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Abstract: The aim of this paper is to define and study the composition vector spaces as a type of
tri-operational algebras. In this regard, by presenting nontrivial examples, it is emphasized that
they are a proper generalization of vector spaces and their structure can be characterized by using
linear operators. Additionally, some related properties about foundations, composition subspaces
and residual elements are investigated. Moreover, it is shown how to endow a vector space with a
composition structure by using bijective linear operators. Finally, more properties of the composition
vector spaces are presented in connection with linear transformations.

Keywords: composition vector space; foundation; strong composition subspace; composition linear
transformation

1. Introduction

Menger [1] in 1944 initiated the studies on the theory of the tri-operational algebras,
based on his interest to algebra of functions, that led him to investigate the behavior of
the functions under various operations: addition, multiplication, or composition. He ob-
served that these operations on functions have an important role in the algebra of functions.
The composition of functions is associative, non-commutative and does not depend on
addition and multiplication, but it is connected to them by the one-sided distributive laws:
( f + g) ◦ h = f ◦ h + g ◦ h and ( f · g) ◦ h = ( f ◦ h) · (g ◦ h). This was a strong motivation for
Menger to define a new algebraic structure, namely a tri-operational algebra [2,3]. Moreover,
a tri-operational algebra is a special type of commutative ring, such as the ring of polyno-
mials, the ring of infinitely differentiable functions on R, and so on. This idea was clearly
presented by Adler [4] in 1961, when he defined the composition rings as commutative
rings endowed with an additional operation, called composition, that is related to the two
operations of the rings. Twenty years later, Kaiser and Nöbauer [5,6] studied more in
depth the composition of polynomials and polynomial functions, especially k-dimensional
V-composition algebras, where V is a variety containing subgroups, or near rings, compo-
sition rings, and composition lattices, investigated also in [7]. While in classical algebra
these ideas were only sporadically deepened in the 20th century—we may refer here to the
papers of Veldsman [8], or Gallina and Morini [9]—they opened a new line of research in
hypercompositional algebra. This is the theory of algebraic hypercompositional structures
(called also hyperstructures), i.e., algebraic structures with one or more hyperoperations,
which synthesize elements of the support set of the structure and have the result of a
subset of the support set instead of one element only, as the classical operations have.
The study in this direction was opened by Cristea and Jancic-Rasovic [10] by defining the
composition hyperrings, which better describe the structure of the hyperrings of polynomi-
als [11]. This work was then continued in two directions: the study of the (m, n)-hyperrings
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endowed with a composition operation [12] and the study of the hyperrings endowed with
a composition, i.e., an n-ary hyperoperation [13]. Combining these two directions, one
may study the composition (m, n, k)-hyperrings [14], that are (m, n)-hyperrings endowed
with a k-ary composition hyperoperation. The same initial idea of [10] was applied also
for EL-hyperstructures [15], which are hyperstructures constructed from quasi-ordered
semigroups.

Inspired by all of these researches, in this manuscript we define composition vector
spaces as a proper generalization of the vector spaces, by introducing a new operation,
called composition, connected with the operations of the vector spaces. Additionally, we
define and study some properties of the left or right foundations, composition subspaces,
and residual elements in composition vector spaces. We prove that every subspace of a
composition vector space is not generally a composition subspace, while the set VW of all
residual elements of a composition vector space V modulo a subspace W is the largest
strong composition subspace of V such that W can be written as the intersection between
VW and the left foundation of V. We also show that the intersection of any maximal
composition subspace of V with the left foundation LF(V) is a maximal subspace in LF(V).
Moreover, in every composition vector space V, there is no nontrivial left foundation such
that V is a group under the composition operation. In the last part of the paper we study
properties of the composition vector spaces related to linear operators. We define a family
of linear operators associated with a composition vector space. If any operator of this
family is a bijection, then the composition vector space is called automorphic. We prove
that any vector space may have a composition structure obtained by using bijective linear
operators, which lead us to conclude that the image of an automorphic composition vector
space under an onto composition linear transformation is automorphic, too. The paper
ends with a conclusive section.

2. Foundations of Composition Vector Spaces

In this section we will first introduce the concept of composition vector space and
support it using several non-trivial examples.

Definition 1. Let F be a field and (V,+, ·, F) a vector space over F, so · is an operation defined as
· : F×V −→ V. An algebraic structure (V,+, ∗, ·, F) is said to be a left composition vector space
over F, if (V, ∗) is a semigroup and the following conditions hold, for all x, y, z ∈ V and a ∈ F:

(1) (x + y) ∗ z = (x ∗ z) + (y ∗ z);
(2) (a · x) ∗ y = a · (x ∗ y).

If x ∗ (y + z) = (x ∗ y) + (x ∗ z) and x ∗ (a · y) = a · (x ∗ y) hold, then (V,+, ∗, ·, F) is
called a right composition vector space over F.

Moreover, we say that V is left (right) unitary, if there exists I ∈ V such that I ∗ x = x
(x ∗ I = x), for all x ∈ V. In this case I is called a left (right) identity. As usual, V is called unitary
if it is left and right unitary.

We denote the unit in V by I in order to not confuse it with the unit 1 of the field F
and the zero vector 0.

In the following, we will illustrate this concept using several examples, including the
most well-known vector spaces.

Example 1. Consider a vector space (V,+, ·, F) over a field F.
(1) V is a left and right composition vector space, whenever the operation ∗ is defined by x ∗ y = 0,
for all x, y ∈ V. In this case, V is called a null composition vector space. It is clear that it has no
identity.
(2) For all x, y ∈ V, define x ∗ y = x (respectively, x ∗ y = y). Then V is a left (respectively,
right) composition vector space over F. Note that V is not left (respectively right) unitary, unless
V = {0}, while every vector of V is a right (left) identity.
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(3) Consider (L(V),+, ·, F) to be the vector space of all linear operators on V and define ∗ as the
composition of linear operators. Then L(V) is a unitary composition vector space.

Example 2. Define the operation ∗ on the space V = { f : S −→ F, f is a function} of all functions
from a set S to a field F as ( f ∗ g)(s) = f (s)g(s). Then V is a unitary composition vector space
over F, where the function 1 : S −→ F defined by 1(s) = 1F, for any s ∈ S, is the identity.

Example 3. (Fn,+, ·, ∗, F) is a unitary composition vector space for any field F, where the compo-
sition is defined as (a1, . . . , an) ∗ (b1, . . . , bn) = (a1b1, . . . , anbn), having the unit (1, 1, . . . , 1).

Example 4. (1) The vector space Mn(F) of all n× n matrices over a field F is a unitary composition
vector space with the composition being the ordinary multiplication of matrices.
(2) The vector space Mm×n(F) of all m× n matrices over a field F is a unitary composition vector
space, where the composition is defined by [aij] ∗ [bij] = [aijbij].

Example 5. Let P be the space of polynomial functions over a field F.
Define the composition of polynomials as ∑∞

i=0 aixi ∗∑∞
j=0 bjxj = ∑∞

k=0 ckxk, where ck = ∑k
t=0 atbk−t

and k = 0, 1, 2, . . .. Then P is a unitary composition vector space over F, where 1 and x are their
identities, respectively.

Example 6. The set C(R) of all real continuous functions over R is a unitary composition vector
space with the sum, composition and scalar product of functions.

It is clear that any property of left composition vector spaces holds also for right
composition vector spaces. Thus, we will consider only the left ones, unless otherwise
specified, and "composition vector space" means "left composition vector space".

Proposition 1. If (V,+, ·, ∗, F) is a composition vector space, then the space (L(V),+L, ·L, ∗L, F)
of all operators on V is a composition vector space, too, where f ∗L g : V −→ V is defined by
( f ∗L g)(x) = f (x) ∗ g(x), for all f , g ∈ L(V). Moreover, if I is a left (right) identity of V, then
IL : V −→ V, defined by IL(x) = I, is a left (right) identity of L(V).

Proof. The conditions in Definition 1 are all fulfilled for the space L(V).

Definition 2. Let V be a composition vector space. Then an element x ∈ V is called a left (right)
constant, if x ∗ y = x (respectively y ∗ x = x), for all y ∈ V. If W ⊆ V, then the set of all
left (right) constants in W is called the left (right) foundation of W and is denoted by LF(W)
(respectively RF(W)). The element x is said to be a constant if it is both left and right constant,
while F(W) is the set of all constants of W.

Example 7. (1) The zero vector is the only constant in any null composition vector space.
(2) In Example 1(2), if V is a left composition vector space, then LF(V) = V and RF(V) = ∅.
Similarly, if V is a right composition vector space, then LF(V) = ∅ and RF(V) = V. It is clear
that there is no any constant in both of them.
(3) Continuing with Example 1(3), any constant operator of V is a constant of L(V), given
in Example 1(3), as well as constant functions are constants of the composition vector space in
Example 2.

Example 8. If x is a constant of a composition vector space V, then the function f : V −→ V,
defined by f (t) = x for all t ∈ V, is a constant of the composition vector space L(V).

In what follows, it is assumed that V is a composition vector space over F, unless
otherwise stated. A subspace W of V is called a composition subspace if it is closed under
composition. In this case, we write W 6c V.



Mathematics 2021, 9, 2344 4 of 9

Example 9. Every subspace of a null composition vector space is a composition subspace.

However, generally, not every subspace of a composition vector space is a composition
subspace, as we can see below.

Example 10. The set RR of all functions from R to R is a composition vector space under the
sum, scalar product (i.e., ( f · g)(t) = f (t) · g(t)) and composition of functions. Consider W =
{ f ∈ RR | f (−1) = 0}. Then W is a subspace of RR, but it is not a composition subspace,
because ( f + cg)(−1) = 0, while ( f ∗ g)(−1) = f (g(−1)) = f (0), which is not always 0, for
all f , g ∈ RR and c ∈ R.

The next proposition summarizes some elementary properties of a composition vector
space. They follow immediately from the definition.

Proposition 2. Let V be a composition vector space. Then:

(1) 0 ∈ LF(V).
(2) x ∈ LF(V) implies that y ∗ x ∈ LF(V) for all y ∈ V.
(3) x ∈ LF(V) if and only if x ∗ 0 = x.
(4) LF(V) 6c V.
(5) If W 6c V, then LF(W) 6c LF(V).
(6) For fixed x, y ∈ V, if x ∗ z = y for all z ∈ V, then y ∈ LF(V).

The next result provides a characterization of the constants of a composition vec-
tor space.

Proposition 3. Let V be a unitary composition vector space with the identity I. Then I ∈ F(V) if
and only if there exists x ∈ F(V), x 6= 0, such that x ∗ y 6= 0 and y ∗ x 6= 0, for all y ∈ V, y 6= 0.

Proof. Let I ∈ F(V). Then I ∗ y = I = y ∗ I, for all y ∈ V. Hence I − I ∗ y = 0 and so
x ∗ (I − I ∗ y) = 0, for all x ∈ V, x 6= 0. Hence x = x ∗ I = x ∗ (I ∗ y) = x ∗ y 6= 0, that is
x ∈ LF(V). Similarly, we have x ∈ RF(V) and therefore x ∈ F(V).

Conversely, for x ∈ F(V), x 6= 0 and y ∈ V we have x ∗ I = x = x ∗ y = x ∗ (I ∗ y).
Hence x ∗ (I − I ∗ y) = 0, which implies that I = I ∗ y. Similarly, I = y ∗ I and thus
I ∈ F(V).

Definition 3. Let V be a composition vector space and W be a subspace of LF(V). We say that
x ∈ V is a residual element modulo W if x ∗ LF(V) ⊆W. The set of all residual elements modulo
W is denoted by VW , i.e., VW = {x ∈ V | x ∗ y ∈W, ∀y ∈ LF(V)}.

For instance, consider (R2,+, ·, ∗,R) under the composition defined in Example 1 (2)
and the subspace W = {(x, 0) | x ∈ R}. Then LF(R2) = R2 and R2

W = W.

Proposition 4. Let V be a composition vector space and W a subspace of LF(V), i.e., W 6 LF(V).
Then the following assertions hold:

(1) VW 6 V.
(2) If W 6c V, then VW 6c V.
(3) x ∗ y ∈ VW , for all x ∈ VW and y ∈ V.
(4) VW ∩ LF(V) = W.
(5) VW is the largest subspace of V satisfying Conditions (3) and (4).

Proof. (1), (2) It is easy to see that VW is closed under the operations of V.
(3) For all z ∈ LF(V) we have y ∗ z ∈ LF(V), since (y ∗ z) ∗ t = y ∗ (z ∗ t) = y ∗ z, for all
t ∈ V. Hence (x ∗ y) ∗ z = x ∗ (y ∗ z) ∈W. Then x ∗ y ∈ VW .
(4) If x ∈ VW ∩ LF(V), then x = x ∗ 0 ∈W, by Proposition 2 (1) and (3). Now if x ∈W ⊆
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LF(V), then x ∗ y = x ∈W for all y ∈ LF(V), that is, x ∈ VW ∩ LF(V).
(5) Let U be a subspace of V such that U ∩ LF(V) = W and x ∗ y ∈ U for all x ∈ U and
y ∈ V. Then for any u ∈ U and t ∈ LF(V), u ∗ t ∈ U ∩ LF(V) = W, which implies that
u ∈ VW .

If W is a composition subspace of LF(V), then there exists a composition subspace
U of V with the left foundation W, where U 6= W, if LF(V) 6= V. In this way, we can
construct a new composition subspace.

Corollary 1. Let V be a composition vector space and W 6c LF(V). Then

LF(VW) = W.

Proof. If t ∈ LF(VW), then t = t ∗ 0 because 0 ∈ VW . Additionally, t ∗ 0 ∈W since t ∈ VW
and 0 ∈ LF(V). Thus t ∈ W and so LF(VW) ⊆ W. On the other hand, if t ∈ W, then
t ∈ VW ∩ LF(V), by Proposition 4(4). Thus t ∗ y = t for all y ∈ VW . Hence t ∈ LF(VW).

Notice that LF(W) = W for any composition subspace W of LF(V), i.e., W is the
smallest composition subspace U of V containing W such that LF(U) = W (see Figure 1).

Figure 1. The relationship between composition subspaces.

Corollary 2. If V is a composition vector space, then V{0} is a composition subspace of V such
that V{0} = V if and only if LF(V) = {0}.

Proof. By Proposition 2(1), 0 ∗ 0 = 0, so {0} is a composition subspace of V. Thus by
Proposition 4(1), V{0} is a composition subspace of V. Now if V{0} = V, then for all
y ∈ LF(V), by Proposition 2(1),(3) and y ∈ V{0}, we have y = y ∗ 0 = 0. Moreover
for all x ∈ V and y ∈ LF(V) = {0}, x ∗ y ∈ LF(V) = {0} by Proposition 2(2). Hence
x ∈ V{0}.

Proposition 5. Let V be a unitary composition vector space and W be a maximal composition
subspace of V. Then W ∩ LF(V) is a maximal subspace of LF(V).

Proof. Let U = W ∩ LF(V)  X ⊆ LF(V) for some subspace X of LF(V). Then there
exists x ∈ X \U such that x 6∈ W. Hence x∗ + W = V, where x∗ = {xn = x ∗ . . . ∗ x︸ ︷︷ ︸

n

| n ∈

N} 6c V. Thus, for any t ∈ LF(V) there exist xn ∈ x∗, for some n ∈ N, and w ∈ W such
that t = xn + w. It follows that w = t− xn ∈ LF(V) ∩W = U ⊆ X. Then t = xn + w ∈ X
and so X = LF(V), i.e., U is a maximal subspace of LF(V).

Definition 4. A composition subspace W = (W,+, ·, ∗, F) is called a strong composition subspace
of V, denoted W 4 V, if x ∗ y ∈W for all x ∈W and y ∈ V.
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Note that VW is a strong composition subspace of V by Proposition 4(3). In addition,
LF(V) 4 V, since (x ∗ y) ∗ z = x = x ∗ y for all x ∈ LF(V) and y, z ∈ V.

Lemma 1. Let V be a unitary composition vector space with the identity I.

(i) If W 4 V and I ∈W, then W = V.
(ii) If any nonzero element x ∈ V has an inverse with respect to ∗, then V has no nontrivial

strong composition subspace.

Proof. (i) If x ∈ V, then x = I ∗ x ∈W and clearly W = V.
(ii) Let W 4 V such that W 6= {0}. Then there exists at least one element x 6= 0, x ∈ W.
Hence there exists y ∈ V such that I = x ∗ y ∈W, which implies that W = V by (i).

Corollary 3. Let (V,+, ·, ∗, F) be a unitary composition vector space such that any nonzero x ∈ V
has an inverse respect to ∗ and LF(V) 6= {0}. Then V = LF(V).

Proof. It follows from Lemma 1(ii), since LF(V) 4 V.

In other words, in every composition vector space V, with the property that V is a
group under the composition operation, there is no nontrivial left foundation.

Moreover, it is worth noticing that we cannot generally define a quotient structure
on composition vector spaces in a natural way. For doing this, consider W as a strong
composition subspace of a left and right composition vector space V. Then the quotient of
V by W, i.e., V/W = {x + W | x ∈ V}, is constructed together with the natural operations
and (x + W) ∗ (y + W) = (x ∗ y) + W.

3. Linear Operators on Composition Vector Spaces

The aim of this section is to endow vector spaces V with a nontrivial composition struc-
ture by using linear operators. Additionally, some properties of the left foundation LF(V)
and nullifier NV of V are investigated under linear operators. Moreover, automorphic
composition vector spaces are defined and studied.

Consider the composition vector space L(V), i.e., the set of all linear operators on
V, defined in Example 1(3). The bijective elements of L(V) form a composition subspace
of L(V), denoted by BL(V). Let Γ be a subgroup of (BL(V), ◦) and consider the sets
Γx = {T(x) | T ∈ Γ} for all x ∈ V, that are called orbits. Clearly, the family {Γx}x∈V is
a partition for V and one can study the properties of the composition vector space with
equivalence relations under this partition. For more details, in the following we give a
characterization for it.

Any orbit Γx is called principal if T(y) 6= y for all y ∈ Γx and Id 6= T ∈ Γ. Note that
Γ0 = {0} is not principal, while if Γ = {Id}, then every orbit Γx = {x} is principal.

Proposition 6. Let Γ be a subgroup of (BL(V), ◦) and x ∈ V. Then the orbit Γx is principal if
and only if, for all y ∈ Γx, the mapping f : Γ→ Γx defined by f (T) = T(y) is a bijection.

Proof. Let Γx be principal. If y ∈ Γx and T1, T2 ∈ Γx such that f (T1) = f (T2), then
(T−1

2 ◦ T1)(y) = y and so T−1
2 ◦ T1 = Id, i.e., T1 = T2, by principality of Γx. Thus f is

injective. Clearly f is also surjective.
Conversely, if y ∈ Γx, Id 6= T ∈ Γ and T(y) = y, then f (T) = T(y) = y = I(y) = f (I).

By injectivity of f , we have T = I, which is a contradiction. Hence Γx is principal.

The following results highlight the correspondence between composition vector spaces
and linear operators defined on them.

Proposition 7. Let V be a composition vector space over the field F and the mappings Ty :
V −→ V be defined by Ty(x) = x ∗ y, for all x, y ∈ V. Then Ty is a linear operator on V and
TTx(y) = Tx ◦ Ty.
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Proof. Consider x1, x2, y ∈ V and a ∈ F. Then Ty(x1 + ax2) = (x1 + ax2) ∗ y = (x1 ∗
y) + (ax2 ∗ y) = (x1 ∗ y) + a(x2 ∗ y) = Ty(x1) + aTy(x2), which shows the linearity of T.
Moreover, for all x, y, t ∈ V, it follows that TTx(y)(t) = t ∗ Tx(y) = t ∗ (y ∗ x) = (t ∗ y) ∗ x =
Tx(t ∗ y) = Tx(Ty(t)) = (Tx ◦ Ty)(t).

Proposition 8. Let V be a vector space and {Ty}y∈V be a family of linear operators on V such
that TTx(y) = Tx ◦ Ty, for all x, y ∈ V. Then V is a composition vector space by defining the
composition by x ∗ y = Ty(x), for all x, y ∈ V.

Proof. Let x, y, z ∈ V. Then (x ∗ y) ∗ z = Tz(x ∗ y) = Tz(Ty(x)) = TTz(y)(x) = x ∗ Tz(y) =
x ∗ (y ∗ z). Thus (V, ∗) is a semigroup. Additionally, (x + y) ∗ z = Tz(x + y) = Tz(x) =
Tz(y) = x ∗ z + y ∗ z and (a · x) ∗ y = Ty(ax) = a · Ty(x) = a · (x ∗ y), for all a ∈ F. Hence
V is a composition vector space.

Based on these last two results, we may conclude that the structure of any composition
vector space V with identity I is characterized by the monoid {Ty | y ∈ V} of linear
operators, where TI is its identity. The mentioned monoid is called the family of the linear
operators associated with V.

Definition 5. A mapping T between two composition vector spaces V and W is said to be a
composition linear transformation if T(x+ y) = T(x)+ T(y), T(a · x) = a · T(x) and T(x ∗ y) =
T(x) ∗ T(y), for all x, y ∈ V and a ∈ F.

In the following we will investigate some properties of the left foundation LF(V) of a
composition vector space, by the help of linear operators.

Proposition 9. Let T : V −→W be an onto composition linear transformation. Then T−1(LF(W))
= ker T + LF(V).

Proof. Suppose x ∈ T−1(LF(W)). Then T(x) ∈ LF(W) and so T(x) ∗ 0 = T(x). Thus
x = (x− (x ∗ 0))+ (x ∗ 0) ∈ ker T + LF(V), by Proposition 2(2). Now, if x ∈ ker T + LF(V),
then x = v + t, for some v ∈ ker T and t ∈ LF(V). Thus, T(x) = T(t). Hence, for all y ∈W,
T(x) ∗ y = T(t) ∗ T(x′) = T(t ∗ x′) = T(t) = T(x), where y = T(x′) for x′ ∈ V. Therefore,
T(x) ∈ LF(W), and this completes the proof.

Proposition 10. The mapping T : V −→ LF(V)LF(V) defined by T(x) = Tx, where Tx(y) =
x ∗ y, is a linear transformation such that ker T = V{0}.

Proof. For arbitrary x, x′ ∈ V, a ∈ F and y ∈ LF(V), we have

Tx+x′(y) = (x + x′) ∗ y = (x ∗ y) + (x′ ∗ y) = Tx(y) + Tx′(y),

Ta·x(y) = (a · x′) ∗ y = a · (x ∗ y) = a · Tx(y),

Tx∗x′(y) = (x ∗ x′) ∗ y = x ∗ (x′ ∗ y) = x ∗ Tx′(y) = Tx(Tx′(y)) = (Tx ◦ Tx′)(y),

and ker T = {x ∈ V | T(x) = 0} = {x ∈ V | x ∗ y = 0, ∀y ∈ LF(V)} = V{0}.

Definition 6. An element x ∈ V is called a nullifier of V if x ∗V = {x ∗ t | t ∈ V} = {0}. The
set of nullifiers of V is denoted by NV .

Proposition 11. Let V be a composition vector space. Then:

(1) NV 6c V.
(2) If NV = {0} and x1, x2 ∈ V such that x1 ∗ y = x2 ∗ y, for all y ∈ V, then x1 = x2.
(3) If NV = {0} and x ∗ y = z, for all y ∈ V, then x = z ∈ LF(V).
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Proof. (1) It is straightforward.
(2) By assumption, (x1 − x2) ∗ y = x1 ∗ y− x2 ∗ y = 0, so x1 − x2 ∈ NV . Thus x1 = x2.
(3) Since z ∗ y = (x ∗ z) ∗ y = x ∗ (z ∗ y) = z and x ∗ y = z, then x = z by (2). Hence
x ∗ y = x and z ∗ y = z for all y ∈ V, which means that x, z ∈ LF(V).

Proposition 12. The mapping T : V −→ VV defined by T(x)(y) = Tx(y) = x ∗ y, is a linear
transformation such that ker T = NV .

Proof. Similar to the proof of Proposition 10.

Definition 7. A composition vector space V is said to be automorphic if every nonzero linear
operator Ty associated with V is a bijection.

Note that if V is an automorphic composition vector space and y ∈ ∪Γx for the
principal orbits Γx, then Ty is nonzero.

Theorem 1. Let f : V −→W be an onto composition linear transformation such that W 6= {0}.
If V is automorphic, then W is automorphic, too.

Proof. Let Ty : W −→ W be a nonzero linear operator associated with W, meaning that
Ty = Tf (x), for some x ∈ V. Note that Tx is a nonzero linear operator associated with V,
because if Tx = 0, then z ∗ x = Tx(z) = 0 for all z ∈ V. Hence 0 = f (0) = f (z ∗ x) =
Ty( f (z)), that is, Ty(W) = 0. Hence Ty = 0, which is a contradiction.

Now, consider w ∈ W and f (v) = w for an arbitrary v ∈ V. Then there exists t ∈ V
such that t ∗ x = Tx(t) = v. Thus w = f (v) = f (t ∗ x) = f (t) ∗ f (x) = Tf (x)( f (t)) =
Ty( f (t)), which means that Ty is onto.

Moreover, if Ty(w1) = Ty(w2) for w1 = f (v1) and w2 = f (v2) with v1, v2 ∈ V, then
f (Tx(v1 − v2)) = f (v1 ∗ x)− f (v2 ∗ x) = Ty(w1)− Ty(w2) = 0. Hence Tx(v1 − v2) ∈ ker f
and so v1 − v2 ∈ ker f , since Tx ∈ BL(V) has an inverse and ker f 4 V. It follows that
w1 = w2, and thus Ty is injective, thefore W is automorphic.

The following corollary is an immediate consequence of Theorem 1.

Corollary 4. Let f : V −→W be an onto composition linear transformation such that W 6= {0}.
If Tx ∈ BL(V), then Tf (x) ∈ BL(W), for all x ∈ V.

Finally, the behavior of linear operators associated with composition vector spaces is
investigated under composition linear transformations.

Theorem 2. Let f : V −→ W be an onto composition linear transformation, A and B be the
set of all bijective linear transformations Tx and Ty associated with V and W, respectively. Then
the function f̄ : A −→ B defined by f̄ (Tx) = Tf (x) is an onto group homomorphism such that
ker f̄ = {Tx ∈ A | Tx(t)− t ∈ ker f , ∀t ∈ V}.

Proof. Consider Tx1 = Tx2 for some x1, x2 ∈ V and w ∈ W. Then w = f (v), for some
v ∈ V. Thus Tx1(v) = Tx2(v) and hence f (v ∗ x1) = f (v ∗ x2), which implies that
Tf (x1)

(w) = Tf (x2)
(w), that is f̄ (Tx1) = f̄ (Tx2). Additionally f̄ (Tx1 ◦ Tx2) = f̄ (TTx1 (x2)

) =

Tf (x2∗x1)
= TTf (x1)

( f (x2))
= Tf (x1)

◦ Tf (x2)
= f̄ (Tx1) ◦ f̄ (Tx2), by Proposition 7. Thus, f̄ is

a homomorphism. Clearly, it is onto. Moreover, Tx ∈ ker f̄ if and only if Tf (x) = Id,
equivalently with Tf (x)(w) = w for all w ∈ W iff f (t) ∗ f (x) = f (t) for all t ∈ V, i.e.,
Tx(t)− t ∈ ker f for all t ∈ V. This completes the proof.

4. Conclusions

Defining a composition structure on a vector space, similarly as for rings, or hyper-
rings or ordered hyperstructures, permits us to study the new obtained tri-operational
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algebra, called in this case a composition vector space, also from the perspective of linear
operators. It is interesting to notice that not all subspaces of a composition vector space are
composition subspaces, as we could see in Example 10. Additionally, we have concluded
that the structure of any composition vector space (V,+, ·, ∗) with identity I may be char-
acterized by a monoid {Ty | y ∈ V}, with the identity TI , of linear operators on V, where
Ty(x) = x ∗ y, for any x ∈ V. Studying properties of the linear operators permits us to
study new properties of the associated composition vector space.
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