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Abstract: This paper examines the impact of hybrid nanoparticles on the stagnation point flow
towards a curved surface. Silica (SiO2) and alumina (Al2O3) nanoparticles are added into water
to form SiO2-Al2O3/water hybrid nanofluid. Both buoyancy-opposing and -assisting flows are
considered. The governing partial differential equations are reduced to a set of ordinary differential
equations, before being coded in MATLAB software to obtain the numerical solutions. Findings show
that the solutions are not unique, where two solutions are obtained, for both buoyancy-assisting and
-opposing flow cases. The local Nusselt number increases in the presence of the hybrid nanoparticles.
The temporal stability analysis shows that only one of the solutions is stable over time.

Keywords: curved surface; hybrid nanofluid; mixed convection; heat transfer; stability analysis;
stagnation point

1. Introduction

The phenomenon of the flow on a stagnation region commonly occurs in aerodynamic
industries and engineering applications. To name a few, such applications are polymer
extrusion, drawing of plastic sheets, and wire drawing. In some situations, the flow is
stagnated by a solid wall, while in other cases a free stagnation point or line exists interior
to the fluid domain. Historically, Hiemenz [1] was the first researcher to consider the
boundary layer flow toward a stagnation point on a rigid surface. Moreover, the axisym-
metric flow was considered by Homann [2], whereas the oblique flow was studied by
Chiam [3]. Furthermore, Merkin [4] studied a similar problem by considering the mixed
convection flow. He discovered that the solution is not unique for the opposing flow case.
However, Ishak et al. [5] exposed that the dual solutions occur for both opposing and
assisting flows. Several studies on the stagnation point flow subjected to various flow and
physical conditions have been considered by the researchers for the past few years. For in-
stance, the magnetohydrodynamic and the double stratification effects were examined
by Khashi’ie et al. [6]. The unsteady flow was studied by Dholey [7] and Fang et al. [8].
The stagnation point viscoelastic fluid flow was examined by Mahapatra and Sidui [9].
Moreover, Weidman [10] investigated the porous medium effects, while the thermophoretic
and Brownian diffusions were reported by Kumar et al. [11].

In 1995, Choi and Eastman [12] introduced the nanofluid, which is a mixture of the base
fluid and a single type of nanoparticles, to enhance the thermal conductivity. The advan-
tages of nanofluids in a rectangular enclosure have been reported by Khanafer et al. [13],
Tiwari and Das [14], and Oztop and Abu-Nada [15]. Several researchers have published
papers on nanofluids with various physical aspects, for example, magnetic field [16], vis-
cous dissipation and chemical reaction [17], activation energy [18], Dufour and Soret [19],
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magnetic dipole [20], and velocity slip [21]. For additional references, the experimental
study on the nanoparticle’s viscosity behavior can be found in refs. [22,23].

Recently, some studies have found that advanced nanofluid consists of another type
of nanoparticle dispersed into the regular nanofluid could improve its thermal properties,
and this mixture is termed as ‘hybrid nanofluid’. Hybrid nanofluid is used to signal a
promising increase in the thermal performance of working fluids since this technology has
resulted in a significant change in the design of thermal and cooling systems. As a result
of the addition of more types of nanostructures, a fluid with better thermal conductivity
is created. Furthermore, hybrid nanofluids are used in several applications, for example,
in the vehicle brake fluid, domestic refrigerator, solar water heating, transformer, and heat
exchanger [24]. The earlier experimental works that using the hybrid nanoparticles were
reported by Turcu et al. [25] and Jana et al. [26]. Moreover, Suresh et al. [27] conducted
experimental works using Al2O3-Cu hybrid nanoparticles to study the enhancement of
the fluid thermal conductivity. Moreover, the significance of the combination of Al2O3
and other nanoparticles was reported by Singh and Sarkar [28] and Farhana et al. [29].
The numerical studies on the hybrid nanofluid flow were studied by Takabi and Salehi [30].
In recent years, hybrid nanofluid was attracting the researcher’s attention to study the flow
and thermal behavior, numerically. For instance, the flow in the mini-channel heat sink was
done by Kumar and Sarkar [31]. Meanwhile, the flow between two parallel plates with the
squeezing effect was reported by Salehi et al. [32] and Muhammad et al. [33]. Apart from
that, Waini et al. [34] and Khan et al. [35] considered the flow towards a shrinking surface.
For further reading, the review papers on hybrid nanofluid can be found in Refs. [36–40].

It seems that Sajid et al. [41] were the first who studied the flow over a curved surface.
They found that less drag force is required to move the fluid on a curved surface rather
than that on a flat surface. Later, Sajid et al. [42] extended their work by considering
a micropolar fluid. Since then, many researchers have continued the study of the flow
and heat transfer induced by a curved surface under different conditions. For example,
Abbas et al. [43] studied the curved stretching surface under the effect of the magnetic
field in a viscous fluid, then later, they extended the problem with heat generation and
thermal radiation effects in a nanofluid flow as reported in Abbas et al. [44]. Similarly,
Hayat et al. [45], Imtiaz et al. [46], and Saba et al. [47] also reported the flow over a curved
stretching surface in a nanofluid. Furthermore, Sanni et al. [48] and Hayat et al. [49]
considered the nonlinear stretching velocity of the curved surface, while Okechi et al. [50]
reported on the exponentially stretching curved surface. The unsteady flow was reported by
Saleh et al. [51]. Naveed et al. [52] examined the dual solutions in hydromagnetic viscous
fluid flow past a shrinking curved surface. Meanwhile, Khan et al. [53] explored the
hybrid nanofluid flow with mixed convection. Based on the paper by Khan et al. [53], this
paper aims to investigate the stagnation point flow of a hybrid nanofluid towards a curved
surface containing Al2O3-SiO2 nanoparticles with buoyancy effects. It should be mentioned
that the condition of the surface temperature was assumed constant in Khan et al. [53].
In contrast to [53], the present paper considers the prescribed surface temperature case.
Additionally, this paper examines the temporal stability of the numerical solutions.

2. Basic Equations

Consider the flow configuration model as shown in Figure 1. Here, the curved surface
with radius R is measured about the curvilinear coordinates (r, s) where r is normal to
tangent vector at any point on the sheet and s is the arc length coordinate along the flow
direction, so that large values of R correspond to small curvature (slightly curved surface).
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Figure 1. Flow configuration model of a curved surface. 
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constant ambient temperature, while 𝑇଴ and 𝐿, respectively, are the reference tempera-
ture and length. The prescribed surface temperature is employed to allow the similarity 
reduction of the equations. Considering hybrid nanofluid flow, a few assumptions are 
considered for the physical model. The hybrid nanofluid is assumed to be stable. Thus, 
the effect of nanoparticle aggregation and sedimentation is omitted. The nanoparticles are 
assumed to have a uniform size with a spherical shape. It is assumed that both the base 
fluid and nanoparticles are in a thermal equilibrium state, and they flow at the same ve-
locity. Accordingly, under these assumptions along with the boundary layer approxima-
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Figure 1. Flow configuration model of a curved surface.

According to Sajid et al. [41], the pressure is not constant across the boundary layer.
Therefore, the pressure gradient in the case of a curved surface cannot be neglected. Here, it
is supposed that ue(s) = as with a > 0 and Tw(s) = T∞ + T0(s/L) where T∞ is the constant
ambient temperature, while T0 and L, respectively, are the reference temperature and
length. The prescribed surface temperature is employed to allow the similarity reduction
of the equations. Considering hybrid nanofluid flow, a few assumptions are considered
for the physical model. The hybrid nanofluid is assumed to be stable. Thus, the effect of
nanoparticle aggregation and sedimentation is omitted. The nanoparticles are assumed
to have a uniform size with a spherical shape. It is assumed that both the base fluid
and nanoparticles are in a thermal equilibrium state, and they flow at the same velocity.
Accordingly, under these assumptions along with the boundary layer approximations, the
governing equations of hybrid nanofluid are [41,53]:
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ρhn f
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+
R

R + r
u

∂T
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=
khn f

(ρCp)hn f

(
∂2T
∂r2 +

1
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)
(4)

subject to:
u = v = 0, T = Tw(s) at r = 0

u→ ue(s), ∂u
∂r → 0, T → T∞ as r → ∞

(5)

where v and u are the velocity components along r- and s- directions. Moreover, g and
p are the acceleration caused by the gravity and the pressure, respectively, while the
temperature is given by T. Furthermore, the thermophysical properties can be referred to
in Tables 1 and 2 [30,53]. Please note that ϕ1 (Al2O3) and ϕ2 (SiO2) are the nanoparticles
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volume fractions where ϕhn f = ϕ1 + ϕ2, and the subscripts n1 and n2 are corresponded to
their solid components, while the subscripts hn f and f signify the hybrid nanofluid and
base fluid, respectively.

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Base Fluid Nanoparticles

Water Al2O3 SiO2

ρ
(
kg/m3) 997.1 3970 2200

Cp (J/kgK) 4179 765 745
k (W/mK) 0.613 40 1.4

β× 10−5 (1/K) 21 0.85 42.7
Prandtl number, Pr 6.2

Table 2. Thermophysical properties of hybrid nanofluid.

Properties Correlations

Dynamic viscosity µhn f =
µ f

(1−ϕhn f )
2.5

Density ρhn f =
(

1− ϕhn f

)
ρ f + ϕ1ρn1 + ϕ2ρn2

Heat capacity (ρCp)hn f =
(

1− ϕhn f

)
(ρCp) f + ϕ1(ρCp)n1 + ϕ2(ρCp)n2

Thermal
conductivity

khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f−(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Thermal expansion (ρβ)hn f =
(

1− ϕhn f

)
(ρβ) f + ϕ1(ρβ)n1 + ϕ2(ρβ)n2

3. Similarity Transformations

Consider the similarity variables as in Sajid et al. [41]:

u = as f ′(η), v = − R
R + r

√
aν f f (η), p = ρ f a2s2P(η), θ(η) =

T − T∞

Tw − T∞
, η = r

√
a

ν f
(6)

where (′) signifies the differentiation with respect to η. Using Equation (6), the continuity
equation, i.e., Equation (1) is identically fulfilled. Now, inserting Equation (6) in Equations
(2) and (3), one obtains:

P′ =
ρhn f

ρ f

1
K + η

f ′2 (7)

ρ f
ρhn f

2K
K+η P =

µhn f /µ f
ρhn f /ρ f

(
f ′′′ + 1

K+η f ′′ − 1
(K+η)2 f ′

)
+ K

(K+η)2 f f ′− K
K+η f ′2

+ K
K+η f f ′′ +

(ρβ)hn f /(ρβ) f
ρhn f /ρ f

λθ
(8)

Then, the pressure P term in these equations is eliminated to obtain the following equation:

µhn f /µ f

ρhn f /ρ f

(
f iv +

2
K + η

f ′′′ − 1

(K + η)2 f ′′ +
1

(K + η)3 f ′
)
+

K
K + η

(
f f ′′′ − f ′ f ′′

)
+

K

(K + η)2

(
f f ′′ − f ′2

)
− K

(K + η)3 f f ′ +
(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λ

(
θ′ +

1
K + η

θ

)
= 0

(9)
Similarly, using Equation (6), Equation (4) is transformed to:

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

(
θ′′ +

1
K + η

θ′
)
+

K
K + η

(
f θ′ − f ′θ

)
= 0 (10)



Mathematics 2021, 9, 2330 5 of 13

subject to:
f (0) = 0, f ′(0) = 0, θ(0) = 1

f ′(∞) = 1, f ′′ (∞) = 0, θ(∞) = 0
(11)

where K = R
√

a/ν f (=constant) specifies the curvature parameter, ν f represents the fluid

kinematic viscosity, and Pr = µ f
(
Cp
)

f /k f represents the Prandtl number. Moreover,

λ = gβ f T0/a2L = Grs/Re2
s (=constant) represents the mixed convection or the buoyancy

parameter, with Grs = gβ f (Tw − T∞)s3/ν f
2 corresponds to the local Grashof number and

Res = ues/ν f stands for the local Reynolds number. Please note that λ < 0 signifies
the opposing and λ > 0 signifies the assisting flows, while the forced convection flow
(no buoyancy effects) is given by λ = 0.

The coefficient of the skin friction C f and the local Nusselt number Nus are given as:

C f =
1

ρ f u2
e

µhn f

(
∂u
∂r
− u

R + r

)
r=0

, Nus = −
s

k f (Tw − T∞)
khn f

(
∂T
∂r

)
r=0

(12)

Using Equations (6) and (12), one gets:

Re1/2
s C f =

µhn f

µ f
f ′′ (0), Re−1/2

s Nus = −
khn f

k f
θ′(0) (13)

Please note that by taking ϕhn f = 0 (regular fluid) and K → ∞ (vertical plane surface),
the problem reduces to the problem of Lok et al. [54] without the micropolar effects. Thus,
the numerical values of f ′′ (0) and −θ′(0) can be validated with those obtained by them.

4. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [55] and then followed by Weidman et al. [56]. First,
consider the new variables as follows:

u = as ∂ f
∂η (η, τ), v = − R

R+r
√aν f f (η, τ), p = ρ f a2s2P(η, τ),

θ(η, τ) = T−Tw
Tw−T∞

, η = r
√

a
ν f

, τ = at
(14)

Now, the unsteady form of Equations (3) and (4) are employed, while Equation (1)
remains unchanged. On using (14), one obtains:

µhn f /µ f
ρhn f /ρ f

(
∂4 f
∂η4 +

2
K+η

∂3 f
∂η3 − 1

(K+η)2
∂2 f
∂η2 +

1
(K+η)3

∂ f
∂η

)
+ K

K+η

(
f ∂3 f

∂η3 −
∂ f
∂η

∂2 f
∂η2

)
+ K

(K+η)2

(
f ∂2 f

∂η2 −
(

∂ f
∂η

)2
)
− K

(K+η)3 f ∂ f
∂η +

(ρβ)hn f /(ρβ) f
ρhn f /ρ f

λ
(

∂θ
∂η + 1

K+η θ
)

− 1
K+η

∂2 f
∂η∂τ −

∂3 f
∂η2∂τ

= 0

(15)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

(
∂2θ

∂η2 +
1

K + η

∂θ

∂η

)
+

K
K + η

(
f

∂θ

∂η
− ∂ f

∂η
θ

)
− ∂θ

∂τ
= 0 (16)

subject to:
f (0, τ) = 0, ∂ f

∂η (0, τ) = 0, θ(0, τ) = 1
∂ f
∂η (∞, τ) = 1, ∂2 f

∂η2 (∞, τ) = 0, θ(∞, τ) = 0
(17)

Then, consider the following perturbation functions [56]:

f (η, τ) = f0(η) + e−γτ F(η), θ(η, τ) = θ0(η) + e−γτG(η) (18)

Here, Equation (18) is used to apply a small disturbance on the steady solution
f = f0(η) and θ = θ0(η) of Equations (9)–(11). The functions F(η) and G(η) in Equation
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(18) are relatively small compared to f0(η) and θ0(η). The sign (positive or negative) of
the eigenvalue γ determines the stability of the solutions. By employing Equation (18),
Equations (15)–(17) become:

µhn f /µ f
ρhn f /ρ f

(
Fiv + 2

K+η F′′′ − 1
(K+η)2 F′′ + 1

(K+η)3 F′
)
+ K

K+η

(
f0F′′′ + f ′′′0 F− f ′0F′′ − f ′′0 F′

)
+ K

(K+η)2

(
f0F′′ + f ′′0 F− 2 f ′0F′

)
− K

(K+η)3 ( f0F′ + f ′0F)

+
(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λ
(

G′ + 1
K+η G

)
+ γ

K+η F′ + γF′′ = 0

(19)

1
Pr

khn f /k f

(ρCp)hn f /
(
ρCp

)
f

(
G′′ +

1
K + η

G′
)
+

K
K + η

(
f0G′ + θ′0F− f ′0G− θ0F′

)
+ γG = 0 (20)

subject to:
F(0) = 0, F′(0) = 0, G(0) = 0

F′(∞) = 0, F′′ (∞) = 0, G(∞) = 0
(21)

To obtain γ of Equations (19) and (20), the new boundary condition F′′ (0) = 1 is
included in Equation (21) to replace F′′ (∞) = 0.

5. Results and Discussion

Equations (9)–(11) are solved numerically by using the bvp4c function in MATLAB
software (Matlab_R2014b, MathWorks, Singapore). As described in Shampine et al. [57],
the aforesaid solver occupies a finite difference method that employs the 3-stage Lobatto
IIIa formula. The selection of the initial guess and the boundary layer thickness, η∞ is
important to achieve the convergence of the numerical solution. This convergence issue is
also influenced by the value of the physical parameters considered. The effects of several
physical parameters on the flow and the thermal fields are investigated.

The values of f ′′ (0) and −θ′ (0) for various λ when ϕhn f = 0 (regular fluid), Pr = 0.7
and K → ∞ (plane surface) are compared with Lok et al. [54]. It is found that the results
are comparable for each λ considered, as shown in Table 3. Moreover, the decreasing trend
is observed in the first solution of f ′′ (0) and −θ′ (0) for smaller values of λ. Furthermore,
Table 4 provides the values of Re1/2

s C f and Re−1/2
s Nus when Pr = 6.2 and K = 103 for

numerous values of ϕhn f and λ. The consequence of rising ϕhn f exaggerates the values of
Re1/2

s C f and Re−1/2
s Nus for both branch solutions. Moreover, the values of Re1/2

s C f are
reduced as λ decreases for both branch solutions. Meanwhile, the values of Re−1/2

s Nus
for the first solution are decreased with the decrease in λ, but they are increased for the
second solution.

Table 3. Values of f ′′ (0) and−θ′ (0) when ϕhn f = 0 (regular fluid), Pr = 0.7 and K→ ∞ for different λ.

λ
Lok Et Al. [54] Present Results

f”(0) −θ
′

(0) f”(0) −θ
′

(0)

−1.0 0.691693 0.633269 0.691661 0.633247
(−0.285049) (−0.222165)

−1.5 0.371788 0.578230 0.371754 0.578206
(−0.527666) (−0.004360) (−0.527651) (−0.004347)

−2.0 −0.039513 0.486576 −0.039572 0.486540
(−0.578523) (0.198572) (−0.578476) (0.198599)

Results in “( )” are the lower branch (second) solutions.
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Table 4. Values of Re1/2
s C f and Re−1/2

s Nus when K = 103 and Pr = 6.2 for different physical parame-
ters.

ϕhnf λ

Re1/2
s Cf Re−1/2

s Nus

First
Solution

Second
Solution

First
Solution

Second
Solution

2% 1 1.609474 0.652232 1.708511 2.232347
4% 1.684045 0.691249 1.759909 2.317150
6% 1.761695 0.731805 1.811141 2.401796
2% −1 0.969496 −0.380839 1.530307 −1.239090

−2 0.594987 −0.642901 1.403953 −0.295385
−3 0.131804 −0.707488 1.208754 0.282748

Furthermore, the variations of Re1/2
x C f and Re−1/2

x Nux against λ when Pr = 6.2 and
K = 103 for various ϕhn f are presented in Figures 2 and 3. The enhancement in the values
of Re1/2

x C f and Re−1/2
x Nux are observed with a high percentage of the hybrid nanoparticle

compositions. Moreover, the dual solutions are obtained for both opposing (λ < 0) and
assisting (λ > 0) flows where the turning point of the solutions occurs in the opposing
region (λ < 0). It is noticed that the critical values are λc = −3.6169,−3.6219,−3.6270 for
ϕhn f = 2%, 4%, 6%, respectively. Additionally, it is observed that the second solution of
Re1/2

x C f and Re−1/2
x Nux are undefined for non-buoyant case (λ = 0). From Figure 3, there

exists an asymptotic line at λ = 0 where the second solutions of Re−1/2
x Nux show that the

values of Re−1/2
x Nux → +∞ as λ→ 0+ and Re−1/2

x Nux → −∞ as λ→ 0− .
Moreover, Figures 4 and 5 display the profiles of f ′(η) and θ(η)when ϕhn f = 2%, Pr = 6.2,

and K = 103 for various values of λ. It is noticed that the profiles of the first and the second
solutions are merged towards some values of λ. Additionally, a negative value (θ(η) < 0)
for the second solution of θ(η) is observed when λ = 1 and its gradient is greater than
that of the first solution. Next, Figures 6 and 7 show the consequence of ϕhn f on f ′(η) and
θ(η) when λ = −1, Pr = 6.2, and K = 103. It is seen that both branch solutions of f ′(η)
show the decreasing pattern, whereas both branch solutions of θ(η) increases for a higher
percentage of ϕhn f .
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Figure 7. Temperature profiles θ(η) for different values of ϕhn f .

Furthermore, the dimensionless stream function is plotted to show the flow patterns.
In this respect, the streamlines of the first and the second solutions for the opposing flow
(λ = −2) when ϕhn f = 2%, K = 103, and Pr = 6.2 are shown in Figures 8 and 9, respectively.
The flow patterns for the first solution show that the fluid is moving away from the slot
(x = 0) and acts as the normal stagnation point flow. Meanwhile, the flow is split into two
regions for the second solution, i.e., upper and lower regions. The upper region has similar
pattern with that of the first solution, whereas reverse flow is observed in the lower region.

The variations of the smallest eigenvalues γ against the mixed convection parameter
λ when ϕhn f = 2%, Pr = 6.2, and K = 103 are described in Figure 10. For the positive
value of γ, it is noted that e−γτ → 0 as time evolves (τ → ∞). In the meantime, for the
negative value of γ, e−γτ → ∞ . These behaviors show that the first solution is physically
reliable and stable over time.
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6. Conclusions

In the present paper, the stagnation point flow towards a curved surface containing
Al2O3-SiO2 hybrid nanoparticles with buoyancy effects was accomplished. Findings re-
vealed that dual solutions appeared for both assisting (λ > 0) and opposing (λ < 0) flows.
The dual solutions were found for λ > λc and no solution for λ < λc, while the solutions
bifurcated at λ = λc. It was found that the critical values occur in the opposing flow region
(λ < 0). The domain of the mixed convection parameter λ where the dual solutions are in
existence increases as the percentage of ϕhn f is increased. Moreover, the higher percentage
of ϕhn f gave rise to the heat transfer rate and the skin friction coefficient. Lastly, it was
found that the first solution is stable and physically reliable as time evolves, while the
second solution is not.
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