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Abstract: As failures in rotating machines can have serious implications, the timely detection and 

diagnosis of faults in these machines is imperative for their smooth and safe operation. Although 

deep learning offers the advantage of autonomously learning the fault characteristics from the data, 

the data scarcity from different health states often limits its applicability to only binary classification 

(healthy or faulty). This work proposes synthetic data augmentation through virtual sensors for the 

deep learning-based fault diagnosis of a rotating machine with 42 different classes. The original and 

augmented data were processed in a transfer learning framework and through a deep learning 

model from scratch. The two-dimensional visualization of the feature space from the original and 

augmented data showed that the latter’s data clusters are more distinct than the former’s. The pro-

posed data augmentation showed a 6–15% improvement in training accuracy, a 44–49% improve-

ment in validation accuracy, an 86–98% decline in training loss, and a 91–98% decline in validation 

loss. The improved generalization through data augmentation was verified by a 39–58% improve-

ment in the test accuracy. 
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1. Introduction 

Rotating machines are the backbone of a variety of modern applications, such as 

power turbines, pumps, automobiles, and oil/gas refineries [1–5]. These machines are vul-

nerable to unavoidable malfunction during their operation due to load fluctuations, and 

material degradation with time. The unexpected failures of rotating machines may result 

in substantial economic losses associated with maintenance costs and production halts, as 

well as personnel casualties due to catastrophic failure. Commonly encountered defects 

in rotating machines are unbalance, misalignment, rubbing, cracks in the shafts, bearing 

faults, and gearbox fault [6,7]. For efficient maintenance strategies and the safe operation 

of rotating machines, it is imperative to detect, isolate, and quantify different defects in 

these machines in a timely manner. 

In the last decade, artificial intelligence (machine learning, deep learning) has been 

extensively applied for the fault diagnosis and prognosis of rotating machines. State of 

the art reviews of the use of machine learning and deep learning for the fault diagnosis of 

rotating machines can be found in recent articles [4,8,9]. Kolar et al. [10] proposed a fault 

diagnosis strategy for rotary machinery using a convolutional neural network (CNN); the 

vibration signals of a three-axis accelerometer were supplied as high-definition images to 

the CNN, which automatically extracted the discriminative features, and classified the 

input data into four classes: normal, unbalance, cracked rotor, and bearing fault. Qian  

et al. [11] proposed a transfer learning method called improved joint distribution adapta-

tion (IJDA) for the fault diagnosis of the bearing and the gearbox under variable working 

conditions. Janssens et al. [12] studied a convolutional neural network for the autonomous 
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feature learning of bearing faults, lubrication degradation, and rotor imbalance; their com-

parison between the autonomous feature learning through CNN and conventional hand-

crafted feature engineering showed that, in terms of accuracy, the former outperformed 

the later by 7.29%. Martinez-Rego et al. [13] employed one-class support vector machines 

(SVM) for the fault detection of a power windmill while using only the normal condition 

data during the training phase; the proposed method was able to identify the presence 

and evolution of defect in the datasets from simulation, controlled experiment, and the 

real windmill power machine. Li et al. [14] proposed least square mapping and fuzzy neu-

ral network for the condition diagnosis of rotating machinery, and verified the method 

for the outer-race defect, inner-race defect, and roller defect in rolling bearings. Umbraj-

kaar et al. [15] proposed the combination of artificial neural network and support vector 

machine for the assessment of parallel and angular misalignment under variable load con-

dition. Yan et al. [16] studied the unbalance fault in rotor using deep belief network (DBN), 

and the fusion of multisource heterogeneous information. 

In recent years, data-driven approaches have been extensively studied for the effi-

cient and robust fault diagnosis of rotating machines [4,17]. Depending on the size of data, 

data-driven techniques are employed either for fault diagnosis strategies machine learn-

ing, or deep learning. In the general framework of machine learning, the commonly em-

ployed processing steps are: the obtaining of sensor data in healthy and faulty states → 

preprocessing → discriminative feature extraction → feature selection → training/vali-

dation → testing of the pretrained model → deployment of the pretrained model for 

fault diagnosis [18,19], whereas, in the general framework of deep learning, the common 

processing steps are: sensor data in healthy and faulty states → preprocessing → auton-

omous feature extraction + training & validation → testing of the pretrained model → 

deployment of the pretrained model for fault diagnosis [20–22]. Although traditional ma-

chine learning algorithms are efficient for fault diagnosis from limited data, the process of 

feature engineering is labor-intensive, time-consuming, and requires sufficient domain 

knowledge and diagnostic skills. On the other hand, although deep learning eliminates 

the need for human engineered discriminative features, a substantial amount of healthy 

and faulty data is required to autonomously identify those features from the data. In prac-

tice, there exists an issue of data imbalance where there is sufficient data from the healthy 

state, while very limited data is available from the faulty states of the system. Contrary to 

the stochastic machine learning and deep learning models, deterministic artificial intelli-

gence (DAI) takes into account the first principles (i.e., underlying physics of the problem) 

whenever available [23,24]. 

To minimize economic loss and downtime by improving operational efficiency at in-

dustrial facilities, a fault diagnosis of the industrial assets is actively carried out. For the 

last decade, continuous research efforts have been made to replace the human expert-

based fault diagnostic procedures with artificial intelligence (AI)-based diagnostic meth-

ods. Whereas in the former, the diagnosis procedure is heavily dependent on the diagnos-

tic expertise of a human expert, in the latter, the condition of an industrial facility is as-

sessed by processing the sensor data in real-time. While human experts have limitations 

in assessing large amounts of data, recent advancements in hardware and software have 

allowed AI-based methods to efficiently process large data for diagnostic purposes. Alt-

hough deep learning-based diagnostic procedures automatically extract the discrimina-

tive features of different health states, the requirement of sufficient data from those health 

states impedes their applicability. In general practice, while sufficient healthy state data 

is available, it is very difficult to obtain faulty state data because, upon suspicion of a fault 

or failure, the system is immediately shut down. The data imbalance between different 

health states usually results in a biased system [25], where the probability of optimally 

identifying different health states drops significantly. The data imbalance usually restricts 

the application of deep learning models to only binary classification, i.e., healthy or faulty. 

One way to cope with the issue of data scarcity from healthy and faulty states is syn-

thetic data augmentation, where new samples are generated from the original data 



Mathematics 2021, 9, 2336 3 of 26 
 

 

through different techniques [26]. The process of data augmentation helps to improve the 

generalizability and robustness of deep learning-based diagnostic strategies [27]. For real-

world image classification via deep learning, commonly used data augmentation tech-

niques include random cropping, different levels of rotations, adding Gaussian noise, and 

contrast variations [28–30]. For time series data, commonly employed augmentation tech-

niques include cropping or slicing, widowing, the ensemble-based method, generative 

adversarial networks (GANs), and the addition of Gaussian noise [31–35]. Fu and Wang 

[36] proposed the combination of generative adversarial network (GAN) and stacked de-

noising auto-encoder (SDAE) for deep learning-based data augmentation and the fault 

diagnosis of bearings and gears. Li et al. [37] investigated the sample-based and dataset-

based augmentation methods using the augmentation techniques of adding Gaussian 

noise, masking noise, signal translation, amplitude shifting, and time stretching for bear-

ing fault diagnosis. Hu et al. [38] proposed a resampling technique based on order track-

ing for data augmentation and self-adaptive CNN for fault diagnosis from limited faulty 

states data. Kamycki et al. [39] proposed a synthetic data augmentation technique for time 

series classification using suboptimal warping. Liu et al. [40] proposed the four methods 

of adding noise, permutation, scaling, and warping for time series data augmentation, and 

verified these methods using a fully connected neural network and the pretrained model 

of ResNet. 

The current work proposes the augmentation of data through virtual sensors to pro-

vide deep learning models with additional information for the efficient detection, isola-

tion, and quantification of different faults in rotating machines. Virtual sensors are de-

fined in terms of actual proximity probes through the principle of coordinate transfor-

mation. The original and augmented datasets are transformed into scalograms, and pro-

cessed through the pretrained deep learning models of ResNet18 [41] and SqueezeNet [42] 

in a transfer learning framework, as well as through a deep learning model from scratch. 

The results of the original and augmented data are compared in terms of training accu-

racy, validation accuracy, training loss, validation loss, test accuracy, and the test confu-

sion matrix. The effect of the number of virtual sensors on the learning behavior of the 

deep learning models is demonstrated by considering data augmentation through 8 and 

16 virtual sensors. Furthermore, the effectiveness of data augmentation for fault diagnosis 

is shown by depicting the feature space of the original and augmented data set on a two-

dimensional plot through principal component analysis (PCA) [43], and t-distributed sto-

chastic neighbor embedding (t-SNE) [44]. The proposed approach would help in solving 

the issue of data imbalance between the healthy and faulty datasets, as well as syntheti-

cally augmenting limited experimental data for deep learning-based fault diagnosis. 

2. Proposed Methodology 

This section describes the proposed methodology of the fault detection, isolation, and 

quantification using synthetic data augmentation and deep learning algorithms. Figure 1 

shows a schematic of the overall process. 

In this process, several defects are simulated using Spectra-Quest’s Machinery Fault 

Simulator (SpectraQuest Inc. Richmond, VA, USA), and vibration data is obtained for each 

defect. The time-domain vibration responses are obtained through several sensors, and 

are transformed into scalograms in the original form, as well as after augmentation 

through virtual sensors. The details of synthetic data augmentation are discussed in Sec-

tion 2.2. The vibration scalograms of the original and augmented data are processed in 

two ways: to train a customized deep learning model from scratch, and to employ transfer 

learning using existing pretrained deep learning models. Finally, the results of the original 

and augmented datasets are compared in terms of the training, validation, and testing 

accuracies of the deep learning models. The following sections provide details of each 

stage of the proposed methodology. 
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Figure 1. Proposed methodology of synthetic data augmentation for fault diagnosis. 

2.1. Description of Dataset 

To evaluate the contributions of the current work and validate the proposed meth-

odology, a comprehensive dataset, named as machinery fault data base (MaFaulDa) [45], 

is selected. The chosen dataset is extensive enough and includes multiple faults in the 

rotor system and in the supporting bearings, with each fault at different severity levels 

and different speeds of operation. The SpectraQuest’s machinery fault simulator (MFS) 

alignment–balance–vibration trainer (ABVT) [46] was used to obtain the MaFaulDa in the 

form of a multivariate time series. Figure 2 shows the experimental setup to emulate the 

dynamics of mass unbalance, horizontal misalignment, vertical misalignment, and bear-

ing faults. 

 

Figure 2. Experimental setup to obtain the MaFaulDa dataset [47]. 

In this setup, the speed of rotation is measured by a tachometer. The axial, radial, and 

tangential accelerations are measured with two distinct sets of accelerometers, one at each 

bearing. The operational sound of the system is measured with a microphone. The eight 

sensors are used to acquire the healthy and faulty states data for 5 s at a rate of 50 kHz. 

Table 1 summarizes the types of health states, their severity levels, and speeds of opera-

tion. 

  

Rotating 

Machine

Normal

Unbalance

Misalignment

Bearing 

Faults

Synthetic Data 

Augmentation

Deep Learning 

from Scratch

Transfer learning

Results

Deep Learning 

from Scratch

Transfer learning

Results

Comparison

Vibration data, sound data

Multivariate time series

Scalograms

Scalograms

Virtual sensors

Microphone

Triaxial accelerometer

Radial 

accelerometer

Tangential 

accelerometer

Axial 

accelerometer

Servo-motor

Bearing house Coupling



Mathematics 2021, 9, 2336 5 of 26 
 

 

Table 1. Summary of different health states. 

Health State Severity Levels Speed of Operation and Number of Measurements 

Normal No fault 
49 speeds (737 to 3886 rpm) 

Total 49 × 8 = 392 time series 

Unbalance 10 g, 15 g, 20 g, 25 g, 30 g, 35 g 

6 g >> 49 speeds, 10 g >> 48 speeds, 15 g >> 48 speeds 

20 g >> 49 speeds, 25 g >> 47 speeds, 30 g >> 47 speeds 

35 g >> 45 speeds (Total 333 × 8 = 2664 time series) 

Horizontal Misa-

lignment 

0.5 mm, 1.0 mm, 1.5 mm, 2.0 

mm 

0.5 mm >> 50 speeds, 1.0 mm >> 49 speeds, 1.5 mm >> 49 

speeds, 2 mm >> 49 speeds (Total 197 × 8 = 1576 time series) 

Vertical Misa-

lignment 

0.51 mm, 0.63 mm, 1.27 mm, 1.4 

mm, 1.78 mm, 1.9 mm 

0.51 mm >> 51 speeds, 0.63 mm >> 50 speeds, 1.27 mm >> 50 

speeds, 1.4 mm >> 50 speeds, 1.78 mm >> 50 speeds, 1.90 mm 

>> 50 speeds (301 × 8 = 2408 time series) 

Bearing Faults 

Underhang Position (between 

rotor and motor): 

Outer Race fault 

Rolling Element fault 

Inner Race fault 

Outer race fault: {0 g >> 49 speeds, 6 g >> 48 speeds, 20 g >> 

49 speeds, 35 g >> 42 speeds (188 × 8 = 1504 time series)} 

Rolling element fault: {0 g >> 49 speeds, 6 g >> 49 speeds, 20 g 

>> 49 speeds, 35 g >> 37 speeds (184 × 8 = 1472 time series)} 

Inner race fault: {0 g >> 50 speeds, 6 g >> 49 speeds, 20 g >> 49 

speeds, 35 g >> 38 speeds (186 × 8= 1488 time series)} 

Overhang Position (rotor be-

tween bearing and motor): 

Outer Race fault 

Rolling Element fault 

Inner Race fault 

Outer race fault: {0 g >> 49 speeds, 6 g >> 49 speeds, 20 g >> 

49 speeds, 35 g >> 41 speeds (188 × 8 = 1504 time series)} 

Rolling element fault: {0 g >> 49 speeds, 6 g >> 49 speeds, 20 g 

>> 49 speeds, 35 g >> 41 speeds (188 × 8 = 1504 time series)} 

Inner race fault: {0 g >> 49 speeds, 6 g >> 43 speeds, 20 g >> 25 

speeds, 35 g >> 20 speeds (137 × 8 = 1096 time series)} 

In Table 1, three different bearings with outer race fault, rolling element fault, and 

inner race fault were placed one at a time at two different positions: the underhung posi-

tion (i.e., defective bearing between the rotor and motor), and the overhung position (i.e., 

having the rotor between the defective bearing and motor). Furthermore, the bearing 

faults were simulated in the presence of 0, 6, 20, and 35 g unbalances to make the imper-

ceptible faults more pronounced. The measurements from all the health states resulted in 

a 1951 × 8 multivariate time series, where 1951 is the number of different measurement 

scenarios, and 8 is the number of sensor signals for each scenario. The size of the database 

is 13 gigabytes and is available for download at the website [44].  

Several authors have used the MafaulDa database for the validation of their proposed 

methodology and proof of concept. Table 2 summarizes the previously performed re-

search using the same dataset as selected by the authors in the current work. 

Although the MaFaulDa dataset is comprised of 42 different classes of various sever-

ity levels (Table 1), the published literature on the dataset either studied the health states 

in general, without any consideration of the severity of each health state, or only studied 

a subset of the entire dataset. The objective of the current work is to demonstrate the ef-

fectiveness of synthetic data augmentation through virtual sensors for the fault diagnosis 

of rotating machines, by exploring the MaFaulDa dataset with all the health states, as well 

as the associated severity levels and the various speed of rotations of each health state. 
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Table 2. Summary of published literature using MafaulDa. 

# Method Type of Features Results Reference 

1 
Similarity-based 

modeling 

Statistical time and fre-

quency domain features 

Classification of faults in general without con-

sidering severity of different defects 
[48] 

2 

Optimize number 

of features and 

multilayer percep-

tron 

Statistical Features 

General classification of normal, unbalance, 

and misalignment only, without considering 

severity of different defects 

[49] 

3 

Multilayer percep-

tron and division 

of normal state 

data 

Fourier domain features 

General classification of normal, unbalance, 

and misalignment only, without considering 

severity of different defects 

[2] 

4 

Similarity based 

model and kernel 

discriminant anal-

ysis 

Feature vector from dis-

crete-time Fourier trans-

form, kurtosis, and en-

tropy of signal 

Categorize the unbalance health state only 

into high, medium, and low 
[50] 

5 

Synthetic minority 

over-sampling 

technique for im-

balance class data 

Statistical features and ro-

tational frequency 

Classification of faults in general without con-

sidering severity of different defects 
[51] 

6 
Deep learning and 

t-SNE 

Autonomous features 

from wavelet scalograms 

Bearing faults classification only with the ef-

fect of unbalance mass on each defect 
[52] 

7 

Ensemble convolu-

tional neural net-

work (EnCNN) 

Autonomous feature ex-

traction from sensor sig-

nals 

Fault classification using normal, horizontal 

misalignment and vertical misalignment data 

with severities.  

[47] 

2.2. Synthetic Data Augmentation 

To solve the issue of data imbalance, this paper employs the idea of virtual sensors 

to artificially augment the vibration data of different health states, and automatically learn 

the characteristics of different faults through deep learning. The concept of virtual sensors 

is based on the idea of looking at the same point in space from different perspectives, 

using different coordinate systems, as shown in Figure 3. 

In this, the same point P can have two different representations: P (x0, y0) on the X0, 

Y0 axes, and P (x1, y1) on the X1, Y1 axes, where the latter is obtained from the former 

through orientation at the origin by an angle of θ. The mathematical relation between the 

two coordinates for point P is expressed as follows: 

1 0 0

1 0 0

cos sin

sin cos

x x y

y x y

 

 

 

  
 

(1) 

Point P can be viewed in several different coordinates depending on the number of 

coordinate axes obtained from the base coordinate (X0, Y0) through orientation at the 

origin. The same principle can be extended to several scalar values in the time domain, 

such as a discrete vibration signal to look at that signal from different perspectives. 

In this work, the principle of coordinate transformation is employed to augment the 

vibration signals that are obtained through two proximity sensors that were installed at 

right angles, as shown in Figure 4. 
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Figure 3. Different perspectives of the same point through coordinate transformation. 

 

Figure 4. The idea of virtual vibration signals from the actual vibration signals through coordinate 

transformation. 

In this, due to symmetry around the centerline, the virtual vibration signals within 

the π rotation angle can be effective for synthetic data augmentation through virtual sen-

sors. The virtual vibration signals are obtained from the actual vibration signals of the 

proximity probes using the coordinate transformation, as follows: 

   

   

 

cos sin

sin cos

1,2,...,

Vm A A

Vm A A

x x m y m

y x m y m

m M

 

 

   

    


 

(2) 

where, the subscripts V and A refer to the virtual and actual signals, respectively. The term 

∆θ is the incremental angle of rotation between the actual and virtual sensors, and M = 

π/∆θ is the maximum number of virtual sensors that could be obtained from the actual 

signals. Wherein, due to the symmetry of the vibration signal around the centerline of the 

shaft, a maximum range for the incremental angle is 0–π. For a robust diagnostic strategy, 

the value of the incremental angle should be carefully chosen. A smaller value of the in-

cremental angle may result in too many virtual signals and the subsequent increase in the 

computational cost of the classification algorithm. In addition, the smaller incremental 

angle can lead to redundant data that may adversely affect the classification performance. 

On the other hand, a larger value of the incremental angle will result in only a few virtual 

signals that may not provide sufficient additional information for improving the classifi-

cation performance through virtual sensors. Moreover, because xVm is equal to yVm+N/2, only 

xVm was retained for data augmentation to avoid data duplication. The current work stud-

ies the effect of the incremental angle on the classification performance by comparing the 

results of larger and smaller incremental angles, as shown in Section 5. A more detailed 

discussion, and the validation of virtual signals, can be found in [53]. 
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In the literature, virtual sensing has been used for physical sensors replacement [54], 

as remote sensing for unobserved spectra [55], for estimating nonmeasurable quantities 

[56], and for the calibration of low-cost air quality sensors [57]. 

2.3. Scalograms of Vibration Signals 

Figure 1 shows that the sensor data, with and without augmentation, were trans-

formed into scalograms, which were processed with the deep learning models as image 

data. A scalogram contains the time–frequency information of a time series and is gener-

ated from the absolute values of the continuous wavelet transform (CWT) coefficient. The 

mathematical details on transforming a time domain signal into a scalogram can be found 

in the references [58–60]. For the current work, a CWT filter bank was precomputed in 

Matlab, and employed to transform the time domain signals into scalograms. For the cur-

rent work, the Matlab 2020b was employed with the Wavelet Toolbox for wavelet coeffi-

cients of the signal, the Image Processing Toolbox for wavelet coefficient-to-image (i.e., 

scalogram) conversion and the resizing of the image, and the Deep Learning Toolbox for 

the implementation of customized deep learning models and transfer learning through 

pretrained deep learning models. The type of wavelet used in the filter bank was the an-

alytic Morse wavelet (3,60), where 3 is the symmetry parameter, and 60 is the time–band-

width product [61–63]. To gain an intuitive idea of the data augmentation through virtual 

sensors, Figure 5 compares the scalograms of some specific cases of normal, unbalance, 

and misalignment for the original signals and their augmented forms. 

 

Figure 5. Scalograms of different healthy states for the original and augmented data: (a) normal 

original x; (b) normal original y; (c) normal virtual xv at π/8; (d) normal virtual xv at π/4; (e) unbalance 

original x; (f) unbalance original y; (g) unbalance virtual xv at π/8; (h) unbalance virtual xv at π/4; (i) 

vertical misalignment original x; (j) vertical misalignment original y; (k) vertical misalignment vir-

tual xv at π/8; (l) vertical misalignment virtual xv at π/4. (The horizontal line in the red rectangle 

shows the speed of rotation at steady state). 

In this, the x and y axes of the scalograms refer to the time and frequency content of 

the signals, respectively. The y-axis of the scalograms is on log scale to account for the 

wide range of operating speeds, the presence of different levels of noise, and the different 

harmonics-associated defects. The horizontal line in all the scalograms (rectangular box) 

denotes the speed of rotation at a steady state. From the comparison of Figure 5a,b with 

Figure 5c,d, it is observed that, although when observed with the naked eye the virtual 

signals show slight variation from the original signal, these slight variations would pro-

vide the deep learning model with additional information on the original signals, as 

demonstrated in Sections 4 and 5. The same is the case for the original and virtual signals 

of the unbalance and misalignment in Figure 5e–l . 
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3. Deep Learning Models 

The vibration-based scalograms of the original and the augmented datasets are pro-

cessed via two strategies of deep learning: transfer learning with preexisting deep learn-

ing models, and a customized deep learning model from scratch. The transfer learning 

strategies are employed to obtain baseline results by taking advantage of the architecture 

of the already available pretrained deep learning models developed by experts [64]. How-

ever, the fixed architecture and number of parameters of the pretrained deep learning 

models dilute their flexibility for problems of different types. The customized deep learn-

ing models could help to come up with deep learning models that are optimized in terms 

of architecture and the parameters for a specific problem. 

In the current work, the pretrained models of ResNet18 [41] (He et al., 2016) and 

SqueezeNet [42] are adopted to obtain the baseline results from the original and aug-

mented data using transfer learning. In transfer learning, the knowledge gained (e.g., 

weights, biases) from solving one problem is extended to solve another different, but re-

lated, problem [65]. For example, knowledge gained while learning to recognize real-

world images (e.g., cars, trucks, birds, and flowers) could be extended to identify faults in 

the vibration-based images of mechanical systems [66,67]. In the general framework of 

transfer learning, a large amount of labelled data with different categories is used as 

source data to optimize the parameters of a deep learning model, and then tune/transfer 

those parameters to another related task with a small amount of target data. 

In the general framework of transfer learning, all the layers of a well-trained network, 

except for the last layer, are transferred/copied to a new target task. The output layer of 

the well-trained deep learning model is modified according to the categories/classes of the 

target task, and the target data is used to tune the parameters of the network according to 

the new task. For mathematical elaboration, let the source (DSource) and target (DTarget) da-

tasets be denoted, as shown by Equation (3): 

 

 
Source Source Source

Target Target Target

,

,

D X L

D X L




 

(3) 

where, X and L denote the input data and its labels, respectively, as provided to the net-

work. 

In terms of deep learning, the mapping of the input data to the output labels for the 

source and target datasets can be represented as follows: 

 

 

_ _

Target _ Target Target Target _

,

,

Source pre Source Source Source par

pre par

L DLM X

L DLM X









%

%
 

(4) 

where, DLM denotes a deep learning model with parameters θ that maps the input data 

(X) to the actual output labels (L) through the predicted labels L%. 

In transfer learning, the mapping of the DLMSource is well-established by optimizing 

its parameters during the training process on the source task, as follows: 

 

  
_ _

_

arg min

arg min ,

Source par Source Source pre

Source Source Source Source par

L L

L DLM X





 

 

% %

 

(5) 

where, the term _Source par%  refers to the parameters of the deep learning model after train-

ing on the source data. 

In transfer learning, the trained parameters of the first n layers of the DLMSource are 

transferred to the target task, as follows: 

   Target _ _1: : 1:par Source parn n  %
 (6) 
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The other parameters of the DLMTarget are obtained during the training on the target 

data, as shown by Equation (7): 

     Target _ Target Target Target _ Targetarg min , 1: , :par Source parL DLM X n n m      
% %

 
(7) 

During the process of transfer learning, the parameters of the first n layers 

 _ 1:Source par n%  are fine-tuned with respect to the target training data using a small learn-

ing rate, while the parameters for the (n–m) layers θTarget (n:m) are trained from scratch on 

the target data. In general, the layers transferred from the source task to the target task are 

optimized for the detection and extraction of generic features and the input data, and are 

less sensitive to the variation of distribution of the inputs. 

To explore the feasibility of a problem-specific neural network to be designed and 

trained from scratch, the original and augmented datasets were also processed with the 

customized deep learning model of Table 3. 

Table 3. Architectural details of the customized deep learning model. 

Layer Name Description 

image input layer 100 × 100 × 3 Scalograms 

Convolution 1, Pooling 1 

Convolution layer (Filter 3 × 3, 16 Filters) 

Batch Normalization 

ReLU layer 

Max-pooling Layer (Filter 2 × 2, strides 2) 

Convolution 2, Pooling 2, 

drop-out 1 

Convolution layer (Filter 3 × 3, 32 Filters) 

Batch Normalization 

ReLU layer 

Max-pooling Layer (Filter 2 × 2, strides 2) 

dropout layer (0.2 drop out probability) 

Convolution 3, drop-out 2 

Convolution layer (Filter 3 × 3, 48 Filters) 

Batch Normalization 

ReLU layer 

dropout layer (0.2 drop out probability) 

Convolution 4, Pooling 4, 

drop-out 3 

Convolution layer (Filter 3 × 3, 64 Filters) 

Batch Normalization 

ReLU layer 

Max-pooling Layer (Filter 2 × 2, strides 2) 

dropout layer (0.2 drop out probability) 

Convolution 5, drop-out 5 

Convolution layer (Filter 3 × 3, 64 Filters) 

Batch Normalization 

ReLU layer 

dropout layer (0.2 drop out probability) 

Convolution 6 

Convolution layer (Filter 3 × 3, 64 Filters) 

Batch Normalization 

ReLU layer 

Global pooling Max-pooling Layer ([1 13]) 

Fully connected layer 42 classes  

classification layer  with SoftMax function for classification  

Specific details on the function of each layer of the network are briefly described as 

follows: 

Convolutional Layer: In the convolutional layers, a feature map is realized by applying 

a filter or kernel to the local regions of the input, shown by Figure 6. 
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Figure 6. Illustration of convolution operation of a single filter on a single patch of the image. 

The filter is an array of weight and biases which is multiplied with a patch of the 

image to obtain a weighted combination (scalar value) of that region of the input. The 

filter is applied multiple times to the input image and this results in a filtered image at the 

output, often referred to as the activations, or feature map, of that filter. There are as many 

filtered images at the output of a convolutional layer as the number of filters in that layer, 

and the filtered images are arranged in the form of three-dimensional array. The third 

dimension of the convolutional output is known as the number of channels. A typical 

example of output from the first convolutional layer of the deep learning model of Table 

3 is shown in Figure 7. 

 

Figure 7. An example of the feature map realized by 16-filter of the 1st convolution layer. 

Herein, it is observed that each filter is realizing different features of the input image, 

which are supplied to the next layers for further processing. The convolution process is 

mathematically described by Equation (8). 

 i i i i

k k kA W L j B    (8) 

where, A is the output feature map of the filter, W and B, respectively, refer to the weights 

and bias of the filter, and L is the j-th local region. The subscript k and superscript i refer 

to the k-th filter in the i-th layer. 

Batch Normalization: the batch normalization layer normalizes the input from the pre-

vious layer to mitigate the problem of the internal covariance shift, expediates the training 

process, and improves the accuracy of the model. During batch normalization, the output 

from the previous layer (the convolutional layer in this case) is first normalized by using 

the mean (μ) and standard deviation (σ) of the values, as shown by Equation (9). 

 
i

i norm

y
y



 





 (9) 

*

Input image

Local 

region
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(Kernel) Weighted combination 

(feature/activation)
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Wherein, ε is a smoothing term to ensure numerical stability and avoid the division 

with a zero value. The learnable parameters of γ (gamma) and β (beta) are employed to 

rescale and offset the normalized values, as shown by Equation (10). 

 i i norm
y y    (10) 

The optimum values for the parameters of γ (rescaling) and β (offsetting) are ob-

tained during the training process. 

Activation layer (ReLU): The activation layer enhances the representational ability of 

the deep learning network by adding nonlinearity to the output from the previous layer. 

In the literature, commonly adopted activation functions are linear, tanh, sigmoid, and 

the rectified linear unit (ReLU). In this work, the ReLU was employed as an activation 

function as it accelerates the convergence of the deep learning model. The ReLU is math-

ematically described as shown by Equation (11). 

 ( ) max 0,c i iA f y y   (11) 

where Ac is the activation of the input yi. The ReLU returns a zero value if it receives a 

negative value and passes the positive value without any alteration, as shown in Figure 8. 

Pooling Layer: The pooling layer reduces the spatial size of the feature space by 

downsampling the output from the previous layer with the aim of reducing the variance 

of the feature space and the number of parameters of the network. More specifically, the 

max-pooling layer reduces a subregion to its maximum, as shown in Figure 8. 

 

Figure 8. Conceptual explanation of ReLU and max-pooling. 

Wherein, a max-pooling filter of the size 2 × 2 is moved two cells to the right and two 

cells downward (stride 2 × 2) to downsample the feature space. 

Dropout Layer: The dropout layer [68], with a dropout probability in a range between 

0–1, is added to ignore randomly chosen neurons during the training process. The aim of 

the dropout layer is to reduce the chances of overfitting by reducing the codependency of 

neurons during the training of the network. 

The last global pooling layer is employed to reduce the number of parameters for the 

last fully connected layer by pooling the feature space. The classification layer with soft-

max function [69,70] is used to associate the feature space with 42 different classes. A more 

detailed discussion on the functions, and their related mathematical details, for different 

layers of the deep learning models can be found in [71–73]. 

4. Results on the Original Data 

This section describes the results of transfer learning models (ResNet18, SqueezeNet) 

and a customized convolutional neural network using the scalograms of the original data 

from the rotor system of Figure 2. 

4.1. Transfer Learning Results 

The dataset of Table 1 is comprised of 1951 scenarios of 42 different classes, and each 

class is described in terms of eight signals obtained through the sensors. For the original 

dataset, without augmentation, all of the 15,608 (1951 × 8) time series were transformed 

directly into scalograms, without any preprocessing. The reason for considering the sig-

nals from all the sensors is to provide the deep learning model with sufficient data. The 

15,608 scalograms of the original data were split into 80% training data, 10% validation 

2 10 4 5

8 -2 7 9

8 6 7 3

3 -1 5 4

ReLU

2 10 4 5

8 0 7 9
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3 0 5 4

Max-Pooling 

with stride 2 2
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data, and 10% test data. To leverage the knowledge of the pretrained networks and get a 

baseline accuracy on the original data, the deep learning models of ResNet18 and 

SqueezeNet were employed in a transfer learning framework. The reason for choosing 

two different pretrained models for transfer learning was to show the effect of the type of 

pretrained model. Figure 9 shows that the training and validation processes of the two 

models were interpreted in terms of accuracies and losses. 

  

(a) (b) 

Figure 9. Training and validation results of transfer learning on original data using: (a) ResNet18; (b) SqueezeNet. (Solid 

line shows training, dot refers to validation). 

For transfer learning, both the networks were trained and validated for 50 epochs, 

with a learning rate of 0.001. In the training and validation plots of Figure 9, though the 

two models show an increasing trend in their training accuracy, and a decreasing trend in 

their training loss, their validation accuracy and validation loss do not follow the same 

trend. As the number of iterations/epochs increases, the difference between the training 

accuracy and validation accuracy also increases, and with the increasing number of 

epochs, the validation accuracy stops increasing further. A similar trend is observed for 

the training loss and validation loss, where with the increasing number of epochs, the 

validation loss stops decreasing further. The learning behavior of the deep learning mod-

els shown in Figure 9 is generally referred to as “Overfitting” [11,74,75] where, although 

the model fits the training data well, it cannot be generalized to new unseen instances of 

the problem at hand. Specifically, in the case of overfitting, the deep learning model 

learns/memorizes patterns that are more specific to the training data and cannot extend 

that pattern recognition capability to unseen data, thus hindering its reliable deployment 

for the health monitoring of an industrial asset. Moreover, while ResNet18 performs better 

than SqueezeNet in terms of training and validation accuracies, the validation loss of Res-

Net18 is larger than the validation loss of SqueezeNet. Furthermore, if looked at without 

the validation accuracy, the high training accuracy of ResNet18 could be misleading. Fig-

ures 10 and 11 show the poor performance of an overfitted model on new unseen instances 

that can be observed from the confusion matrix of ResNet18 and SqueezeNet on the 10% 

test set. 

In these, the rows and columns correspond to the labels of the true or actual classes, 

and the labels as predicted by the network for the given classes, respectively. The correctly 

and incorrectly classified observations are shown in cells on the diagonal and off-diago-

nal, respectively. The last column on the far right corresponds to the percentage of cor-

rectly classified observations for the actual or true classes, often referred to as the recall. 

The last row at the bottom shows the percentage of correctly classified observations of the 

predicted classes, commonly referred to as the precision. In general, the higher values of 

92.97 % training

67.0 % validation

0.2393 % training loss

1.665 % validation loss

83.59% training 

58.53% validation 

0.5467% training loss

1.445 % validation loss
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recall and precision reflect an optimally trained deep learning model. The test confusion 

matrix of Figure 10 shows that the deep learning model trained on the original dataset is 

confusing the observations of the same damage type (e.g., unbalanced of 6 g with unbal-

ance of 10 g), as well as damage of different types (e.g., normal with unbalance, unbalance 

with misalignment, or bearing faults with misalignment). 

 

Figure 10. Test confusion matrix of ResNet18 on 10% of original dataset, 69.49% test classification accuracy. (1: normal; 2–

8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misalignment of (0.5, 1, 1.5, 2) mm; 13–18: vertical 

misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–22: overhung position ball fault with (0, 6, 20, 35) g unbalance; 23–

26: overhung position cage fault with (0, 6, 20, 35) g unbalance; 27–30: overhung position outer race fault with (0, 6, 20, 35) 

g unbalance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: underhung position cage fault 

with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 35) g unbalance) (R: Recall, P: 

Precision). 

More specifically, from the first row, out of the 39 observations for the normal case, 

33 are correctly classified as normal, one as an unbalance with 6 g, one as a horizontal 

misalignment of 1.5 mm, one as a vertical misalignment of 1.27 mm, two as vertical misa-

lignments of 1.9 mm, and one as a cage fault in the bearing at the underhung position. 

Similarly, from the second row, 23 out of 39 observations are correctly classified as unbal-

ance of 6 g, one as normal, six as unbalance with 10 g, two as unbalance with 20 g, two as 

unbalance with 30 g, two as a horizontal misalignment of 0.5 mm, two as a vertical misa-

lignment of 1.4 mm, and one as a cage fault in the bearing at the overhung position. The 

poor classification performance is also clearly observed from the low values of the recall 

R %

1 33 1 1 1 2 1 85

2 1 23 6 2 2 2 2 1 59

3 1 4 23 1 3 1 1 1 1 1 1 60

4 2 1 4 16 9 2 1 1 1 1 42

5 1 2 6 14 9 2 1 1 1 1 1 36

6 1 3 4 20 5 2 1 1 1 53

7 1 5 23 6 1 1 1 60

8 7 29 81

9 1 35 1 1 1 1 88

10 1 2 4 28 2 1 1 72

11 2 1 2 2 27 1 1 1 1 1 69

12 2 1 1 2 28 1 2 1 1 72

13 2 30 5 1 1 1 1 73

14 6 31 1 1 1 77

15 1 1 31 3 2 2 77

16 1 4 30 3 1 1 75

17 1 1 1 3 30 4 75

18 1 2 4 8 22 1 1 55

19 33 3 1 1 1 85

20 6 16 9 1 1 1 47

21 1 16 2 1 80

22 1 8 7 44

23 1 1 30 3 1 1 1 1 77

24 3 1 4 26 1 1 2 1 67

25 1 2 1 1 3 25 2 3 1 64

26 1 1 1 24 3 2 1 73

27 1 1 35 2 90

28 1 1 1 4 30 1 1 77

29 1 1 8 18 8 1 1 1 46

30 1 1 3 28 85

31 1 28 9 1 1 70

32 2 1 5 27 3 1 69

33 1 1 1 6 25 5 64

34 2 7 21 70

35 1 2 31 4 1 79

36 1 1 1 1 1 4 26 1 1 1 68

37 3 1 1 1 1 2 29 74

38 1 1 1 1 1 4 24 1 71

39 1 1 1 1 1 1 1 1 31 79

40 1 1 2 1 1 1 3 29 74

41 1 1 1 1 1 6 27 1 69

42 1 1 1 1 3 23 77
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and precision for different classes. Like the confusion matrix of ResNet18, the same inter-

class and intra-class confusion of different damage scenarios and different damage classes 

can be observed in the confusion matrix of SqueezeNet, as shown in Figure 11. Moreover, 

the relatively poor performance of SqueezeNet during the training process can be ob-

served in Figure 11 from its relatively lower test classification accuracy of 60.95%. 

 

Figure 11. Test confusion matrix of SqueezeNet on 10% of original data set, 60.95% test classification accuracy. (1: normal; 

2–8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misalignment of (0.5, 1, 1.5, 2) mm; 13–18: vertical 

misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–22: overhung position ball fault with (0, 6, 20, 35) g unbalance; 23–

26: overhung position cage fault with (0, 6, 20, 35) g unbalance; 27–30: overhung position outer race fault with (0, 6, 20, 35) 

g un-balance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: underhung position cage fault 

with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 35) g unbalance) (R: Recall, P: 

Precision). 

To further explore the performance of a network that overfits the training data, t-

distributed stochastic neighbor embedding (t-SNE) was employed to visualize the fea-

tures from the last layer of ResNet18. In this work, principal component analysis (PCA) 

was used to reduce the dimensionality of the activations from the last pooling layer (i.e., 

pool 5) from 512 to 50, and the Barnes–Hut variant of the t-SNE algorithm [76] was used 

to visualize the distribution of different classes. Figure 12 shows a two-dimensional plot 

of the distribution of different classes. 

In this, the overlap between the clusters of different classes reflects the poor perfor-

mance and low classification accuracy of the deep learning model on the original data. 

Moreover, a model trained on the data with no clear distinction between different classes 

R %

1 29 2 3 2 1 1 1 74

2 7 26 3 1 1 1 67

3 1 5 17 3 3 2 1 1 1 1 1 1 1 45

4 1 1 11 9 3 10 1 1 1 24

5 1 1 3 2 16 10 4 1 1 41

6 1 2 18 11 2 1 2 1 47

7 2 1 1 7 22 3 1 1 58

8 1 5 6 16 1 1 1 1 1 1 1 1 44

9 1 1 1 1 22 1 5 1 1 6 55

10 3 1 2 30 1 1 1 77

11 1 1 1 1 30 1 1 1 1 1 77

12 1 1 7 24 2 1 1 1 1 61

13 2 2 7 25 2 1 1 1 17

14 1 1 1 1 31 1 1 2 1 77

15 1 1 1 1 26 5 3 2 65

16 1 1 3 1 26 5 1 1 1 65
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18 1 2 2 10 21 1 1 1 1 52
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20 10 21 3 62
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26 1 1 1 5 19 4 2 58

27 1 1 2 1 1 1 26 2 2 1 1 67
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32 1 2 8 19 8 1 49

33 1 3 3 26 6 67

34 1 1 8 20 67

35 1 2 1 1 1 1 23 4 3 1 1 59

36 1 1 1 1 1 1 1 4 19 7 1 50

37 4 1 1 1 1 3 5 21 2 54
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42 1 1 1 1 1 1 24 80
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would not be able to generalize well to new unseen instances, as shown in the test confu-

sion matrices of Figure 10. 

 

Figure 12. Visualization of the activations from layer "pool5" of ResNet18 on original data via PCA 

and t-SNE. (1: normal; 2–8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misa-

lignment of (0.5, 1, 1.5, 2) mm; 13–18: vertical misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–

22: overhung position ball fault with (0, 6, 20, 35) g unbalance; 23–26: overhung position cage fault 

with (0, 6, 20, 35) g unbalance; 27–30: overhung position outer race fault with (0, 6, 20, 35) g unbal-

ance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: underhung position 

cage fault with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 

35) g unbalance). (Refer to online color version for clarity). 

4.2. Results from the Customized CNN 

The dataset used in the transfer learning framework was also processed through the 

customized deep learning model of Table 3, and Figure 13 shows the training and valida-

tion process of the network. 

 

Figure 13. Training and validation performance of customized deep learning model original data. 

(Solid line shows training, dot refers to validation). 

86.71 % training

64.18 % validation

0.4735 % training loss

1.1284 % validation loss
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The learning rate was kept at 0.001, and the network was trained for 50 epochs. From 

the training and validation performance of the network, it is that this network is perform-

ing relatively better than the transfer learning model of SqueezeNet. However, it has also 

overfitted the training data, and could not be generalized well to new unseen observa-

tions. The poor performance of the overfitted customized deep learning model on new 

observations could be verified from the test confusion matrix of Figure 14. 

 

Figure 14. Test confusion matrix of the customized CNN on 10% independent test dataset, 63.71% test classification accu-

racy. (1: normal; 2–8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misalignment of (0.5, 1, 1.5, 2) mm; 

13–18: vertical misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–22: overhung position ball fault with (0, 6, 20, 35) g 

unbalance; 23–26: overhung position cage fault with (0, 6, 20, 35) g unbalance; 27–30: overhung position outer race fault 

with (0, 6, 20, 35) g un-balance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: underhung 

position cage fault with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 35) g unbalance) 

(R: Recall, P: Precision). 

In this, the misclassified instances at the off-diagonal positions, and the lower values 

of recall and precision, confirm the poor performance of the overfitted network on new 

observations. 

5. Results on Augmented Data 

This section discusses the results of the transfer learning model of ResNet18 and cus-

tomized CNN on the two scenarios of augmented data; a dataset augmented through 
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eight virtual sensors, and a dataset augmented through 16 virtual sensors. The incremen-

tal angles for 8 and 16 virtual sensors were chosen to be (2k + 1)π/16 and (2k + 1)π/32 with 

k as an integer from 0–7 for eight sensors and 0–15 for 16 sensors around the shaft. The 

reason for the two scenarios of 8 and 16 virtual sensors is to evaluate the effect of the 

number of virtual sensors on the data augmentation and classification performance. To 

demonstrate the effectiveness of data augmentation on the performance of a deep learning 

model, only ResNet18 is employed for transfer learning, as it showed relatively good per-

formance on the original data. Furthermore, for the case of augmented data, all the other 

signals are excluded from the analysis, other than the radial, tangential, and virtual sig-

nals. The reason is that the process of synthetic data augmentation increases the size of 

data for deep learning, as well as provides the network with extra information on the 

dependence of the faults on the direction of the sensors, which may eliminate the need for 

extra sensors [52]. After synthetic augmentation through eight virtual sensors, the size of 

the data is comprised of 19,510 time series, whereas the size of the data after augmentation 

through 16 virtual sensors is comprised of 35,118 time series. Like the analysis for the 

original data, the augmented data was processed through a transfer learning model to 

leverage the knowledge of a pretrained model, and through a customized CNN to explore 

the feasibility of a CNN from scratch. For both the learning strategies, the dataset was 

randomly split into 80% training data, 10% validation data, and 10% test data. 

Transfer Learning via ResNet18 

Figure 15 shows the results of the transfer learning model of ResNet18 on the data 

augmented through eight virtual sensors, described in terms of accuracy and loss. 

 

Figure 15. Training and validation results ResNet18 on data augmented data via eight virtual sen-

sors. (Solid line shows training, dot refers to validation). 

In this, the relatively decreased gap between the training and validation accuracy, as 

well as between the training and validation loss, reflect an optimum learning of the Res-

Net18 from the augmented data. In this, by “optimum”, we mean a deep learning model 

that neither underfits nor overfits the given dataset. Compared with the performance of 

ResNet18 on the original data set of eight sensors without data augmentation, the training 

and validation accuracies have increased by 5.87 and 43.97%, whereas after data augmen-

tation through eight virtual sensors, the training and validation losses have decreased by 

86.96 and 91.5%, respectively. In this, the higher increment in the validation accuracy, and 

decrements in the training and validation losses, show that the deep learning model can 

learn more generalizable features from the augmented data than from the original data. 

To further verify the optimum learning of the transfer learning model from the augmented 

98.43 % training

96.46 % validation

0.0312 % training loss

0.1415 % validation loss
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data, the pretrained model is employed to make predictions on the 10% unseen test data, 

and Figure 16 shows the prediction results in the form of a confusion matrix. 

 

Figure 16. Test confusion matrix of ResNet18 on 10% independent test data from the data augmented through eight virtual 

sensors, 96.36% accuracy. (1: normal; 2–8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misalignment 

of (0.5, 1, 1.5, 2) mm; 13–18: vertical misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–22: overhung position ball fault 

with (0, 6, 20, 35) g unbalance; 23–26: overhung position cage fault with (0, 6, 20, 35) g unbalance; 27–30: overhung position 

outer race fault with (0, 6, 20, 35) g un-balance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: 

underhung position cage fault with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 35) 

g unbalance) (R: Recall, P: Precision). 

Here, the testing accuracy has increased by 38.67% on the augmented data. It is ob-

served that, compared with the confusion matrix of ResNet18 on the original data in Fig-

ure 10, the relatively higher values for the correct classifications at the main diagonal, and 

smaller values of misclassification in the off-diagonal cells, reflect the relatively better gen-

eralization of the model that is trained on the augmented data. Moreover, compared with 

the confusion matrix on the original data, the confusion between different damage types 

has substantially decreased, and the only loss of accuracy is due to the confusion between 

the similar damage type with different severity levels. The improvement in the classifica-

tion performance is also observed from the relatively higher values of recall and precision. 

To visualize the optimum learning of ResNet18 from the augmented data, the dimen-

sions of the activations or features of the last max-pooling layer “pool5” were reduced 

through PCA and t-SNE. PCA was employed to reduce the dimensions from 512 to 50, 

and then t-SNE with the Barnes–Hut algorithm was used to visualize the distribution of 

different classes. Figure 17 depicts a two-dimensional plot of the distribution of different 

classes. 
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16 1 96 3 96

17 1 2 2 95 95

18 3 97 97

19 98 100

20 1 83 2 96

21 50 100

22 1 6 32 1 80

23 96 2 98

24 1 96 1 98

25 1 2 94 1 96

26 82 100

27 2 94 2 96

28 1 1 1 1 93 1 95

29 1 96 1 98

30 1 81 99

31 98 1 1 98

32 5 90 2 1 92

33 1 95 2 97

34 1 9 66 87

35 97 1 99

36 1 1 3 91 95

37 98 100

38 1 1 1 81 96

39 98 100

40 1 97 99

41 1 97 99

42 74 100

99 96 91 92 91 95 91 93 89 100 100 99 97 100 98 93 100 97 99 99 86 100 98 96 99 99 100 98 100 91 95 98 89 93 94 97 99 100 100 99 100 100
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Figure 17. Visualization of the activations from layer “pool5” of ResNet18 on the augmented data via PCA and t-SNE. (1: 

normal; 2–8: unbalance with (6, 10, 15, 20, 25, 30, 35) g mass; 9–12: horizontal misalignment of (0.5, 1, 1.5, 2) mm; 13–18: 

vertical misalignment of (0.51, 0.63, 1.27, 1.4, 1.78, 1.9) mm; 19–22: overhung position ball fault with (0, 6, 20, 35) g unbal-

ance; 23–26: overhung position cage fault with (0, 6, 20, 35) g unbalance; 27–30: overhung position outer race fault with (0, 

6, 20, 35) g un-balance; 31–34: underhung position ball fault with (0, 6, 20, 35) g unbalance; 35–38: underhung position cage 

fault with (0, 6, 20, 35) g unbalance; 39–42: underhung position outer race fault with (0, 6, 20, 35) g unbalance). (Refer to 

online color version for clarity). 

Compared with Figure 12 for the original data, Figure 17 shows the clear distinction 

between the clusters of different classes, which reflects the improved performance of the 

deep learning model on the augmented data. 

To see the effect of the number of virtual sensors on the performance of the deep 

learning model, the original dataset was also augmented with 16 virtual sensors resulting 

in 35,118 time series. The time series data was transformed into scalograms, and split into 

80% training data, 10% validation data, and 10% test data. The data was processed with 

ResNet18, and Figure 18 shows its performance described in terms of accuracy and loss. 

Compared with Figure 15 for data augmented through eight virtual sensors, the gap 

between the training and validation accuracy in Figure 18, as well as that between the 

training and validation loss, have further decreased, reflecting the further improvement 

in learning by the model from the data. For the data augmented through 16 virtual sen-

sors, the training accuracy has increased by 1.60 and 7.56%, validation accuracy has in-

creased by 1.88 and 46.68%, training loss has decreased by 86.22 and 98.2%, and validation 

loss has decreased by 48.69 and 95.64%, relative to the data augmented through eight vir-

tual sensors, and the original data without augmentation, respectively. However, increas-

ing the number of virtual sensors also increased the size of the dataset, resulting in an 

increased preprocessing time of the signal-to-image transformation, and computational 

time for the training of the deep learning model. 

The customized deep learning model of Table 3 was employed to study the feasibility 

of a CNN model from scratch on the augmented data. The customized CNN was em-

ployed to process the data augmented through 8 and 16 virtual sensors, and Figure 19 

shows its training and loss curves on the two sets of augmented data. 
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Figure 18. Training and validation results of ResNet18 on data augmented via 16 virtual sensors. 

(Solid line shows training, dot refers to validation). 

  

(a) (b) 

Figure 19. Training and validation results on augmented data via customized deep learning model: (a) results on data 

augmented through eight virtual sensors; (b) results on data augmented through 16 virtual sensors. (Solid line shows 

training, dot refers to validation). 

Comparison of the performance of the customized deep learning model on the orig-

inal data in Figure 13 with its performance on the augmented data in Figure 19 shows that 

the data augmentation through virtual sensors helps the network extract additional infor-

mation from the original data, and minimizes the difference between the training and val-

idation accuracy and loss, thus solving the issue of overfitting. Furthermore, the compar-

ison of Figure 19a,b observes that the data augmented through 16 virtual sensors results 

in better validation accuracy than the data augmented through eight virtual sensors. 

To summarize the effect of data augmentation, Table 4 compares the improvement 

of the classification performance of Resnet18 and the customized deep learning model on 

the data augmented through 8 and 16 virtual sensors in comparison with the data without 

augmentation. 

Wherein, it is observed that the data augmentation through virtual sensors improves 

the training and validation accuracies, and that the increment in the validation accuracy 

is more pronounced than the training accuracy. The relatively more significant increment 

in the validation accuracy through data augmentation reflects that the deep learning mod-

els are extracting more generalized features from the augmented data compared with the 

features from the original data. 

100 % training

98.278 % validation

0.0043 % training loss

0.0726 % validation loss

100 % training (15.3 % increase)

95.77 % validation (49.22 % increase) 

0.0238 % training loss (94.9 % decrease)

0.1518 % validation loss (86.54 % decrease)

99.2 % training (14.4 % increase)

97.22 % validation (51.48 % increase)

0.0307 % training loss (93.5 % decrease)

0.0898 % validation loss (92.0 % decrease)
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Table 4. Improvement in the classification performance due to data augmentation in comparison with the original data 

without augmentation. 

Network 
Training  

Accuracy% 

Validation  

Accuracy% 
Training Loss% Validation Loss% 

ResNet18 

(8 virtual sensors) 

Increased by 

5.87 

Increased by 

43.97 

Decreased by 

86.96 
Decreased by 91.5 

Customized CNN (8 virtual 

sensors) 

Increased by 

7.56 

Increased by 

46.68 
Decreased by 98.2 Decreased by 95.64 

ResNet18 

(16 virtual sensors) 

Increased by 

15.3 

Increased by 

49.2 

Decreased by 

94.9 
Decreased by 93.5 

Customized CNN (16 virtual 

sensors) 

Increased by 

14.4 

Increased by 

41.5 
Decreased by 86.5 Decreased by 92.0 

Although deep learning models offer the advantage of automatically learning the 

characteristics of different health states for the diagnostics of real machines, a substantial 

amount of data from different health states is usually required. 

In real scenarios, while sufficient data is easily available from the normal health state, it is 

difficult, or sometimes impossible, to get sufficient data from the faulty states because of 

the cost associated with running a machine in the presence of defects. The data imbalance 

(large quantity of normal state data, and limited data from faulty states) often poses diffi-

culties in developing efficient deep learning-based diagnostic models, and the developed 

models are usually for binary level classification: healthy or faulty. The data augmented 

through virtual sensors, and its effectiveness as demonstrated in the current work, could 

help in synthetically augmenting the limited data from the faulty states of rotating ma-

chines, and in developing a diverse and efficient diagnostic technology using deep learn-

ing. 

6. Conclusions 

This paper proposes a synthetic data augmentation scheme for the deep learning-

based damage diagnosis of rotating machinery. The process of data augmentation em-

ployed the concept of virtual sensors that were defined in terms of the actual proximity 

probes through coordinate transformation. To validate the effectiveness of the proposed 

data augmentation, the original and augmented datasets were processed through the pre-

trained models of ResNet18 and SqueezeNet in a transfer learning framework, and 

through a customized deep learning model that was developed and trained from scratch. 

The performance of the deep learning models was evaluated in terms of training accuracy, 

validation accuracy, training loss, validation loss, and the test confusion matrix. It was 

found that all three deep learning models overfitted the original data and confused dif-

ferent severity levels of the same damage type (e.g., unbalance of 6 g confused with un-

balance of 10 g), as well as damage of different types (normal state confused with unbal-

ance, misalignment, bearing faults, etc.). To see the effect of the number of the virtual sen-

sors, the vibration response signals from the orthogonal proximity probes were aug-

mented through 8 and 16 virtual sensors and processed through the transfer learning 

model of ResNet18 and the customized deep learning model. The training and validation 

curves of the deep learning models showed that the data augmentation provided the deep 

learning networks with a better representation of the original data and solved the problem 

of overfitting. The test confusion matrix of the model pretrained on the augmented data 

reflected relatively better generalization, and the improved values of precision recall the 

false discovery rate, and the false negative rate. To enable visual insight into the effect of 

data augmentation, the features of the original and augmented datasets were reduced in 

dimension and visualized through principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE). While the clusters of the different health states of 
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the original date were overlapping and not separable, the clusters of the augmented data 

were distinct and easily separable. 

The proposed approach eliminates the need for handcrafted statistical features by 

automatically extracting the discriminative features of different health states from the raw 

signals of the sensors without any preprocessing, and is robust to various speeds of oper-

ation. The work shows the leveraging of knowledge of the pretrained deep learning model 

in a transfer learning framework, as well as the feasibility of the deep learning model de-

veloped and trained from scratch. The obtained results show the effectiveness of data aug-

mentation where 42 different classes with small differences were classified with higher 

training, validation, and testing accuracy from the augmented data. The data augmenta-

tion through virtual sensors shows the possibility of processing limited data from rotating 

machines for diagnosis through the deep learning model. The proposed approach could 

be employed to cope with the issue of data imbalance and data scarcity from different 

health states, while taking advantage of the deep learning models for limited data. 

Author Contributions: Conceptualization, A.K. and H.S.K.; Data curation, H.H.; Formal analysis, 

A.K.; Investigation, A.K., H.H. and H.S.K.; Methodology, A.K., H.H. and H.S.K.; Resources, H.S.K.; 

Supervision, H.S.K.; Visualization, A.K.; Writing—original draft, A.K. and H.H.; Writing—review 

& editing, H.S.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Basic Science Research Program through the National 

Re-search Foundation of Korea (NRF-2020R1A2C1006613), funded by the Ministry of Education and 

also supported by the Ministry of Trade, Industry, and Energy (MOTIE) and the Korea Institute for 

Advancement of Technology (KIAT) through the International Cooperative R&D program (Project 

No. P0011923). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 

design of the study, in the collection, analyses, or interpretation of data, in the writing of the manu-

script, or in the decision to publish the results. 

Abbreviations 

Abbreviation Explanation 

CNN Convolutional Neural Network 

PCA Principal Component Analysis 

t-SNE t-Distributed Stochastic Neighbor Embedding 

CWT Continuous Wavelet Transform 

∆θ incremental angle of rotation for virtual sensors 

xVm m-th virtual signal along x-axis 

yVm m-th virtual signal along y-axis 

DSource Source Dataset 

DTarget Target Dataset 

_Source par%  Parameters of the deep learning model on source data 

Target _ Par%  Parameters of the deep learning model on target data 

γ Rescaling parameter 

β Offsetting parameter 

ReLU Rectified Linear Unit 
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