate the codewords in such a way that
one not only obtains an upper bound on the minimum weight of the code via the minimum
of the weights of the words that have been encountered, but also a lower bound on the
minimum weight. For this, the concept of information sets is needed [4].

Definition 1 ((Information Set) [4]). Let C be a linear [n, k, d]q code of length n and dimension k
over Fq. A subset T ⊆ {1, 2, . . . , n} of size |T| = k is called an information set if the corresponding
columns in a generator matrix G of C are linearly independent. Then there also exists a systematic
generator matrix GT of C such that the columns of GT specified by T form an identity matrix.

The BZ algorithm uses a family of information sets T1, . . . , Tl for the code C such
that T1 ∪ · · · ∪ Tl = {1, 2, . . . , n}. These information sets are not necessarily disjoint, and
therefore a sequence r1, . . . , rl of nonnegative integers, called relative ranks, is defined,
where ri = |Ti \ (T1 ∪ · · · ∪ Ti−1)|. The methods used in [2,4] for constructing sets Ti and
their corresponding systematic matrices Gi produce them in such a way that the sequence
of relative ranks is non-increasing.

The Brouwer–Zimmermann algorithm goes in the following way: In the initial step,
the upper bound on the minimum weight is d = n− k + 1 (Singleton bound), and the
lower bound is d = 1. Each step depends on the integers w and j so that the algorithm
enumerates all codewords uGj such that wt(u) = w. During this process, if a codeword x
with wt(x) < d is generated, then the algorithm updates d according to

d = min{d, min{wt(uGj) : u ∈ Fk
q, wt(u) = w}}.

The value of d is also updated (see [4,5] for more details). The algorithm then tests whether
d ≥ d, and if so, then it terminates with the conclusion that d(C) = d.



Mathematics 2021, 9, 2354 3 of 9

3. Systematic Sets

We define the term systematic set, which is similar to the information set, but the
difference is in the size of the set.

Definition 2. Let C be a linear [n, k]q code with a generator matrix G. A subset T ⊆
{1, 2, . . . , n} of size |T| ≤ k is called a systematic set for C if the corresponding columns in G
are linearly independent. If |T| = k. then T is a full systematic set; otherwise it is a reduced
systematic set.

The terms information set and full systematic set coincide. If T is a systematic set, then
C has a generator matrix GT such that the columns corresponding to the set T form a
submatrix of GT which is equivalent to the identity matrix I|T| extended with k − |T|
zero rows.

The following notation is very important for this research. Let T1, . . . , Ts be disjoint
systematic sets for the linear [n, k]q code C, such that T1 ∪ · · · ∪ Ts = {1, . . . , n}. Suppose
that T1, . . . , Tt, and t ≤ s, are full systematic sets, and the other s− t systematic sets are
reduced. Denote by U(ai)

i the set of all nonzero codewords with j ≤ ai nonzero coordinates
in the systematic set Ti, ai ≥ 0, and i = 1, . . . , s. If v|Ti is the restriction of the vector v ∈ C

on the set Ti, then v ∈ U(ai)
i if and only if v 6= 0 and wt(v|Ti ) ≤ ai. In other words,

U(ai)
i = {v ∈ C \ {0} | wt(v|Ti ) ≤ ai}.

According to this definition, U(ai)
i ⊆ U(ai+1)

i for any ai ≥ 0. These sets of codewords
underlie our approach and make it different from known methods. We use a union of such
sets (denoted as usual by

⋃
U(ai)

i ), and a multiset sum (denoted by
⊎

U(ai)
i ), which may

contain some codewords repeated several times.
Consider first the case when n = tk for an integer t and C has t disjoint information

sets T1, . . . , Tt, so s = t. Such is, for example, the self-dual code or the t-CIS (complementary
information set) code. Obviously, the minimum distance of such code is at least t. This is
because for each codeword corresponding to a non-trivial linear combination of rows of
any generating matrix, there will be at least one nonzero coordinate for each information
set. If we compute the weights of all rows of G1, we will determine all codewords with
weight t, but not those with weight t + 1, because the code may contain a codeword with
two nonzero coordinates from T1. If we continue with computing the weights on all rows
of G2, we will determine all codewords with weight t + 1 (if any), etc.

The following proposition is basic for both algorithms (Algorithm 1 and the BZ
algorithm) for which all systematic sets are full. In this case, U(ai)

i consists of the linear
combinations of up to ai rows of the matrix Gi.

Algorithm 1: Minimum Weight
INPUT: Linear code C with disjoint systematic sets T1, . . . , Ts, where

T1 ∪ · · · ∪ Ts = {1, 2 . . . , n}, |T1| = · · · = |Tt| = k > |Tt+1| ≥ · · · ≥ |Ts|,
G1, . . . , Gs—the corresponding systematic matrices.

OUTPUT: The minimum weight d(C).
δ := t− 1;
ub := n− k + 1;
while (δ + 1 < ub) do
δ := δ + 1;
Generate Ωδ;
ub := min{ub, min{wt(v)|v ∈ Ωδ}};
end while;
return d(C) = ub.
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Proposition 1. Let a1, . . . , at be integers, such that 0 ≤ ai ≤ k and a1 + · · · + at ≥ 1, and
G1, . . . , Gt be the generator matrices of C, which correspond to the sets T1, . . . , Tt, respectively. If
all Ti are full systematic sets, then the set U = U(a1)

1 ∪ · · · ∪U(at)
t contains all codewords with

weight w ≤ a1 + a2 + · · ·+ at + t− 1.

Proof. Let m = a1 + a2 + · · ·+ at + t− 1 and v ∈ C be a nonzero codeword of weight w ≤
m. Let bi = wt(v|Ti ), where v|Ti is the restriction of v on the systematic set Ti, i = 1, . . . , t. It
turns out that w = b1 + · · ·+ bt and bi > 0 for all i = 1, . . . , t. Suppose that bi > ai for each
i ∈ {1, . . . , t}. Hence, bi ≥ ai + 1 and m ≥ w ≥ a1 + a2 + · · ·+ at + t = m + 1 constitute a
contradiction. Hence, there is at least one index i, 1 ≤ i ≤ t, such that bi ≤ ai, which means
that v ∈ U(ai)

i ⊂ U.

We would like to mention here that a similar technique has been applied in the study
of zero-divisor graph structure in [7].

Now consider the general case where not all systematic sets are full. Let {1, . . . , n} =
T1 ∪ · · · ∪ Tt ∪ Tt+1 ∪ · · · ∪ Ts, where T1, . . . , Tt are full systematic sets for the code C;
Tt+1, . . . , Ts are reduced systematic sets; and Ti ∩ Tj = ∅ for 1 ≤ i < j ≤ s. Without loss of
generality we can suppose that |T1| = · · · = |Tt| = k > |Tt+1| ≥ · · · ≥ |Ts|, and

G1 = (Ik|A′1), . . . , Gt = (At|Ik|A′t),

Gt+1 =

(
At+1

I|Tt+1| A′t+1
0 0

)
, . . . , Gs =

(
As

I|Ts |
0

)
.

Theorem 1. Let C be a linear [n, k]q code with disjoint systematic sets T1, . . . , Ts, such that
T1 ∪ · · · ∪ Ts = {1, . . . , n}. Suppose that the systematic sets T1, . . . , Tt are full, and the other s− t
sets are reduced. Let r ≤ s− t and a1, . . . , at+r be nonnegative integers, such that ai ≤ k and
a1 + · · ·+ at+r ≥ 1. Then the set U = U(a1)

1 ∪ · · · ∪U(at+r)
t+r contains all codewords with weight

w ≤ a1 + a2 + · · ·+ at+r + t + r− 1.

Proof. The proof is similar to the proof of Proposition 1. Let m = a1 + a2 + · · ·+ at+r + t +
r− 1 ≥ t + r and v ∈ C be a codeword of weight w ≤ m. Let bi = wt(v|Ti ), where v|Ti is
the restriction of v on the systematic set Ti, i = 1, . . . , s. It turns out that w = b1 + · · ·+ bs
and bi > 0 for all i = 1, . . . , t. Suppose that bi ≥ ai + 1 for all i = 1, . . . , t + r. Then

m ≥ w ≥ a1 + a2 + · · ·+ at+r + t + r + bt+r+1 + · · ·+ bs

= m + 1 + bt+r+1 + · · ·+ bs ≥ m + 1,

which is not possible. Hence, there is at least one index i, 1 ≤ i ≤ t + r, such that bi ≤ ai,
which means that v ∈ U(ai)

i ⊆ U.

If ri = |Ti|, i = 1, . . . , s, then r1 = . . . = rt = k > rt+1 ≥ · · · ≥ rs ≥ 0. For the set U(ai)
i

we have

|U(0)
i | =

{
0 if i ≤ t

qk−ri − 1 if i > t

If a > 0 then

|U(a)
i | =

{
∑a

j=1(q− 1)j(k
j) if i ≤ t

qk−ri (1 + ∑a
j=1(q− 1)j(|Ti |

j ))− 1 if i > t

These formulae show why we use the parameter r in Theorem 1 and then in the
algorithm. Let G1, . . . , Gs be the generator matrices that correspond to the sets T1, . . . , Ts,
respectively. If the matrix Gi is not required in a current step of the algorithm for 1 ≤ i ≤ t,
then we take ai = 0 and then U(ai)

i = ∅. However, if t < i ≤ s then the set U(0)
i contains
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qk−|Ti | − 1 ≥ q− 1 codewords. Therefore, when the matrix Gi is not required, we reduce
the number of the considered nonnegative integers ai.

4. The Algorithm

We are looking for the minimum weight of the linear [n, k]q code C. Let the set of the
coordinate positions {1, . . . , n} for the code C is partitioned into s systematic sets T1, . . . , Ts,
such that |T1| = · · · = |Tt| = k > |Tt+1| ≥ · · · ≥ |Ts|, t ≤ s.

The algorithm uses an integer δ which increases by one from the integer t until it
reaches d(C)− 1 or d(C). For a particular value of δ, we use consistently r = 0, 1, . . . , s− t
of the reduced systematic sets. For a fixed r, let δ = a1 + · · ·+ at+r + t + r− 1 for some
nonnegative integers a1, . . . , at+r. We define multisets Ωδ recursively in the following way:

• For δ = t we set Ωδ = U(1)
1
⊎

U(0)
2 ] · · · ]U(0)

t .

• Let δ = m ≥ t and Ωm = U(a1)
1

⊎
U(a2)

2
⊎ · · ·⊎U(at+r)

t+r , where a1, . . . , at+r are nonnega-
tive integers such that m = a1 + · · ·+ at+r + t + r− 1, 0 ≤ r ≤ s− t.

• Take δ = m + 1. The nonnegative integers r, a1, . . . , at+r are the same as above so that

Ωm = U(a1)
1

⊎
U(a2)

2
⊎ · · ·⊎U(at+r)

t+r . Let

Sm+1 =

 min{|U(aj+1)
j |, 1 ≤ j ≤ t + r} if t + r = s

min{|U(a1+1)
1 |, . . . , |U(at+r+1)

t+r |, |U(0)
t+r+1|}, if t + r < s.

and j = l is the smallest value of the parameter j for which the sum is minimal (is
equal to Sm+1). If l ≤ t + r, we set

Ωm+1 = U(a1)
1 ] · · · ]U(al−1)

l−1 ]U(al+1)
l ]U(al+1)

l+1 ] · · · ]U(at+r)
t+r = Ωm ]U(al+1)

l .

If r < s− t and l = t + r + 1, then Ωm+1 = Ωm ]U(0)
t+r+1. We write briefly

Ωm+1 =

{
Ωm

⊎
U(al+1)

l , if l ≤ t + r
Ωm

⊎
U(0)

t+r+1, otherwise.

According to Theorem 1, all codewords in C of weight ≤ δ belong to the set Ωδ. If
the code does not contain nonzero codewords of weight ≤ δ, then δ increases by one, and
this value is taken as a lower bound lb for the minimum weight of the code. The lightest
codeword in Ωδ defines an upper bound for the minimum weight of C. The exact value of
d(C) is obtained when lb + 1 = ub, or during the generation process of Ωδ, a codeword of
weight lb = δ is obtained.

The reason we take Ωδ this way is to generate as few codewords as possible, while
making sure we get a codeword with a minimum weight. The summands a1, . . . , at+r in the
expression δ = a1 + · · ·+ at+r + t + r− 1 were chosen so that the number of the codewords
in the set Ωδ should be as small as possible.

The pseudocode is presented as Algorithm 1.
The correctness of the algorithm follows from Theorem 1. If all considered system-

atic sets are full (s = t), our algorithm is similar to the other variants of the Brouwer–
Zimmermann algorithm [4]. The number of elementary operations performed by the
algorithm depends on k, d, and the sizes of the systematic sets. For given n, k, q, and sizes
of the disjoint systematic sets, it is theoretically possible to determine both the minimum
and maximum numbers of codewords to be generated to prove that the minimum weight
of the corresponding code is equal to d. If Ωd−1 = U(a1)

1 ] · · · ]U(at+r)
t+r , then the minimum

number of the generated codewords is

1
q− 1

t+r

∑
i=1

ai

∑
j=0
|U(j)

j |, (1)
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and it is attained when there is a codeword v ∈ Ωd−1 of weight d. If all vectors in Ωd−1
have weights larger than d, then the algorithm generates the set Ωd. The experimental
results show that the upper bound ub reaches the minimum weight at an early stage of the
algorithm, and this can be used to solve some problems faster, for example, when we want
to prove that the minimum weight is ≤ d for a given integer d.

In the while-loop, to construct Ωδ we use its subset Ωδ−1 because its codewords
have already been generated. To get each vector in Ωδ with only one vector addition, we
generate some codewords more than once and the formula (1) actually gives the number
of these additions. More details on this process are given in [8] for prime fields and in [9]
for composite fields. Moreover, instead of the sets U(a)

i we take Û(a)
i ⊆ U(a)

i , where Û(a)
i

consists of nonproportional vectors and any vector from U(a)
i is proportional to a vector in

Û(a)
i (therefore we divide by q− 1 in the formula (1)). Then we generate the multiset Ωδ as

a multiset sum of Û(ai)
i in the same way, as is explained in the beginning of this section.

The whole algorithm consists of several subproblems. The time complexity for finding
an optimal solution for constructing systematic sets is given in detail in [5]. The complexity
of the rest is difficult to be estimated because it depends on two parameters that are not
known at the beginning. One of them includes the number and cardinality of the systematic
sets, which depend on the structure of the code. The second one is the minimum weight we
are looking for. While the problem with the second parameter can be solved by considering
the corresponding decision problem [5], the first parameter is difficult to estimate. The
time complexity of the algorithm for generating the codewords in a set U(a)

i is given in [8].
The same approach can also be used to obtain the set of codewords with minimum

weight, and the set of codewords with a given weight w > d. This is necessary, for example,
in equivalence tests and finding automorphism groups of linear code. This approach is
more effective than the one given in [8]. The procedure is the following:

1. Finding the nonnegative integers r, a1, . . . , at+r, for which Ωw = U(a1)
1

⊎ · · ·⊎U(at+r)
t+r .

2. Generating the set U(a1)
1 and save its vectors with weight w.

3. For 2 ≤ i ≤ t + r, generating the set U(ai)
i and save the codewords v ∈ U(ai)

i with
weight w, for which wt(v|Tj) < aj for j = 1, . . . , i− 1.

With this procedure we obtain all codewords of weight w without repetitions. If we
want to have a maximal set of nonproportional codewords of weight w, we apply the same
procedure, but using the sets Û(ai)

i for i = 1, . . . , s.
The following example illustrates Algorithm 1. In fact, the code itself is not important

to see how the algorithm works; the parameters and the sizes of the systematic sets are
sufficient.

Example 1. Let C be a [20, 8, 7] binary code with three systematic sets T1, T2, T3 such that |T1| =
|T2| = 8, |T3| = 4. Obviously, t = 2 ≤ d(C) ≤ n − k + 1 = 13, and so in the beginning
lb = δ = 2 and ub = 13. Next we follow the steps of the algorithm:

• δ = 2) We take Ω2 = U(1)
1 ]U(0)

2 and ub = min{wt(v)|v ∈ Ω2} ≥ 7 > δ.

• δ = 3) Since min{|U(2)
1 |, |U

(1)
2 |, |U

(0)
3 |} = |U(1)

2 | = 8, we get Ω3 = U(1)
1 ] U(1)

2 and
ub = min{ub, min{wt(v)|v ∈ Ω3}} ≥ 7 > δ.

• δ = 4) In this case min{|U(2)
1 |, |U

(2)
2 |, |U

(0)
3 |} = |U(0)

3 | = 15; hence, r = 1 and Ω4 =

U(1)
1 ]U(1)

2 ]U(0)
3 .

• δ = 5) In this case Ω5 = U(2)
1 ]U(1)

2 ]U(0)
3 , |Ω5| = 60.

• δ = 6) Now Ω6 = U(2)
1 ]U(2)

2 ]U(0)
3 , |Ω6| = 88, ub ≥ 7. If ub = 7, after this step the

algorithm returns the answer d(C) = 7. Otherwise we need also the next step δ = 7.
• δ = 7) Then Ω7 = U(3)

1 ∪U(2)
2 ∪U(0)

3 , |Ω7| = 144, and ub = 7, and so d(C) = 7.
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5. Computational Results

For a given [n, k, d]q linear code C, we computed the number of codewords that have to
be generated, required to prove that wt(C) = d by the BZ algorithm, and by our algorithm.
For the partitioning of the set of coordinate positions {1, . . . , n} we used the same strategy
as the BZ algorithm. The difference is that the BZ algorithm uses overlapping information
sets. As is described in [4], for a general linear code with systematic generator matrix
G1 = (I|A1), the rank of the matrix A1 can be less than k, which implies that there is no
information set T2 with T1 ∩ T2 = ∅. In this situation, we can obtain a reduced systematic
set T2 of size |T2| = rankA1 (this reduced systematic set is called a partial information set
in [4]). Our algorithm uses this reduced systematic set, unlike the BZ algorithm, which
uses an information set I2 ⊇ T2 obtained from T2 and k− r2 elements of T1.

We performed experiments with some [n, k, d]q codes with MAGMA, and our program
included in the package QEXTNEWEDITION. We have used MAGMA V2.25-2 via online
Magma Calculator run in a virtual machine on an Intel Xeon Processor E3-1220, 3.10 GHz.
Our implementation was executed on Intel Core i7-6700hq 2.60 GHz processor. We present
the number of the enumerated vectors with both programs in Table 1. Moreover, we give
the amounts of time for computing the minimum weights of the corresponding codes
with MAGMA and QEXTNEWEDITION. To compare the algorithms, only the numbers of
codewords generated are important, because we ran the programs on different computers.

Table 1. Minimum weights of [n, k, d]q linear codes.

Random MAGMA QextNewEdition
Codes # Codewords s # Codewords s

[114, 60, 13]2 20,784,896,304 100.91 310,623,009 2.62
[115, 60, 13]2 6,001,753,644 28.56 198,461,377 1.52
[116, 60, 14]2 6,001,753,644 28.46 579,155,882 4.69
[117, 60, 14]2 3,443,132,799 16.26 430,378,776 2.80
[118, 60, 14]2 884,511,954 3.98 266,773,648 1.84
[119, 60, 14]2 498,305,034 2.31 175,745,024 1.05
[145, 50, 25]2 9,481,372,155 61.53 1,943,266,923 21.11

[45, 15, 16]5 1,053,993 0.030 1,173,563 0.026
[44, 15, 16]5 1,822,761 0.037 1,454,628 0.020
[43, 15, 16]5 2,591,529 0.047 2,065,165 0.024
[42, 15, 15]5 2,591,529 0.054 1,580,947 0.015
[41, 15, 14]5 2,591,529 0.040 2,152,729 0.025
[40, 15, 14]5 7,716,649 0.124 1,697,666 0.017
[39, 15, 12]5 1,727,701 0.030 354,917 0.009

In fact, in the case when C has disjoint full systematic sets and n = tk, our algorithm
and the BZ algorithm are similar. Therefore, in this case the numbers of codewords
generated were almost the same, but there was a difference when n = (t− 1)k + r for 1 ≤
r < k. Take, for example, the [115, 60, 13]2 code in Table 1. To calculate the minimum weight
of this code, Magma uses two overlapping information sets I1 and I2, their corresponding
generator matrices GI1 and GI2 , and generates 2 ∑8

i=1 (
60
i ) = 6,001,753,644 codewords. Our

algorithm operates with two systematic sets T1 and T2, |T1| = 60, and |T2| = 55, so
Ω12 = U(6)

1
⊎

U(5)
2 . The program generated only ∑6

i=1 |U
(i)
1 | + ∑5

i=0 |U
(i)
2 | = ∑6

i=1(7 −
i)(60

i ) + 25 ∑5
i=1(6− i)(55

i ) + 6(25 − 1) = 198,461,377 codewords. Actually, as we see in this
example, when we know the minimum distance in advance, we can compute the number of
the codewords to be generated by a formula independently before running the algorithm.

6. Conclusions

In conclusion, we would like to add that Algorithm 1 is a competitive version of the
classical Brouwer–Zimmermann algorithm. This approach can be further developed for
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special types of codes, such as cyclic, quasi-cyclic, and divisible codes. The algorithm is
implemented in the software package QEXTNEWEDITION [10].

At the time of preparing this paper, three modules of QEXTNEWEDITION are pub-
licly available and can be freely downloaded. These are the programs GENERATION for
classifying linear codes over small finite fields; LCEQUIVALENCE, designed to obtain the
inequivalent codes in a set of linear codes over a finite field with q < 65 elements and com-
pute their automorphism groups; and WDHV, which calculates the weight distribution
of linear code. As a stand-alone program, the implementation of the presented algorithm
is not finalized. The current LINUX or WINDOWS version will be sent upon request by
the authors.

We would like to mention some open problems related to the algorithms for computing
the minimum weight of linear code. The standard way to find the minimum distance is
through the weight spectrum of the code. In practice, the Brouwer–Zimmermann type
algorithms are effective for codes with small numbers of disjoint systematic sets. One of
the open questions is to determine for which parameters each of the two approaches is
more effective.

Our experimental results show that when a matrix with a reduced systematic set is
used, the proposed algorithm is more efficient than the one implemented in MAGMA. The
question arises as to whether this is true for all such cases.

A parallel implementation of the Brouwer–Zimmermann algorithm is presented
in [11]. The codes that the authors considered are very suitable for our algorithm. Therefore,
the natural question arises about the parallel implementation of Algorithm 1.
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