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Abstract: In the modern world, the systems getting smarter leads to a rapid increase in the usage
of electricity, thereby increasing the load on the grids. The utilities are forced to meet the demand
and are under stress during the peak hours due to the shortfall in power generation. The abovesaid
deficit signifies the explicit need for a strategy that reduces the peak demand by rescheduling
the load pattern, as well as reduces the stress on grids. Demand-side management (DSM) uses
several algorithms for proper reallocation of loads, collectively known as demand response (DR). DR
strategies effectively culminate in monetary benefits for customers and the utilities using dynamic
pricing (DP) and incentive-based procedures. This study attempts to analyze the DP schemes of DR
such as time-of-use (TOU) and real-time pricing (RTP) for different load scenarios in a smart grid
(SG). Centralized and distributed algorithms are used to analyze the price-based DR problem using
RTP. A techno-economic analysis was performed by using particle swarm optimization (PSO) and
the strawberry (SBY) optimization algorithms used in handling the DP strategies with 109, 1992, and
7807 controllable industrial, commercial, and residential loads. A better optimization algorithm to go
along with the pricing scheme to reduce the peak-to-average ratio (PAR) was identified. The results
demonstrate that centralized RTP using the SBY optimization algorithm helped to achieve 14.80%,
21.7%, and 21.84% in cost reduction and outperformed the PSO.

Keywords: smart grid; demand-side management; dynamic pricing; time of use; real-time pricing;
strawberry algorithm; particle swarm optimization; peak-to-average ratio

1. Introduction

The energy sector has been subjected to an increase in energy demand over several
years. In addition, ample storage of electricity is not possible, as the current technology is
incapable of storing a vast amount of energy [1]. As the generation capacity is a function
of demand, the total generation capacity is considered to depend on the energy demand.
According to a survey conducted in the United States on electricity consumption, home
appliances consume 42% of the energy, but these domestic loads fluctuate during the
day [2]. This fluctuation leads to a large difference between the peak and the average
power consumption and a higher cost of energy consumption for consumers. It necessitates
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the setup of a considerable number of power-generating plants to meet the increase in
fluctuating peak demand, which adds to the cost of the system [3]. Such a setup is not
possible in developing countries due to scarce financial resources. This brings in the
ideology of DSM-embraced smart grids (SGs) to meet the peak loads without increasing
power generation. Even though it is a relatively recent concept, SGs are rapidly becoming a
reality worldwide [4], as shown in Figure 1. SGs calculate, automate, and communicate the
various parts and operations of the grid and coordinate the functioning and maintenance
thereof [5]. Generally, SGs are known for their customer-friendliness and are adapted for
acquiring better efficiency when compared with the conventional power system. Smart
pricing is a fundamental aspect of SGs, which is used in conjunction with demand-side
management (DSM), influenced by incentive strategies, real-time penalties, etc. [6,7].

Figure 1. Smart grid representation.

Demand response (DR) is defined as a change in electricity consumption to standard
consumption patterns [8]. The load curve reshaping is a cornerstone of DSM and SG [9].
It involves algorithms and programs intending to change the consumption pattern of
electrical energy by consumers [10]. This is achieved by altering the amount of power
needed for a particular hour, which is achieved by modifying the load profile of the
distribution system [11]. The main objective of the DR is to decrease the peak of the load
curve without increasing the amount of generated power [12]. Peak reduction can be
implemented by shifting the controllable loads from the peak period to the off-peak hours,
remodeling the load curve, and possibly decreasing the overall pricing. This is known as the
price-based demand response (PBDR) program [13]. In addition, establishing a sustainable
network model aids in reducing carbon emissions. An effective method of DSM involves
disconnecting loads from high-priced times, which proves to be beneficial for both the
utilities and the customer. From the customer’s end, disconnection of electricity utilization
during the peak hours and connection during the off-peak hours is advantageous. Thus,
a consumer can reduce the electricity expenses by a considerable margin due to load
shifting [14]. From the utilities’ point of view, load shifting can protect the grid systems
from the likelihood of outages, elevate the power generators’ utilization, and enhance
the grid’s reliability [15]. Peak shaving, valley filling, etc. are the other types of DSM
techniques that work by decreasing the peak demand and improving the grid’s secured
operation [16].
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Bidirectional communication and power flow are the crucial features of SGs enabling
the DP schemes for the customers. Compared to flat-rate pricing, dynamic pricing (DP)
rates reflect the demand and supply interrelation more precisely. The most fundamental
type of the PBDR program is established on the time of use (TOU). The TOU has three
components to it, namely the peak, shoulder-rate, and off-peak hours [17]. Other pricing
schemes include day-ahead pricing (DAP), critical peak pricing (CPP), extreme-day pricing
(EDP), and real-time pricing (RTP), where RTP is evinced to be the most efficient method in
the SG market [18]. Recent technological developments have given rise to smart appliances
like wireless communication devices, which are built-in electrical appliances to gather RTP
data from the Internet or smart meters. These appliances have the potential to time their
working based on RTP [19]. In every method, the electricity price is presumed to be known
or at least it is assumed to be predictable. The DR strategies are classified based on the
motivation with which they are offered, according to the decision variables considered and
the controlling mechanism adopted [20].

Further, the motivation-based DR is broadly classified as DP and incentive-based pricing.
Various research works are put forward using DP methodologies. Logenthiran et al. [21]
proposed the TOU algorithm to perform load shifting for a benchmark microgrid (MG)
system with three different users. Park et al. [22] proposed a heuristic optimization tech-
nique (HOT) for solving the multiuser DR problem based on RTP and progressive-based
pricing by sorting, scheduling residential appliances, and reducing customer discomfort.
The nonconvex optimization problem considered was reformulated to obtain the optimal
solution using a linear programming optimization technique. Yang et al. [23] proposed a
conventional game theory algorithm to implement an RTP strategy in a residential area
to reduce the cost involved in electricity pricing. That approach elucidates the methodol-
ogy for conserving energy and tackling the problem of energy conservation using smart
sockets. Sharma and Saxena [24] proposed whale optimization to reduce the cost and
peak demand using the RTP method. The results obtained for demand-side management
(DSM) techniques produced considerable savings while lowering the peak load demand of
the smart grid. Taherian et al. [25] proposed dynamic load scheduling using the priority
of loads in a residential SG environment with the utilization of the TOU algorithm to
reduce the peak of the load curve, thereby reducing the cost. Niharika and Mukherjee [26]
proposed DSM implementation using the DAP market for scheduling loads on an hourly
basis to obtain the minimum operating cost of the system. That approach utilized symbi-
otic search optimization based on the cohabitation of organisms for optimization of the
peak load for residential, commercial, and industrial customers using the TOU pricing
strategy. Alwan et al. [27] proposed a decentralized algorithm to perform optimal load
scheduling for residential and commercial facilities with local renewable generation. The
cost minimization problem was subjected to operating constraints such as the maximum
demand limit, penalty cost limit, etc. Arun and Selvan [28] proposed a DSM strategy by
shedding the loads and minimizing the cost of electric power consumption along with the
penalty cost over 24 h. Rocha et al. [29] performed block rate and RTP-based scheduling of
loads for different types of consumers based on their priority level. Gellings [30] proposed
a DR strategy to minimize electricity consumption costs and reduce the peak demand
in a UK-based system. In addition, optimization of power consumption patterns using
various procedures such as load shifting, valley filling, etc. was discussed. Abushnaf and
Rassau [31] proposed a multivariable genetic algorithm-based cost minimization technique
for scheduling residential loads integrating DR strategies and sustainable energy sources
(SES). Sisodiya et al. [32] proposed particle swarm optimization (PSO)-based optimal load
rescheduling using the RTP algorithm for reducing the cost of energy consumed and the
cost of generation with SES considered in the system. Subrata Saha et al. [33] proposed
a modified flower pollination algorithm to obtain an optimal pricing scheme in order to
maximize the retailer’s profit by employing promotional pricing and a trapezoidal rate
for the demand. Table 1 depicts the comparative analysis of the references based on the
objective, techniques, and contribution.



Mathematics 2021, 9, 2338 4 of 24

Table 1. Comparison of the references based on their objective and techniques.

References Objective Technique/Model Contribution

[14]

To assess the technical and
economic impact of DR for
systems with renewable energy
sources (RES)

Integrated
co-optimization
planning method

An optimization model for long-term decision-making
modeled with the impact of short-term variability of
demand and RES

[16] To minimize the electricity
purchase cost

Binary integer
programming

Scheduling of different domestic appliances with
response to the real-time pricing signal is solved

[17] To maximize the supplier’s profit Bilinear bilevel
mixed-integer

The insights of the user demand flexibility, capacity
profile, and price structure are provided

[19] Social welfare maximization Smoothing
Newton algorithm

The developed utility function is more beneficial than
the quadratic and logarithmic utility functions in
reducing the user demand

[20] Analysis of scheduling of
appliances at the user’s side

Deep learning
modeling

DR modeling for domestic customers conducted with a
learning model designed with the strategy stated
by users

[22] To obtain approximated optimal
solutions in a progressive policy

Heuristic
evolutionary
algorithms

Problem models designed to meet DR management for
different electricity bill policies

[23] To optimize TOU pricing
strategies

Game theory
model

An optimal game theory TOU electricity pricing strategy
designed for utility companies and users using the Nash
equilibrium to provide optimal prices

[25]

To support a retail electric
provider (REP) to make the best
day-ahead dynamic pricing
decisions

Adaptive
neuro-fuzzy
inference system

A profit maximization algorithm developed to obtain
optimal costs under appropriate market constraints

[26]
Modeling of DSM using a
day-ahead load shifting approach
as a minimization problem

Symbiotic
organisms search
algorithm

A comparison of outcomes achieved using different
algorithms with the recommended algorithm carried
out based on peak load reduction, reducing a utility bill

[29] To reach a compromise between
energy cost and the user comfort

Artificial
intelligence
techniques

Numerical simulations with actual data obtained from a
smart home, the k-means clustering technique
determined the user comfort levels

[31]
To minimize the overall daily cost
of electricity consumed by
household appliances

Genetic algorithm
The power limit violation level decreases near the
original settings compared with the use of EV batteries
for energy storage

[32]
To minimize the operational cost
of energy with consumer comfort
preferences

Particle swarm
optimization

Scheduling for building EMS optimized in the
RTP scheme

[33] Optimal pricing scheme and
replenishment schedule

Modified flower
pollination
algorithm

Proposes a dynamic rate based on various types of
pricing (dynamic and trapezoidal) based on demand

Proposed
method

A techno-economic analysis to
minimize the cost of power
consumption and the PAR using
dynamic pricing strategies of
TOU and RTP (distributed and
centralized algorithms)

Particle swarm and
the strawberry
algorithm

Load scheduling performed for industrial, commercial,
and residential loads with 109, 1992, and 7807
controllable loads using the TOU, distributed RTP, and
centralized RTP. Furthermore, the PAR reduction along
with a techno-economic analysis for PSO and the SBY
optimization algorithm based on the implemented
DP strategies.

The literature concludes with the following research gap:

• The pricing adopted based on the RTP location is less fair than the purchase history
pricing;

• The impact towards the increase in controllable devices, selection of the DP methodol-
ogy and optimization techniques is not contributed;
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• Techno-economic analysis considering different load scenarios and different DP strate-
gies is not focused. Comparative analysis of the PAR based on DP and optimization is
not projected.

Thus, this study emphasizes implementation of various DR strategies that can benefit
the utilities and different types of users, such as residential, commercial, and industrial
customers with both controllable and uncontrollable loads. The highlights of this study are
as follows:

• Analysis of the DP schemes of DR such as TOU and RTP for industrial, commercial,
and residential load scenarios is formulated.

• A techno-economic comparative analysis of PSO and the strawberry (SBY) optimiza-
tion algorithm for solving the DP strategies with 109, 1992, and 7807 controllable
industrial, commercial, and residential loads is performed.

• An RTP algorithm is considered using both distributed and centralized algorithms.
• A comparative analysis of the peak-to-average ratio (PAR) calculated for all load

conditions with both PSO and the SBY optimization algorithm using the TOU and
RTP strategies is performed.

The rest of the article is organized as follows: Section 2 elaborates on the dynamic
pricing strategies. Section 3 illustrates the optimization algorithms chosen for solving the
dynamic pricing problem followed by the techno-economic analysis of DP strategies in
Section 4. Finally, the results obtained are discussed in Section 5.

2. Pricing Algorithms

The DP schemes taken into consideration were the TOU pricing and the RTP. The
pricing schemes were used in a combination of optimization algorithms that are addressed
in detail in Section 3.

2.1. Time-of-Use Pricing

The TOU technique is similar to the pricing based on block rates considered for a
particular time of day and week when the customers consume electricity. The TOU rates
are the fixed electricity prices charged to both residential and small-scale industries. The
price of electricity may vary over the day and is updated daily. Besides, the consumers are
allowed to schedule their usage according to their preferences. The proposed scheme has
three TOU periods: off-peak, mid-peak, and on-peak periods.

Off-peak is when the energy demand is low, whereas mid-peak occurs when the energy
requirement is moderate. In addition, on-peak occurs when there is the maximum energy
demand. Consequently, it requires more expensive forms of electricity to be used. In this
way, it ensures that the amount paid by the consumers is economically reasonable [21]. The
purpose of DR is to schedule the connection time of each shiftable device so that the forecasted
load for every user is shifted so that it is as close to the assumed objective consumption curve
as possible. The objective function of DR using the TOU is given in Equation (1):

24

∑
t=1

min(Pload(t)− objective(t))2 (1)

where objective (t) represents the power value of the objective curve at time t. The objective
load curve is chosen in such a way that it is inversely proportional to the electricity
market prices.

objective(t) =
Pavg

Pmax
× 1

P(t)

24

∑
t=1

f orecast(t) (2)

where Pavg denotes the average price during period t, Pmax represents the maximum price
throughout the day, P(t) denotes the maximum price at time t, T represents the total number
of hours in the day, f orecast(t) is the forecasted consumption at t, and Pload(t) represents
the power consumed at time t after shifting the load and is described in Equation (3):
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Pload(t) = f orecast(t) + connect(t)− disconnect(t) (3)

where connect(t) and disconnect(t) represent the devices that are connected and discon-
nected at a particular time t, respectively; connect(t) is divided into two terms: the first
term includes the increase in the load due to the connection of the devices that were to be
connected at time t; the second term includes the increase in the load due to the connection
of the devices scheduled for the preceding time t [21].

connect(t) =
t−1

∑
i=1

D

∑
k=1

Yki(t) × P1k +
j−1

∑
l=1

t−1

∑
i=1

D

∑
k=1

Yki(t−1) × P(1+l)k (4)

Parameter disconnect(t) is also divided into two terms: the first term is to decrease power
consumption by means of delay in the connection of the devices that were to be connected
at time t; the second term includes the decrease in the demand owing to the delay in the
connection of the devices that were expected at the preceding time t [21].

disconnect(t) =
t+m

∑
q=t+1

D

∑
k=1

Yk(t)q × P1k +
j−1

∑
l=1

t+m

∑
q=t+1

D

∑
k=1

Yk(t−1)q × P(1+l)k (5)

where Yki(t) denotes the number of appliances of type k which are rescheduled for operation
from time i to t, D denotes the number of equipment types, P1k and P(1+1)k are the power
consumption at time steps ‘1′ and ‘1 + l’, respectively, for device type k, and j is the total
time required for the consumption of device type k. The implementation steps of the TOU
are depicted in Figure 2.

Figure 2. TOU flowchart.
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2.2. Real-Time Pricing

This section focuses on the load scheduling problem, which is framed as an optimal
stopping problem. RTP is chosen as the arbitrary variable, and the home appliance’s
starting operation is the action. The purpose is to select the most optimal time to start
the action to decrease the cost or increase the profit. The RTP is updated periodically,
mostly every 30 min. Each period of one hour in a day is considered as one timeslot. The
electricity consumption rate is presumed to be fixed for each timeslot, but it can change
across different timeslots, and hence it can be classified as a discrete-time model. Let
us assume T to be the duration of the total timeslot in a day, which is typically fixed as
one hour. Additional assumptions would be that the devices’ operation can only commence
at the start of a timeslot. Furthermore, we assume that the duty cycles are less than T.
Thus, when a device starts its operation, during the duty cycle, the price remains fixed.
Furthermore, if the timeslot of operation of the device exceeds one hour, the task is broken
down into multiple subtasks by the process of task decomposition [34].

3. Formulation of the RTP Load Scheduling Problem

The concept of an optimal stopping rule and its application have been framed as
an optimal stopping problem. The optimal stopping rule (OSR) depends on whether to
maximize the reward or minimize the compensation. In this regard, it is required to select
an optimal stopping time t to decrease the generally expected returns.

The RTP signals constantly vary in nature, e.g., for every hour of a day. The load
scheduling problem using RTP [34] is framed in this work by presuming the RTP signal
to be an arbitrary variable. This study aimed to reduce the cost of power consumption
by considering the timeslot for a day as a variable. Furthermore, electrical devices are
segregated into three segments based on their power consumption, i.e., base, regular,
and burst load. The loads that possess low energy consumption and have long duty
cycles fall under the category of base loads. These loads encompass lightning, networking
devices, and computers. Regular loads include devices where the power consumption of
the particular load is higher than that of base loads. However, their duty cycle is for an
extended period as well. For instance, refrigerators, HVAC, and water heaters are included.
The devices whose operation time is constant but add to the peak load form the burst
load [35]. For instance, washing machines, dishwashers, and clothes dryers are included.
Generally, the peak power period is considered for scheduling; thereby, the scope of this
article was also extended to the complete time of device operation. The objective was to
reduce the cost of power consumed by the device and the waiting time. The waiting time
was modeled as the cost to achieve it. Thus, the objective function can be estimated using
the following formula:

min
N∈C

lim
M→∞

1
M

M

∑
t=0

(
∑

i∈St

[
CP

i + CW
i

])
(6)

where the cost of electricity can be described as follows:

CP
i = gi × P(N(i)) (7)

The cost due to the waiting time can be described as follows:

CW
i = µi × τ × N(i) (8)

M is the total number of timeslots, St is the set of appliances arriving at timeslot t, τ
denotes the length of one timeslot (i.e., one hour), N is the scheduled operation timeslot of
the device, C is the class of optimal stopping rules which satisfies C = {N: N ≥ 0, E[T] < ∞],
T is the total time spent running each appliance including the waiting time, gi is the power
consumption of appliance i, P(N(i)) is the RTP signal for the timeslot, and µi is the time
factor/priority of appliance i.



Mathematics 2021, 9, 2338 8 of 24

For practical reasons, the formula considered is simplified as Equation (9). Reduction
of the operating costs for a single appliance reduces the overall cost, so the cost formula
can be simplified as in [36]:

min
N∈C

[
CP + CW

]
(9)

The optimal stopping rule helps in solving the mathematical condition above. There
are two constraints considered in RTP:

3.1. Tentative Scheduling

At this stage, the threshold for each device can be described by the following equation:

Zi =

√
2
(

Pp − P0
)
µτ

g
+ P0 (10)

where real-time pricing is assumed to be distributed uniformly over the interval
(

Pp − P0
)
.

The device will operate in the timeslot only if the threshold of the device in consideration
is lower than the real-time pricing of that hour, i.e., Zi < P(t).

3.2. Power Allocation

For each timeslot, it was made sure that enough power was available to operate the
device under consideration. This inequality condition can be formulated as follows:

t

∑
i=1

∑
i∈Sl

gi × δ(N(i), t ≤ Q) (11)

where Sl is the set of devices waiting to run at timeslot l, δ(N(i), t ≤ Q) is a binary variable
indicating the operation status of appliance i. If N(i) = t, δ(N(i), t ≤ Q) = 1, otherwise
δ(N(i), t ≤ Q) = 0, and Q is the maximum power allowed in each timeslot t. The constraint
can be further reduced to the following equation, where Lt is the list of devices waiting to
run at the tth timeslot:

∑
i∈Lt

gi ≤ Q (12)

Two methods of implementing RTP were taken into consideration, the distributed
scheduling algorithm (DSA) and the centralized scheduling algorithm (CSA). For any
appliance, two types of costs were calculated: the cost due to the waiting time and the cost
of electricity consumption. This helps in minimizing the mean cost for all the appliances in
the long run [36]. The DSA works on the first-come, first-served basis. Here, each device
is made to operate autonomously. The controllable load and the price of electricity at a
particular time of operation are the data required for the DSA algorithm. If the timeslot
for operating the device is unsatisfactory, the same process must be repeated in the next
immediate timeslot until no more devices are scheduled [37]. It can be summarized as
follows [38]:

3.3. Distributed Scheduling Algorithm

→ Begin;
→ Set the value of t = 0;
→ At time t the device i ∈ St prepares to enter the operating mode;
→ For each device i calculate the pricing threshold value (Zi);
→ Check if Zi is lower than the RTP at t;
→ Check the power constraint;
→ If the available power is greater than the power consumed by the device (gi), run the

device in that hour t, otherwise proceed to step 5;
→ Increment t and go to step 2. Perform until t = 24.
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In the CSA, the calculation of the cost equation consists of two segments: the cost of
electricity and the postponement cost for each device. Due to the devices getting postponed,
additional costs are included as the waiting cost. The cost involved in the delay of each
appliance is required for the total time to minimize the total cost. The cost involved in
postponing a device is given as follows [39]:

Ca
i = g

(
Z + P0

2
− P(t)

)
+ µ

PP − P0

Z− P0
(13)

3.4. Centralized Scheduling Algorithm

The CSA algorithm is as follows:

- Initialize the timeslot t = 0;
- At any time t, the appliance i ∈ St is made to run;
- For each appliance i in a smart home, the threshold Zi is calculated, and a signal is

sent to the home energy controller (HEC);
- Check for the current electricity price (t) set by the HEC. Then, select the delayed

appliances whose Zi is lower than P(t) and list them in queue Lt;
- Solve the load-shifting problem to select the devices which can get connected and

list them in queue Ot; the leftover appliances in Lt should wait for the next avail-
able timeslot;

- Run all the appliances waiting in the Ot queue;
- Increment t = t + 1 and go to step 2; continue till t = 24.

According to the above algorithm, there is a requirement for the central scheduler to
allocate the devices concerning the threshold power setting. Before the central scheduler
settles on a choice, all the devices must forward their price limit and power utilization.

3.5. Peak-to-Average Ratio (PAR)

The ultimate objective of DR is to shift the peak load demand to the non-peak hours
and thereby reduce the cost of power consumption without shedding the load. Thus, the
main focus of DR is to reduce the PAR of the given demand curve. The equation for PAR
calculations can be given as follows:

Average power
(

Lavg
)
=

1
T ∑

t∈T
Lt (14)

where T is the total timeslot (24 h) and Lt is the total power consumed by users from t = 1
to T hours.

Peak power (Lmax) = max
t∈T

Lt (15)

where Lmax is the peak power of the load curve.

PAR =
Lmax

Lavg
(16)

4. Optimization Algorithms

Optimization algorithms are used in combination with pricing algorithms to obtain
cost minimization. PSO and the SBY optimization algorithm were considered based on
their effective operation towards getting the global best solution in fewer iterations and
ease of handling more controllable loads. The complexity of optimization increases as
the controllable loads are increased. Moreover, PSO is employed for ease of implemen-
tation, adaptability of control parameters, and as it is widely used for the search for the
global best value. SBY was selected as it has some features of the genetic and the PSO
algorithms. The optimization algorithms implemented in this study were PSO and the SBY
optimization algorithm.
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4.1. Particle Swarm Optimization (PSO)

PSO is a metaheuristic optimization algorithm that is used to solve a wide range of
problems [39–42] with ease of implementation and adaptability of control parameters. It is
widely employed in the search for the global best value. To locate the optimal solution of
an objective function, PSO generates randomly distributed particles. These particles travel
randomly and reach a convergence point. The inputs given to the optimization problem
are swarm size, the total number of iterations, weights, positions, and learning variables. It
associates velocity to each particle as follows [39]:

V(t + 1) = W ×V(t) + C1 × rand[.]× (globalbest − currbest) + C2 × rand[.]× (locbest − currbest) (17)

where W is the inertia weight that lies between 0 and 1, C1 and C2 are random numbers
such that C1 + C2 ≤ 4, rand[.] denotes the random variable that lies between 0 and 1. The
position of the particle and the inertia weight is updated as follows:

X(t + 1) = X(t) + V(t + 1) (18)

W = W ×Wdamp (19)

where x(t) is the position update for the particle at time t, V(t + 1) is the updated velocity
value for time t + 1, Wdamp is the weight damping ratio.

4.2. Strawberry Optimization Algorithm (SBY)

The SBY optimization algorithm is inspired by the strawberry plant with some of
the features of the genetic and the PSO algorithms [43,44]. The strawberry plant uses
both runners and roots for propagation, search for water resources and minerals. This
propagation ideology is used to solve complicated engineering problems. The algorithm
has three differences compared to PSO, namely duplication and elimination of agents at
every iteration, all the agents are subjected to both small and large movements from the
beginning to the end, and lack of information exchange between agents. The algorithm can
very effectively solve even a complicated optimization problem [45]. The SBY optimization
algorithm is as follows:

1. Select the number of mother plants (e.g., N), the number of roots (Nroot), and the
number of runners (Nrunner) so that Nrunner >> Nroot. Set a group for the number of
devices. The combination of devices is considered as a variable. Consider the best
pattern after running the permutation for the set of devices in the group; for the
best pattern of devices, run the strawberry optimization algorithm. The grouping of
controllable devices is considered as the mother plant in this DR problem.

2. Set the number of mother plants in the search space, as well as the iteration count.
3. Randomly generate two points, the roots and the runners for every mother plant (2N points).

The possible allocation of the devices in the group will be obtained as 2N vectors.
4. Evaluate fitness (function to be optimized, e.g., fitness (x(i)) for every mother plant.
5. Using the roulette wheel, the best N/2 fitness out of the 2N vectors is selected, as well

as the elite selection selects the best N/2 fitness. The total of N best solutions from the
obtained 2N fitness value is selected. The left-out N values are eliminated. The best N
value takes part in the next iteration.

6. Repeat steps 3–5 until the termination condition is satisfied.

4.3. System Input Data

A sample system with residential, commercial, and industrial loads was considered
for the implementation of DR strategies. The chosen input data were simulated for the
different pricing schemes using SBY and PSO. The devices considered in the system are
categorized into controllable and uncontrollable devices. The list of controllable devices is
tabulated in Tables 2–5. The forecasted load areas are shown in Figure 3. For the industrial
load, the total number of shiftable devices considered was 109 (listed under six different
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types of equipment). Similarly, the total number of devices in the commercial area was
1992, with eight different types of devices. Furthermore, the total number of devices listed
in the residential area was 7807, with 14 types of devices. The TOU and RTP pricing in
$/kWh is depicted in Figure 4.

Table 2. Controllable loads present for the industrial area.

Type of Devices
First-Hour

Load
(kWh)

Second-
Hour Load

(kWh)

Third-
Hour Load

(kWh)

Fourth-
Hour Load

(kWh)

Fifth-Hour
Load

(kWh)

Sixth-Hour
Load

(kWh)

Number of
Devices

Water heater 12.5 12.5 12.5 12.5 - - 39
Welding machine 25.0 25.0 25.0 25.0 25.0 - 35

Fan 30.0 30.0 30.0 30.0 30.0 - 16
Arc furnace 50.0 50.0 50.0 50.0 50.0 50.0 8

Induction motor 100.0 100.0 100.0 100.0 100.0 100.0 5
DC motor 150.0 150.0 150.0 - - - 6

Total devices 109

Table 3. Hourly pricing and hourly load forecast.

Time
(h)

TOU
Pricing ($/kWh)

RTP
Pricing ($/kWh)

Forecasted Load in the
Residential Area (kWh)

Forecasted Load in the
Industrial Area (kWh)

24–1 0.0865 0.100 475.7 974.0
1–2 0.0811 0.100 412.3 876.6
2–3 0.0825 0.080 364.7 827.9
3–4 0.0810 0.085 348.8 730.5
4–5 0.0814 0.125 269.6 730.5
5–6 0.0813 0.090 269.6 779.2
6–7 0.0834 0.130 412.3 1120.1
7–8 0.0935 0.205 539.1 1509.7
8–9 0.1200 0.275 729.4 2045.5

9–10 0.0919 0.280 713.5 2435.1
10–11 0.1227 0.175 713.5 2629.9
11–12 0.2069 0.170 808.7 2727.3
12–13 0.2682 0.170 824.5 2435.1
13–14 0.2735 0.165 761.1 2678.6
14–15 0.1381 0.140 745.2 2678.6
15–16 0.1731 0.080 681.8 2629.9
16–17 0.1642 0.075 666.0 2532.5
17–18 0.0983 0.078 951.4 2094.2
18–19 0.0863 0.085 1220.9 1704.5
19–20 0.0887 0.060 1331.9 1509.7
20–21 0.0835 0.065 1363.6 1363.6
21–22 0.1644 0.060 1252.6 1314.9
22–23 0.1619 0.060 1046.5 1120.1
23–24 0.0887 0.060 761.1 1022.7

Table 4. Controllable loads present in the commercial area.

Type of Devices First-Hour Load
(kWh)

Second-Hour Load
(kWh)

Third-Hour Load
(kWh) Number of Devices

Water dispenser 2.50 - - 349
Dryer 3.50 - - 168
Electric kettle 3.0 2.50 - 192
Microwave oven 5.0 - - 255
Coffee maker 2.0 2.0 - 343
Fan 3.50 3.0 - 284
AC 4.0 3.5 3.0 245
Lights 2.0 1.75 1.50 156

Total 1992
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Table 5. Controllable loads present in the residential area.

Type of Devices

Hourly Consumption of a Device

Number of DevicesFirst-Hour Demand
(kWh)

Second-Hour Demand
(kWh)

Third-Hour Demand
(kWh)

Dryer 1.20 - - 308
Dishwasher 0.70 - - 430
Washing machine 0.50 0.5 - 967
Microwave oven 1.30 - - 375
Iron box 1.00 - - 830
Vacuum cleaner 0.40 - - 970
Fan 0.20 0.2 0.2 734
Electric kettle 2.00 - - 752
Toaster 0.90 - - 198
Rice cooker 0.850 - - 277
Hairdryer 1.50 - - 230
Blender 0.30 - - 933
Frying pan 1.10 - - 582
Coffee maker 0.80 - - 221

Total devices 7807

Figure 3. Forecasted industrial, commercial, and residential loads.

Figure 4. Pricing for each hour for RTP and TOU.
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5. Techno-Economic Analysis

The realization of DR with TOU and RTP pricing strategies was performed using the
SBY optimization algorithm and PSO to get the best optimal solution. The optimization
problem was executed for 24 h of load data. The combination of devices was considered as
the variable for this cost minimization problem. The SBY and PSO-based cost minimization
problem was executed with the number of mother plants and the swarm size of 12 for TOU
and 10 for RTP. The variable considered for both PSO and the SBY optimization algorithm
is the number of devices. Thereby, the complexity of this DR problem becomes tangled as
the number of variables increases.

The optimization results of DR implementation in a sample test system with the
residential, commercial, and industrial demand using PSO and SBY with TOU pricing were
obtained. The hourly costs for the three loads before and after the DR implementation are
displayed in Figures 5–10. According to the cost optimization results for the residential
area before and after DSM with TOU-PSO, the cost reduced when the load decreased at
the peak periods and was postponed to the off-peak periods. Before DSM, the total cost
was $2302.879, which is $134.81 more than the cost obtained by implementing the DR
strategy. Similarly, for the commercial load, a cost reduction of $182.76 was obtained with
TOU-PSO. Likewise, the cost minimization for the industrial load demand with TOU-PSO
was obtained at $546.855.

Figure 5. Hourly residential load before and after shifting using TOU-PSO.
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Figure 10. Hourly industrial load before and after shifting using TOU-SBY.

Further, the analysis was continued with SBY-based TOU to yield a better optimal
solution. The cost results for the residential, commercial, and industrial loads were obtained.
The SBY-based TOU provided a cost reduction of $174.17, $188.74, and $286.18 in the
residential, commercial, and industrial areas, respectively. It was also observed that, when
compared with PSO-TOU, the SBY-based TOU provided an additional cost reduction of
$39.36 (residential), $5.78 (commercial), and $28.11 (industrial) for 24 h.

Similarly, the RTP-based strategy using the distributed and the centralized algorithms
was executed using PSO and SBY. RTP-DP algorithms proceeded with tentative and power
allocation scheduling. Figures 11–16 display the optimal load curve after the distributed
RTP algorithm implementation using PSO and the strawberry optimization technique for
the residential, commercial, and industrial areas.

Figure 11. Hourly residential load before and after DSM using the distributed algorithm (RTP-PSO).
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Figure 12. Hourly commercial load before and after DSM using the distributed algorithm RTP-PSO.

Figure 13. Hourly industrial load before and after DSM using the distributed algorithm RTP-PSO.

Figure 14. Hourly residential load before and after DSM using the distributed algorithm RTP-SBY.



Mathematics 2021, 9, 2338 17 of 24

Figure 15. Hourly commercial load before and after DSM using the distributed algorithm RTP-SBY.

Figure 16. Hourly industrial load before and after DSM using the distributed algorithm RTP-SBY.

The optimal load scheduling results for 24 h after implementing the centralized RTP
algorithm in the residential, commercial, and industrial areas for the test system deploying
PSO optimization are shown in Figures 16–19. The results indicate that the cost reduction
using the centralized RTP algorithm for the residential, commercial, and industrial loads
was 2.45, 3.63, and 1.85% higher than with the distributed algorithm.

Figure 17. Hourly residential load before and after DSM using the centralized algorithm RTP-PSO.
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Figure 18. Hourly commercial load before and after DSM using the centralized algorithm RTP-PSO.

Figure 19. Hourly industrial load before and after DSM using the centralized algorithm RTP-PSO.

The results of the DSM implemented in the residential, commercial, and industrial
areas for the sample system with the SBY optimization algorithm adopting centralized
RTP are shown in Figures 20–22. The results perceived that the cost reduction obtained
for the centralized RTP algorithm was 4.1% (residential), 4.21% (commercial), and 3.81%
(industrial) more than for the distributed algorithm. The centralized scheduling algorithm
is based on both costs of electricity and postponement costs. Since the cost involved for the
delay of each appliance is considered, it minimizes the total cost of energy consumption for
a day and gives a better result compared to the distributed algorithm. Thus, the centralized
RTP algorithm provides better cost reduction. The comparison between the centralized
and distributed algorithm results is provided in the last section.
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Figure 20. Hourly residential load before and after DSM using the centralized algorithm RTP-SBY.

Figure 21. Hourly commercial load before and after DSM using the centralized algorithm RTP-SBY.

Figure 22. Hourly industrial load before and after DSM using the centralized algorithm RTP-SBY.
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6. Results and Discussion

The comparison of the DSM results with the TOU and RTP pricing (using both the
centralized and the distributed algorithms) for the residential, commercial, and industrial
areas are provided in Tables 6–8. The results illustrate that the DR implementation provided
a cost reduction of up to 14.8–21.84% depending on the demand and the DP strategy. It
was observed that the RTP is more economical than TOU for the system considered.
Furthermore, centralized-RTP fared better than distributed-RTP in scheduling the load
economically. This holds for both systems considered.

Table 6. Comparison of DSM with the TOU and RTP pricing for the industrial area.

Pricing and Optimization Cost before DSM ($) Cost after DSM ($) Cost Reduction (%)

TOU-PSO

5423.271

5165.19 4.750
TOU-SBY 5137.09 5.280
Distributed RTP-PSO 4855.70 10.50
Distributed RTP-SBY 4827.20 10.99
Centralized RTP-PSO 4632.36 14.60
Centralized RTP-SBY 4621.00 14.80

Table 7. Comparison of DSM with the TOU and RTP pricing for the commercial area.

Pricing and Optimization Cost before DSM ($) Cost after DSM ($) Cost Reduction (%)

TOU-PSO

3636.60

3443.88 5.30
TOU-SBY 3437.90 5.46
Distributed RTP-PSO 2994.00 17.70
Distributed RTP-SBY 2973.00 18.20
Centralized RTP-PSO 2885.26 20.70
Centralized RTP-SBY 2847.70 21.70

Table 8. Comparison of DSM with the TOU and RTP pricing for the residential area.

Pricing and Optimization Cost before DSM ($) Cost after DSM ($) Cost Reduction (%)

TOU-PSO

2302.879

2168.06 5.85
TOU-SBY 2128.71 7.56
Distributed RTP-PSO 1871.30 18.74
Distributed RTP-SBY 1842.50 19.99
Centralized RTP-PSO 1814.80 21.19
Centralized RTP-SBY 1799.90 21.84

Further, when the DSM results were compared on the optimization basis (PSO and
SBY), the SBY optimization algorithm offered a better cost reduction as shown in Figure 23.
Tables 9–11 provide the detailed analysis of the PAR calculation for the residential, com-
mercial, and industrial demand. The PARs of the forecasted residential, commercial, and
industrial loads were 1.8527, 1.701, and 1.6173, respectively.

Table 9. PAR calculation for the residential load.

Pricing and Optimization PAR

TOU-PSO 1.852
TOU-SBY 1.825
Distributed RTP-PSO 1.770
Distributed RTP-SBY 1.729
Centralized RTP-PSO 1.760
Centralized RTP-SBY 1.712



Mathematics 2021, 9, 2338 21 of 24

Table 10. PAR calculation for the commercial load.

Pricing and Optimization PAR

TOU-PSO 1.684
TOU-SBY 1.646
Distributed RTP-PSO 1.543
Distributed RTP-SBY 1.525
Centralized RTP-PSO 1.477
Centralized RTP-SBY 1.422

Table 11. PAR calculation for the industrial load.

Pricing and Optimization PAR

TOU-PSO 1.607
TOU-SBY 1.589
Distributed RTP-PSO 1.421
Distributed RTP-SBY 1.415
Centralized RTP-PSO 1.426
Centralized RTP-SBY 1.409

Figure 23. Cost reduction with the implementation of the demand response strategy.

The results obtained show that the PAR of the demand curve reduced with the DP
implementation. Moreover, the PAR obtained using SBY-based RTP was much better
compared to the PSO-based RTP algorithm. Thereby, the reduction of the peak load stress
is higher using the centralized RTP-SBY optimization algorithm.

7. Conclusions

This work focused on implementing DR strategies that are implemented using two
different optimization techniques for the industrial, commercial, and residential loads. The
DR program was performed using the TOU and RTP algorithms with PSO and the SBY
optimization technique on a test system with the residential, commercial, and industrial
loads. The RTP pricing algorithm was performed using both the distributed and the
centralized methodology. Despite complexity of the periodically varying pricing strategy,
the results obtained after shifting the load prove that DSM implementation is economical.
It reduces the peak load stress on the utilities and is highly beneficial for the customer in
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terms of electricity consumption cost reduction. When the techno-economic analysis was
performed to solve the DR problem, the SBY optimization algorithm worked better for all
the load scenarios considered.

Further, the comparative analysis performed for DP strategies showed that centralized
RTP using SBY provided a better solution than centralized RTP using PSO. Moreover, it
was found that the SBY optimization technique provided a lower PAR ratio for all the
three types of load considered. Thus, it can be concluded by the user that DSM with
RTP provides more significant benefits. When the distributed and the centralized RTP
algorithms were compared, the centralized algorithm offered better results for the test
system. The analysis would motivate the usage of DR in a smart grid environment since
these DR algorithms reduce the cost involved in power consumption.
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