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Abstract: Feature selection is a well-known prepossessing procedure, and it is considered a chal-
lenging problem in many domains, such as data mining, text mining, medicine, biology, public
health, image processing, data clustering, and others. This paper proposes a novel feature selection
method, called AOAGA, using an improved metaheuristic optimization method that combines the
conventional Arithmetic Optimization Algorithm (AOA) with the Genetic Algorithm (GA) operators.
The AOA is a recently proposed optimizer; it has been employed to solve several benchmark and en-
gineering problems and has shown a promising performance. The main aim behind the modification
of the AOA is to enhance its search strategies. The conventional version suffers from weaknesses, the
local search strategy, and the trade-off between the search strategies. Therefore, the operators of the
GA can overcome the shortcomings of the conventional AOA. The proposed AOAGA was evaluated
with several well-known benchmark datasets, using several standard evaluation criteria, namely
accuracy, number of selected features, and fitness function. Finally, the results were compared with
the state-of-the-art techniques to prove the performance of the proposed AOAGA method. Moreover,
to further assess the performance of the proposed AOAGA method, two real-world problems con-
taining gene datasets were used. The findings of this paper illustrated that the proposed AOAGA
method finds new best solutions for several test cases, and it got promising results compared to other
comparative methods published in the literature.

Keywords: feature selection; data mining; machine learning; Arithmetic Optimization Algorithm
(AOA); genetic algorithm
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1. Introduction

Datasets of broad sizes exist in several real data applications such as pattern recogni-
tion, data mining, signal processing, machine learning, text processing, image processing,
and web content classification [1–3]. These datasets typically contain a significant range of
hard-to-cope features. As a result, the quality of these applications’ performance is often
decreased by redundant, noisy, and meaningless data [4–6].

Researchers used dimensional reduction to eliminate the unimportant and redundant
data, which maps the original high-dimensional space data into new lower-dimensional
space data [7,8]. Reducing dimensional also allows to imagine and reflect the data and
can increase the application’s output [9]. Feature selection is one of the most common
strategies used in the dimensional reduction domain to solve the dimensional problem.
The goal of handling features is to represent, with high precision, the original features in a
specific problem domain by an optimal subset of new selected features [10]. It is possible to
execute the feature selection process in the backward or forward direction. The backward
selection strategy collects all characteristics; it then eliminates one attribute at each step
(whose removal reduces the error the most). This method is replicated until some further
elimination increases the fault [11,12]. The forward selection strategy starts with a blank set;
it adds one element at each stage that reduces the error the most before another addition
does not mainly reduce it [13,14].

There are two types of feature selections, filter and wrapper methods in general;
the critical distinction between them is in the technique of choosing the subset of new
features [15]. To test the feature subset, the wrapper approaches used the learning method-
ology. However, it is not feasible to use the wrapper to work with a high-dimensional
dataset. This is because the related features require significant time to be decided. However,
unlike wrapper approaches, the filter strategy does not use learning techniques to select
the features. For these purposes, the wrapper is costly for computing, so it can not be
extended to large-size files. In comparison, filter algorithms are also less expensive in terms
of computing [16,17].

The feature cost, which means the cost of obtaining a feature attribute, is a particular
case in machine learning and data mining with different cost types. It can be portrayed in
different ways, such as income, time, pain, and measurement cost, to say a few [18–20]. In
medical diagnosis, it is usually inexpensive and painless to obtain the values of symptom
characteristics detected through the eyes or even cost less. However, getting the importance
of other diagnostic characteristics often poses varying costs and risks due to the need to
perform several clinical examinations. These expenses are either resources or time for test
results or the patient’s medical and psychological pressures. Improving the diagnostic
effect by choosing many critical characteristics is essential for this problem. However, it is
also necessary to increase the comfort level by choosing cost-less features or saving money.
In this case, before settling on the selected diagnostic features, a doctor needs to estimate
the trade-off between the diagnostic impact and the cost. In real-world implementations,
there are several related examples. However, most of the conventional feature selection
approaches neglect the question of the expense of the function [21,22].

When all possible subsets of the dataset are removed during the generation process,
there is very high complexity and a high processing time of x2, where x is the num-
ber of characteristics in the dataset [23]. Therefore, physicists have sought to formulate
approaches to solve the feature selection (FS) problem and provide solutions more effi-
ciently than conventional techniques. This problem is considered one of the most recent
problems faced by the new technology due to the size of the available information and
data [24–26]. The use of metaheuristic algorithms is one such approach. On many top-
ics in artificial intelligence, metaheuristic algorithms have been applied and have led to
many solutions [27–29]. To solve feature selection problems, metaheuristic algorithms are
now widely used [30]. According to parameters governed by the way these algorithms
operate, they generate subsets randomly. It has been shown that they can help minimize
execution time and produce specific outcomes. Grey Wolf Optimizer (GWO) [31], Whale
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Optimization Algorithm [32], Monarch Butterfly Algorithm [23] Coyote Optimization
Algorithm [33], Genetic Algorithm [34], Krill Herd Algorithm [35] Harmony Search [36],
Aquila Optimizer [37], Particle Swarm Algorithm [38], and Parallel Membrane-inspired
Framework [39] are examples of the metaheuristics that have been used to address feature
selection problems.

In the literature, several techniques have been published [40–44], such as, in this paper,
the enhancement is carried out by integrating the opposition-based learning methodology,
and differential evolution with the Moth-flame Optimization (MFO) [15]. To maximize the
integration of the MFO, opposition-based learning is used to produce an optimum initial
population; meanwhile, the differential evolution is applied to boost the MFO’s ability to
manipulate. Therefore, unlike the conventional MFO algorithm, the suggested approach
noted as OMFODE avoided getting trapped in an optimal local value and increase the
rapid convergence. This paper proposes a hybrid solution that incorporates two search
methods: GWO and Particle Swarm Optimization (PSO) [45]. The GWO is stimulated by
the leadership hierarchy and the gray wolves’ hunting actions in nature, with gray wolves
choosing to live in a pack. The goal of this hybridization is to combine exploitation and
exploration in a balanced manner.

In the paper [23], the novel monarch butterfly optimization (MBO) algorithm is
implemented with a wrapper feature selection approach that uses the classifier k-nearest
neighbor (KNN). On eighteen benchmark datasets, tests are introduced. The results showed
that MBO was superior to four optimization algorithms, providing a high accuracy rate in
classification. For feature selection challenges of medical diagnosis and other problems in
this paper, a hybrid crow search algorithm is developed and integrated with chaos theory
and fuzzy c-means technique designated as CFCSA [46]. The crow search algorithm adopts
the global optimization methodology in the recommended CFCSA context to prevent local
optimization’s sensitivity. As a cost attribute for the messy crow search algorithm, the fuzzy
c-means (FCM) target function is used. Like other optimization algorithms, the Salp Swarm
Algorithm (SSA) suffers from population diversity and crashes into the local optimum. This
research provides an improved SSA variant known as the Dynamic Salp swarm algorithm
to solve these problems (DSSA) [47]. To fix its challenges, two significant changes were
included in the SSA. The first upgrade entails creating a new equation for updating the
location of salps. By using Singer’s chaotic map, the use of this new equation is regulated.
The first change aims to increase the diversity of SSA solutions. The second enhancement
entails creating a new local search algorithm (LSA) to increase the exploitation of SSA.

As discussed beforehand, optimization algorithms have shown promising effects
when used to address the feature selection problems in recent decades. However, consider-
ing increasing research in this direction, whether we need further optimization approaches
to find more enhanced outcomes, a fundamental question still emerges. In this regard, these
newly introduced metaheuristic algorithms, derived from arithmetic operators, biological
evolution, swarm behavior, physical concepts, and mathematical laws, have been increas-
ingly investigated. However, researchers claim that these approaches frequently work
ineffectively when there is a substantial increase in complexity and problem dimensionality.
This research has two primary motivations: (A) No-Free-Lunch (NFL), which states that
there is no optimization technique to solve all optimization problems, so the optimizer’s
outstanding success on a specific group of problems does not guarantee another group
of problems perform equally effectively. This has inspired many scientists in this area to
apply the current approaches to new problem groups. The same is the basis and inspiration
for this research. We suggest a novel optimization method by integrating the Arithmetic
Optimization Algorithm (AOA) and the operators (Crossover and Mutation) of the Genetic
Algorithm to solve the feature selection problem with higher dimensionality. This problem
can be categorized as hard, and it can not be solved easily by a traditional technique. So, it
needs an advanced and improved method to find the optimal solution for the used cases in
this paper. (B) To the best of the developers’ understanding, the proposed method is used
for the first time to solve the feature selection problems. The proposed method tackled
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the conventional AOA’s main weaknesses by avoiding the search strategies’ local search
problem and search balancing. As the optimization methods are the best choice to deal
with such a complicated problem, we use the proposed method according to its previous
performance with some improvements to efficiently tackle the feature selection problem
and find a new best solution. Twenty feature selection datasets are used to prove the
proposed method’s performance, and the results are compared with other state-of-the-art
methods using the standard evaluation criteria. The results showed that the proposed
method’s ability is promising in solving the high-dimensional feature selection problems
compared to other well-known methods.

The main contributions invented in this paper are given as follows.

1. A modified approach of the classical AOA and GA is proposed that further enhances
the exploration and convergence characteristics of this evolutionary-based wrapper
feature selection method through the diverse population design.

2. Boosted mutation and crossover operators are introduced for search-based exploration
and exploitation of the search.

3. The GA operator’s inclusion promotes the convergence rate to balance the exploration
and exploitation characteristic of the proposed approach.

4. Decrease of the feature input set using the proposed search method for high dimen-
sional problems is conducive to develop a high-performing decision method.

5. Comparing the proposed method with several state-of-the-art methods on twenty
datasets is conducted.

The design of the rest of this paper is as follows. Section 2 shows the general methods
and the proposed improved algorithm. Then, Section 3 presents the experiments and the
discussion of the results. Finally, Section 4 gives a conclusion of this paper and potential
future directions works.

2. Methods
2.1. Problem Formulation of FS

In this section, the mathematical formulation of FS is introduced. In general, the
classification (i.e., supervised learning) of any datasets which has size NS × NF where NS is
the number of samples and NF stand for the number of features. The main objective of FS
problem is to select a subset of features S from total number of features (NF) where the size
of S is less than NF. This can be achieved by minimizing the following objective function:

Fit = λ× γS + (1− λ)× (
|S|
NF

) (1)

where γS refers to the classification error using S and |S| are the number of selected features.
λ is used to balance between ( |S|NF

) and γS.

2.2. Arithmetic Optimization Algorithm (AOA)

The preliminaries of the AOA [48] are described in this section. Generally, like other
MH algorithms, the AOA has two search phases, exploration, and exploitation, inspired
by mathematics operations, such as −,+, ∗, and /. First, the AOA generates a set of N
solutions (agents). Each one represents a solution for a tested problem. Thus, solutions or
agents represent X population, as:

X =



x1,1 · · · x1,j x1,n−1 x1,n
x2,1 · · · x2,j · · · x2,n
· · · · · · · · · · · · · · ·

...
...

...
...

...
xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n


(2)
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Next, the fitness function of each solution is computed to detect the best one Xb. Then,
depending on the Math Optimizer Accelerated (MOA) value, AOA performs exploration
or exploitation processes. Then, MOA is updated as the following equation:

MOA(t) = Min + t×
(

MaxMOA −MinMOA
Mt

)
(3)

in which Mt represents the total number of iterations. MinMOA and MaxMOA represent
the minimum and maximum values of the accelerated function, respectively. More so, the
multiplication (M) and division (D) are employed in the exploration phase of the AOA, as
presented in the following equation:

Xi,j(t + 1) =
{

Xbj ÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), r2 < 0.5
Xbj ×MOP × ((UBj − LBj)× µ + LBj), otherwise

(4)

in which ε represents a small integer value, UBj and LBj are the lower and upper bound-
aries of the search domain at jth dimension. µ = 0.5 represents the control function.
Moreover, Math Optimizer (MOP) can be described as:

MOP(t) = 1− t1/α

M1/α
t

(5)

α = 5 represents the dynamic parameter that determines the precision of the exploitation
phase throughout iterations.

Furthermore, addition operators (A) and subtracting (D) operators are used to imple-
ment the AOA exploitation phase, using the following equation.

xi,j(t + 1) =
{

Xbj −MOP × ((UBj − LBj)× µ + LBj), r3 < 0.5
Xbj + MOP × ((UBj − LBj)× µ + LBj), otherwise

(6)

In which r3 represents a random number generated in [0,1]. After that, the agents’
updating process is implemented using the AOA operators. To sum up, Algorithm 1
illustrates the main steps of the AOA.

Algorithm 1 Steps of AOA

1: Input: The parameters of AOA such as dynamic exploitation parameter (α), control function (µ),
number of agents (N) and total number of iterations Mt.

2: Construct the initial value for the agents Xi i = 1, ..., N.
3: while (t < Mt) do
4: Compute the fitness function for each agent.
5: Determine the best agent Xb.
6: Update the MOA and MOP using Equation (3) and Equation (5), respectively.
7: for i = 1 to N do
8: for j = 1 to Dim do
9: Update the value of r1, r2, and r3.

10: if r1 > MOA then
11: Exploration phase
12: Use Equation (4) to update the Xi.
13: else
14: Exploitation phase
15: Use Equation (6) to update the Xi.
16: end if
17: end for
18: end for
19: t = t + 1
20: end while
21: Output the best agent (feature subset) (Xb).
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2.3. Genetic Algorithm

In this section, the basic information of Genetic algorithms (GA) is introduced [49]. In
general, GA is a population-based meta-heuristic technique, and each individual inside the
population represents a feasible solution. There are three stages in GA used to update the
individuals, namely Selection, Crossover, and Mutation process. In the Selection process,
two individuals are selected randomly, which leads to enhancing the population’s diversity.
Then the crossover process generates new individuals from the selected individuals (par-
ents) by exchanging their values. After that, the mutation is applied to replace a randomly
selected individual with a random value belonging to the search space. Finally, according to
the fitness value of newly generated individuals and their parents, the current population
is updated by selected the best individuals to form the new population. Then, updating
the population using the three processes of GA (i.e., selection, crossover, and mutation) is
repeated until reached the stop conditions.

2.3.1. Crossover

One of basic operators in GA is the crossover, in the related literature they are different
modification of it. The most simple crossover is the single point method. Here are necessary
two parents that are randomly selected from the population. The parents are used to
generate an offspring by sing a single point that divides the information contained in
them. By using a single points the values after it are interchanged between the two parents
and new solutions are created. The Figure 1 graphically shows how the single point
crossover works.

Figure 1. Single point crossover.

The single point crossover is a good alternative, but for real code purposes it is better
to employ another version. The blend crossover also known as BLX-α is a real coded
operator. Similar to the single point, it is necessary to take two parents x1 and x2 from the
population. By using the parents it is extracted a portion xc

i from bot of them. Equation (7)
provides a better explanation of BLX-α.

X1
i = min

(
x1

i , x2
i
)
− αdi

X2
i = max

(
x1

i , x2
i
)
− αdi,

di =
∣∣x1

i − x2
i

∣∣ (7)

where, x1
i and x2

i are elements taken from x1 and x2 and α is positive value setting to 0.5
according to [50].

2.3.2. Mutation

The mutation is an operator that helps to explore around of an specific solution.
Similar to the crossover they are several ways to perform the mutation. However, in this
article it is considered the Gaussian mutation that was introduced by Higashi and Iba [51].
In this kind of mutation it is necessary to take an element form the population and it is
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modified by using a random number created by a Gaussian distribution. The modified
solution is a mutated individual and it is computed as follows:

mutate (xid) = xid × (1 + gaussian(σ)) (8)

From Equation (8) xid is the selected individual from the population, Gaussian (σ) is a
random number generator that uses a Gaussian distribution with a standard deviation of
σ = 0.1.

2.3.3. Selection

The selection operator is also important because it helps to extract the elements of the
population that will be manipulated by the crossover and mutation. Here is also possible
to find different mechanisms but the most common is the roulette wheel [52]. This method
is based on the fitness and it works by assigning a probability ps to a each member of
the population. The population then is segmented into different regions represented by
the individuals. In a population of n candidate solutions defined as P = {a1, a2, . . . , an}
the element ai possesses a fitness value f (ai), then the probability of ai to be selected is
computed as:

ps(ai) =
f (ai)

∑n
i=0 f (aj)

, j = 1, 2, ..., n (9)

3. Proposed AOAGA Feature Selection

Optimization techniques, as mentioned above, have been successfully used in many
research fields to solve various complicated problems. In this section, the proposed op-
timization method is presented to solve the feature selection problems. This problem is
a widespread complex issue that has appeared in many knowledge-based approaches,
and it needs an efficient method to solve. It is typically based on selecting the optimized
features from a massive amount of features to reduce the computational time and increase
the performance of the underlying system analysis.

Figure 2 depicts the structure of the developed feature selection method. This method
depends on enhancing the performance of AOA to find the optimal subset of relevant
features using the operators of the genetic algorithm (GA).

Figure 2. Flowchart of the proposed method.
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The developed FS method is called AOAGA. The main difference between AOAGA
and the original AOA is that the exploration phase of the proposed AOAGA is improved
and can explore more regions in the search domain than the original version of the AOA,
and it also can escape from getting stuck in local optima due to operators of the GA.

The AOAGA starts by setting the initial population U, which has N number of agents;
this formulated using the following:

Ui = LBi + αi × (UBi − LBi). (10)

In Equation (10), αi ∈ [0, 1] is a random value. The UBi = 1 and LBi = 0 are limits
the search domain. The next step in the developed AOAGA is to assess the quality of the
selected feature. This is achieved by converting each agent into the binary form using the
following equation.

BUij =

{
1 i f Uij > 0.5
0 otherwise

(11)

Thereafter, computing the classification error after removing the irrelevant features that
corresponding to zeros in BU. This is performed by using Equation (12).

Fiti = λ× γi + (1− λ)× (
|BUi|

NF
) (12)

In Equation (12), λ ∈ [0, 1] refers to the weight applied to balance between the two
sides of Equation (12). NF refers to the number of features, and |BUi| is the number of
selected features corresponding to ones inside Ui. γi is the classification error using the
features in Ui and is computed based on the KNN classifier. In this study, KNN is learned
using a training set representing 80% while the rest dataset is used as a testing set (20%) to
evaluate the learned KNN.

Thereafter, the best agent Ub is determined and used to update the other agents with
the operators of GA and AOA. This updating process is performed using Equation (13).

Ui =

{
Operators o f GA i f t < 0.10× tmax

Operators o f AOA otherwise
(13)

The next step is to check the stop conditions if they are not met and then repeat the updating
process. Otherwise, the best agent is returned and updated the testing set according to it
and evaluates the classification’s quality using the updated testing set. The flowchart of
the developed AOAGA is given in Figure 2.

The selected primary references in this paper are chosen according to their importance
and results in this field. We focused on the most related research in this field to support our
research and get significant results and descriptions. However, the main limitations of the
proposed method in this paper are selecting real-word feature selection problems for other
medical purposes and compared with other advanced methods published in the literature
in this domain. This process can further prove the ability of the proposed method to solve
various feature selection problems.

The complexity of the developed AOAGA depends on some parameters such as
number of agents N, total number of iterations Mt, and the dimension of the tested
problem n. So, the complexity of AOAGA in terms of Big O can be formulated as:

O(AOAGA) = O(Mt1 × N × NF) + O(Mt2(N × NF + N × NF + N)) (14)

Since Mt2 = M−Mt1, so we can rewrite Equation (14) as:

O(AOAGA) = O(Mt1 × N × NF) + O((M−Mt1)(2N × NF + N)) (15)

O(AOAGA) = O(N × (M(2NF + 1)−Mt1(NF + 1)) (16)
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where Mt1 stand for the number of iterations used to update solutions using operators
of GA.

4. Experimental Results and Discussion

In this study, the developed AOAGA to improve the performance of classification
data is evaluated by removing the irrelevant features. This was achieved using twenty UCI
machine learning repository datasets [53] and real-world datasets from [54,55].

The developed AOAGA is compared with ten metaheuristics techniques including
Slime mould algorithm (SMA) [56], Harris hawks optimization (HHO) [57], GA [58],
Multi-verse optimizer (MVO) [59], SSA [60], MFO, Grasshopper optimization algorithm
(GOA) [61], PSO, and GWO [62]. Each algorithm is used with the same parameters used in
its original implementation.

These algorithms are run on an 8 GB RAM Intel Core i5 processor using Matlab
2014b. The population is set to 25 whereas, the max number of iterations is 100. Thirteen
independent runs are produced for each algorithm.

4.1. Performance Measures

To validate the performance of developed AOAGA, a set of evaluation metrics is used.
For example, accuracy, number of selected features, the average and standard deviation of
fitness value [63–65]. The definition of each measure is given as:

• Average of accuracy (Avgacc) is used to compute the ability of an algorithm to predict
the correct label of each class over the runs. Higher value is better [65]. It is defined as:

Avgacc =
1

Nr

Nr

∑
k=1

Acck
Best, Acck

Best =
TP + TN

TP + FN + FP + TN
(17)

• Standard deviation (STD) is used to check to what extent an algorithm can obtain the
same results over different runs. Smaller value is better [65]. It is formulated as:

STDY =

√√√√ 1
Nr

Nr

∑
k=1

(
Acck

Best − Avgacc
)2 (18)

• Average of selected features (AVG|BXBest |) is applied to test an algorithm’s ability to
choose the smallest subset of relevant features overall runs. Smaller value is better [65].
It is given as:

AVG|BXBest | =
1

Nr

Nr

∑
k=1

∣∣∣BXk
Best

∣∣∣ (19)

where |.| denotes the cardinality of BXk
Best at k-th run.

• Average of fitness value (AVGFit) evaluates the algorithm ability to balance the lower
error and ratio of selected features. Smaller value is better [65]. It is formulated as:

AVGFit =
1

Nr

Nr

∑
k=1

Fitk
Best (20)

where TP and TN refer to the true positive and true negative. Whereas FN and FP
are the false positive and false negative, respectively [66].

4.2. Experimental Series 1: UCI Datasets Results and Discussion

Within this experiment, a set of UCI datasets are used. These datasets are collected
from different fields such as Biology, Game, Electromagnetic, Politics, Physics, and Chem-
istry. In addition, each of them has a different number of samples, features, and classes.
The description of each dataset is given in Table 1.
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Table 1. Description of the benchmark datasets.

Name Number of Features Number of Instances Number of Classes Data Category

breastWDBC 30 569 2 Biology
ionosphere 34 351 2 Physical
wine 13 178 3 Chemistry
breastcancer 9 699 2 Biology
sonar 60 208 2 Biology
glass 9 214 7 Physics
tic-tac-toe 9 958 2 Game
Lymphography 18 148 2 Biology
waveform 40 5000 3 Physics
clean1data 166 476 2 Artificial
Zoo 16 101 6 Artificial
SPECT 22 267 2 Biology
ecoli 7 336 8 Biology
CongressEW 16 435 2 Politics
M-of-n 13 1000 2 Biology
Exactly 13 1000 2 Biology
Exactly2 13 1000 2 Biology
Vote 16 300 2 Politics
heart 13 270 2 Biology
krvskp 36 3196 2 Game

4.2.1. Results and Discussion of UCI Dataset

This subsection presents and discusses the experimental results and comparisons
obtained in solving the problem of feature selection. The comparisons used the standard
AOA, SMA, HHO, GA, MVO, SSA, MFO, GOA, PSO, and GWO with the metrics described
in the previous sections. In Table 2 they have presented the experimental results by using
the mean of fitness function for all the compared methods over the 20 data sets. From this
table, it is possible to see that the proposed AOAGA is superior in 16 of the 20 experiments;
meanwhile, the PSO obtains the best results in 4 cases and the GWO only in 1. These results
represent that the AOAGA is superior and accurate regarding the fitness value for feature
selection. In the tables, the boldface indicates the best value.

Table 2. Results of the Fitness values for all methods.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 0.0968 0.1107 0.3503 0.1207 0.1261 0.1329 0.1122 0.1754 0.2134 0.1058 0.1080
ionosphere 0.1567 0.2086 0.3920 0.2049 0.2262 0.2167 0.2213 0.2704 0.3201 0.1828 0.1803
wine 0.0000 0.0480 0.1858 0.0067 0.0151 0.0194 0.0610 0.1252 0.1578 0.0043 0.0117
breastcancer 0.1620 0.2216 0.3947 0.1898 0.2159 0.2140 0.2082 0.2580 0.3293 0.1682 0.1640
glass 0.1406 0.1452 0.2183 0.1434 0.1520 0.1492 0.1499 0.1879 0.2203 0.1419 0.1451
sonar 0.1387 0.2232 0.4116 0.2065 0.2083 0.1769 0.1885 0.2703 0.3332 0.1204 0.1423
Lymphography 0.2547 0.3261 0.5342 0.3054 0.3561 0.3245 0.3188 0.4523 0.5144 0.2818 0.3221
tic-tac-toe 0.0000 0.2079 0.5394 0.0022 0.1560 0.1370 0.0255 0.4405 0.5227 0.0018 0.1513
waveform 0.6323 0.6646 0.9059 0.6561 0.6512 0.6551 0.6489 0.6719 0.7307 0.6349 0.6435
clean1data 0.2305 0.2472 0.4384 0.2633 0.2589 0.2465 0.2680 0.2692 0.3470 0.2240 0.2092
SPECT 0.2982 0.3640 0.4780 0.3442 0.3633 0.3572 0.3535 0.4028 0.4728 0.3287 0.3418
Zoo 0.0000 0.0154 0.2063 0.0029 0.0145 0.0137 0.0443 0.0966 0.1260 0.0038 0.0083
ecoli 0.1945 0.2178 0.3464 0.2208 0.2271 0.2259 0.2263 0.2712 0.3355 0.2202 0.2212
CongressEW 0.1090 0.1478 0.4035 0.1645 0.1842 0.1707 0.1812 0.2308 0.3025 0.1363 0.1565
Exactly 0.0000 0.2092 0.5858 0.0539 0.1897 0.1659 0.0576 0.4333 0.5944 0.0000 0.0869
Exactly2 0.4699 0.5030 0.5699 0.4929 0.5048 0.5060 0.5081 0.5447 0.5816 0.4884 0.4970
M-of-n 0.0000 0.1867 0.4790 0.0383 0.1419 0.0645 0.0388 0.3096 0.4955 0.0000 0.0381
Vote 0.0929 0.1871 0.4115 0.1727 0.2015 0.1906 0.1871 0.2595 0.3431 0.1626 0.1719
krvskp 0.1541 0.1857 0.5281 0.1752 0.1954 0.1639 0.1718 0.1578 0.3534 0.1192 0.1628
heart 0.3366 0.3884 0.5425 0.3575 0.3794 0.3998 0.3617 0.4255 0.4969 0.3471 0.3941

Continuing with the fitness value, it is possible to analyze the minimum (MIN) and
the maximum (MAX) value of the fitness functions. This study then permits us to know
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when the algorithms get the best and worst value. Table 3 shows the min fitness values
obtained for the selected algorithms in all the datasets. The AOAGA, PSO, and GWO have
lower values in most cases (13 of the 20 datasets), which occurs because these algorithms
can also produce the optimal values.

Table 3. Results of the MIN measure for all methods.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 0.0839 0.0839 0.0839 0.0000 0.0000 0.0000 0.0000 0.1187 0.1187 0.0000 0.0000
ionosphere 0.0000 0.0000 0.2132 0.1066 0.1066 0.1066 0.1066 0.1508 0.1846 0.1066 0.0000
wine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
breastcancer 0.1508 0.1066 0.1846 0.0000 0.1066 0.1066 0.1066 0.1066 0.2132 0.1066 0.0000
glass 0.0869 0.0869 0.0991 0.0869 0.0869 0.0952 0.0869 0.1166 0.1289 0.0869 0.0869
sonar 0.0000 0.0000 0.2774 0.0000 0.1387 0.0000 0.0000 0.1387 0.1961 0.0000 0.0000
Lymphography 0.1644 0.1644 0.3676 0.1644 0.2325 0.2325 0.2325 0.2325 0.2847 0.1644 0.2325
tic-tac-toe 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2587 0.0000 0.0000 0.0000
waveform 0.6145 0.6267 0.6917 0.6255 0.6112 0.6119 0.6007 0.5973 0.6306 0.6112 0.6138
clean1data 0.2245 0.1588 0.2750 0.1588 0.1833 0.1296 0.1833 0.1588 0.2593 0.1588 0.1296
SPECT 0.2732 0.2732 0.2732 0.1728 0.2443 0.2443 0.2732 0.2732 0.3665 0.2116 0.2116
Zoo 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ecoli 0.1509 0.1519 0.2032 0.1750 0.1750 0.1750 0.1750 0.1903 0.2056 0.1750 0.1750
CongressEW 0.0000 0.0000 0.1916 0.0958 0.0958 0.0958 0.0958 0.0958 0.0958 0.0000 0.0000
Exactly 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Exactly2 0.4427 0.4517 0.4648 0.4427 0.4427 0.4427 0.4427 0.4648 0.5292 0.4427 0.4427
M-of-n 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vote 0.0000 0.1155 0.1633 0.1155 0.0000 0.1155 0.0000 0.1155 0.1633 0.0000 0.0000
krvskp 0.1501 0.1061 0.2209 0.1370 0.1415 0.1226 0.1324 0.1001 0.2032 0.0791 0.1061
heart 0.3232 0.2993 0.3665 0.2993 0.3232 0.3455 0.2732 0.2993 0.3455 0.2732 0.3232

On the other hand, Table 4 shows the MAX values of the fitness value obtained after
the experiments of selected algorithms over the 20 datasets from the UCI. The AOAGA is
the method that provides the MAX value for all the cases and the PSO only for two cases.
The rest of the algorithms cannot get any maximal from the experiments.

Table 4. Results of the MAX measure for all methods.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 0.1187 0.1187 0.6766 0.1876 0.2056 0.1876 0.2374 0.2654 0.3140 0.1876 0.1876
ionosphere 0.2132 0.3198 0.5539 0.2820 0.3015 0.3015 0.3371 0.4129 0.4767 0.2611 0.2611
wine 0.0000 0.0754 0.4264 0.0754 0.0754 0.0754 0.2820 0.2611 0.3454 0.0754 0.1066
breastcancer 0.1846 0.3198 0.5741 0.2611 0.3371 0.3015 0.3198 0.3989 0.4523 0.2611 0.2820
glass 0.1822 0.2146 0.2894 0.1903 0.1903 0.1981 0.2664 0.2855 0.3442 0.1903 0.1903
sonar 0.1387 0.3397 0.5371 0.3397 0.3922 0.3669 0.3669 0.4804 0.4599 0.3397 0.2774
Lymphography 0.2847 0.4932 0.6778 0.4027 0.4650 0.4350 0.6367 0.6778 0.7352 0.4027 0.4350
tic-tac-toe 0.0000 0.3935 0.7516 0.0647 0.4574 0.4884 0.5786 0.6501 0.7318 0.0647 0.4387
waveform 0.6512 0.7172 1.1486 0.6969 0.6888 0.7071 0.6835 0.7720 0.8686 0.6573 0.6741
clean1data 0.2425 0.3430 0.7101 0.3667 0.3305 0.3430 0.3889 0.3430 0.4674 0.3305 0.2899
SPECT 0.3232 0.4732 0.6802 0.4405 0.4571 0.4571 0.4571 0.5325 0.5985 0.4232 0.4405
Zoo 0.0000 0.0333 0.4447 0.0333 0.0471 0.0667 0.2828 0.2925 0.3636 0.0333 0.0577
ecoli 0.2226 0.2861 0.5898 0.2806 0.2819 0.2819 0.3818 0.3721 0.7703 0.2806 0.2844
CongressEW 0.1355 0.2709 0.7103 0.2534 0.2709 0.2346 0.4064 0.4064 0.5747 0.2346 0.2346
Exactly 0.0000 0.5586 0.7430 0.3688 0.5762 0.5404 0.5514 0.6419 0.7266 0.0000 0.5477
Exactly2 0.4817 0.5621 0.7071 0.5441 0.5441 0.5550 0.6419 0.6000 0.7211 0.5441 0.5441
M-of-n 0.0000 0.4000 0.6419 0.3225 0.4147 0.3795 0.5762 0.6419 0.6261 0.0000 0.4690
Vote 0.1633 0.2828 0.7916 0.2309 0.2828 0.2582 0.4000 0.4761 0.4899 0.2582 0.2828
krvskp 0.1621 0.2896 0.6896 0.2209 0.2526 0.2093 0.2399 0.2293 0.5983 0.1659 0.2694
heart 0.3455 0.5183 0.7228 0.4405 0.4732 0.4732 0.4405 0.5464 0.6465 0.4232 0.4571

The stability of the results computed by the algorithms is analyzed by using the
standard deviation (STD). The STD is calculated after all the independent experiments were
performed for each dataset using the fitness value as input. In this case, the experimental
runs are set to 30. A lower STD represents better stability of the results. In other words,
no substantial changes in the experiments. Table 5 presents the values of the STD, where
the AOAGA has the lower value in 13 out of 20 datasets, the HHO and the PSO only in
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3, the AOA in 2, the MVO in 1, and the rest methods did not achieve the best results in
any datasets.

Table 5. Results of the standard deviation for all methods.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 0.0159 0.0146 0.1665 0.0383 0.0456 0.0389 0.0571 0.0413 0.0447 0.0391 0.0511
ionosphere 0.0626 0.0680 0.0915 0.0432 0.0457 0.0608 0.0514 0.0621 0.0659 0.0478 0.0567
wine 0.0000 0.0347 0.1106 0.0214 0.0302 0.0329 0.0846 0.0516 0.0658 0.0175 0.0289
breastcancer 0.0160 0.0521 0.1066 0.0480 0.0456 0.0441 0.0491 0.0674 0.0569 0.0448 0.0483
glass 0.0335 0.0296 0.0487 0.0221 0.0251 0.0250 0.0319 0.0431 0.0485 0.0244 0.0279
sonar 0.0555 0.0758 0.0771 0.0718 0.0666 0.0847 0.0822 0.0877 0.0658 0.0939 0.0941
Lymphography 0.0521 0.0832 0.0840 0.0570 0.0610 0.0659 0.0804 0.1079 0.1158 0.0641 0.0528
tic-tac-toe 0.0000 0.1650 0.2297 0.0116 0.1778 0.1726 0.1040 0.0947 0.1954 0.0108 0.1639
waveform 0.0150 0.0229 0.1369 0.0132 0.0166 0.0217 0.0191 0.0372 0.0541 0.0127 0.0166
clean1data 0.0085 0.0516 0.0951 0.0417 0.0372 0.0435 0.0459 0.0467 0.0547 0.0382 0.0370
SPECT 0.0250 0.0477 0.0994 0.0551 0.0529 0.0538 0.0503 0.0669 0.0648 0.0443 0.0507
Zoo 0.0000 0.0160 0.1566 0.0093 0.0181 0.0204 0.0700 0.0620 0.0962 0.0106 0.0158
ecoli 0.0305 0.0337 0.1048 0.0221 0.0260 0.0257 0.0345 0.0454 0.1100 0.0231 0.0233
CongressEW 0.0419 0.0492 0.1553 0.0426 0.0430 0.0381 0.0691 0.0697 0.1088 0.0612 0.0460
Exactly 0.0000 0.2162 0.1336 0.0827 0.2236 0.2005 0.1178 0.2065 0.1163 0.0000 0.1944
Exactly2 0.0162 0.0295 0.0694 0.0246 0.0235 0.0292 0.0412 0.0307 0.0407 0.0259 0.0218
M-of-n 0.0000 0.1540 0.2008 0.0683 0.1509 0.1171 0.1100 0.1836 0.1269 0.0000 0.1161
Vote 0.0685 0.0373 0.1505 0.0381 0.0585 0.0436 0.0675 0.0776 0.0873 0.0650 0.0614
krvskp 0.0043 0.0409 0.1207 0.0205 0.0287 0.0186 0.0268 0.0311 0.1164 0.0176 0.0308
heart 0.0109 0.0424 0.0932 0.0395 0.0431 0.0363 0.0390 0.0633 0.0794 0.0378 0.0377

On the other hand, as was previously explained, the Accuracy evaluates the quality of
the classification based on the true positive, true negative, false positive, and false negative
values. Here it is expected that the values obtained are close to 1, which represents a higher
Accuracy. In Table 6 are presented the values for the selected algorithms; the proposed
AOAGA is the method that has better accuracy for the classification of the feature. The
AOAGA gets the value closer to 1 in 17 of the 20 datasets, the PSO in 3, the MVO and the
GWO in 1, and the rest is zero. Moreover, Figures 3 and 4 illustrates the good performance
of the proposed method over the average of the fitness values and accuracy measure.

Table 6. Results of the accuracy measure for all methods.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 0.9905 0.9875 0.8496 0.9840 0.9820 0.9808 0.9842 0.9675 0.9525 0.9880 0.9857
ionosphere 0.9785 0.9517 0.8380 0.9562 0.9468 0.9494 0.9484 0.9231 0.8932 0.9643 0.9643
wine 1.0000 0.9855 0.8575 0.9980 0.9955 0.9942 0.9643 0.9286 0.8968 0.9987 0.9961
breastcancer 0.9735 0.9481 0.8329 0.9617 0.9513 0.9523 0.9542 0.9289 0.8883 0.9697 0.9708
glass 0.8066 0.7547 0.6593 0.6695 0.6253 0.6156 0.6873 0.5585 0.5100 0.6965 0.6491
sonar 0.9846 0.9442 0.8246 0.9522 0.9522 0.9615 0.9577 0.9192 0.8846 0.9767 0.9709
Lymphography 0.9324 0.8865 0.7076 0.5730 0.7297 0.5707 0.7290 0.4981 0.4000 0.8092 0.6958
tic-tac-toe 1.0000 0.9283 0.6563 0.9999 0.9441 0.9515 0.9885 0.7790 0.6886 0.9999 0.9503
waveform 0.7928 0.7761 0.6005 0.7848 0.7831 0.7826 0.7874 0.7749 0.7411 0.7921 0.7857
clean1data 0.9468 0.9361 0.7988 0.9289 0.9316 0.9373 0.9261 0.9253 0.8766 0.9484 0.9549
SPECT 0.9104 0.8652 0.7593 0.8784 0.8639 0.8695 0.8725 0.8333 0.7723 0.8900 0.8806
Zoo 1.0000 0.9815 0.9138 0.9966 0.9269 0.9029 0.7291 0.3726 0.2389 0.9954 0.9634
ecoli 0.8405 0.7853 0.6032 0.8405 0.8423 0.8452 0.8393 0.7857 0.8185 0.8413 0.8405
CongressEW 0.9878 0.9756 0.8324 0.9711 0.9642 0.9694 0.9624 0.9419 0.8966 0.9777 0.9734
Exactly 1.0000 0.9072 0.6363 0.9903 0.8917 0.9323 0.9828 0.7696 0.6332 1.0000 0.9313
Exactly2 0.7790 0.7461 0.6358 0.7505 0.7375 0.7349 0.7295 0.6986 0.6601 0.7594 0.7478
M-of-n 1.0000 0.9393 0.7338 0.9939 0.9571 0.9821 0.9864 0.8704 0.7384 1.0000 0.9851
Vote 0.9867 0.9636 0.8080 0.9687 0.9560 0.9618 0.9604 0.9267 0.8747 0.9693 0.9667
krvskp 0.9762 0.9638 0.7065 0.9689 0.9610 0.9728 0.9698 0.9741 0.8615 0.9855 0.9725
heart 0.8866 0.8473 0.6811 0.8706 0.8542 0.8388 0.8677 0.8149 0.7468 0.8781 0.8433
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Figure 3. Average of the fitness values for all algorithms.

Figure 4. Average of the accuracy measure values for all algorithms.

In the feature selection problem, it is necessary to identify a set that contains a reduced
number of the most representative features. Then the number of selected features could
also be considered a metric to verify the performance of the experiments over the selected
datasets. The number of selected features for each algorithm is presented in Table 7. From
this table, the AOAGA is the algorithm that has the lower valuer 16 times, the SMA and the
GOA in 2 times, the AOA and HHO only 1 time. The values of the rest of the algorithms
are higher.
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Table 7. Selected features number obtained by each algorithm.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 10.50 13.23 11.13 15.03 15.97 15.83 15.78 15.53 15.47 15.09 13.97
ionosphere 11.00 12.32 11.23 11.94 15.49 15.57 14.49 16.06 17.29 14.11 12.40
wine 6.22 6.27 6.73 7.56 7.46 7.26 7.00 7.34 6.49 7.49 7.06
breastcancer 11.00 13.27 12.13 11.09 15.74 15.86 14.51 16.09 16.31 14.70 12.31
glass 4.00 4.90 4.82 4.93 5.31 5.34 5.23 5.09 4.80 4.97 4.74
sonar 24.00 24.50 24.81 27.54 29.69 30.71 29.60 30.31 29.91 29.15 24.14
Lymphography 7.33 7.67 7.73 9.43 10.14 9.71 8.57 9.86 9.34 9.00 8.06
tic-tac-toe 9.00 8.05 5.41 9.00 8.31 8.37 8.86 6.29 5.00 9.00 8.29
waveform 11.33 12.33 6.11 14.54 13.20 13.17 13.60 13.97 11.51 13.50 11.69
clean1data 47.50 63.57 48.90 71.63 81.74 79.91 82.00 85.63 82.09 81.06 58.54
SPECT 8.50 8.20 9.28 9.26 10.74 11.03 10.80 11.89 11.34 10.49 9.71
Zoo 7.56 8.62 7.80 9.91 9.40 9.31 9.14 8.63 8.40 9.51 9.63
ecoli 5.20 4.73 5.56 5.13 4.80 5.29 4.97 4.20 3.51 4.94 5.11
CongressEW 3.83 6.66 4.21 6.63 7.57 7.70 7.43 7.53 7.63 7.00 6.13
Exactly 6.56 7.29 7.10 7.40 7.60 7.37 7.20 8.13 6.67 6.83 6.83
Exactly2 3.00 4.50 3.90 4.00 6.07 5.40 5.73 6.40 7.23 6.50 5.30
M-of-n 7.25 7.82 5.78 7.53 7.70 7.87 7.37 7.87 6.87 7.17 7.13
Vote 6.17 6.70 6.80 6.10 7.97 7.50 7.33 7.77 8.07 7.67 6.13
krvskp 12.83 17.23 12.90 20.40 20.43 20.03 19.97 20.57 18.57 19.60 15.57
heart 6.25 6.53 7.37 7.17 7.60 8.40 7.37 7.17 6.93 7.37 6.70

The computational time for each algorithm is analyzed in Table 8. In this case, it is
expected to have a reduced value. However, this does not represent a good performance
because a fast algorithm is not necessarily accurate. This could be seen in Table 8, where the
SMA is the algorithm that has the lower time 13 times, followed by the MFO with 3 times
and MVO, SSA, PSO, and GWO with only 1 time. In this case, the proposed AOAGA is the
one with higher computational time due to the hybridization of the operator; however, its
performance is better than the rest of the algorithms in the comparisons.

Table 8. Processing time for all algorithms.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 38.226 56.868 6.608 15.705 7.075 6.337 6.352 6.294 6.959 6.301 6.334
ionosphere 35.944 51.773 6.393 15.432 6.866 6.160 6.184 6.124 6.812 6.174 6.213
wine 12.851 52.921 6.216 15.418 7.174 6.442 6.419 6.447 6.725 6.460 6.418
breastcancer 34.480 52.491 6.253 15.040 6.745 6.052 6.021 6.043 6.685 6.036 6.076
glass 35.307 51.165 5.045 11.607 7.377 6.576 6.653 6.568 6.778 6.557 6.617
sonar 34.131 47.956 6.288 14.656 6.714 6.029 6.040 6.022 7.143 6.061 5.974
Lymphography 29.140 48.230 5.274 13.185 6.645 5.576 5.868 5.805 6.175 5.717 5.655
tic-tac-toe 28.221 61.421 6.958 15.562 8.152 7.341 7.361 7.357 7.319 7.259 7.153
waveform 208.100 249.785 12.398 41.034 20.358 18.163 18.189 18.704 18.460 18.126 17.410
clean1data 41.632 62.067 6.688 16.741 7.837 7.064 7.047 7.073 10.088 7.014 6.762
SPECT 33.499 50.294 5.865 14.640 6.698 6.048 6.091 6.024 6.477 6.059 6.116
Zoo 15.742 50.040 4.934 14.817 7.337 6.317 6.385 6.428 6.503 6.187 5.824
ecoli 25.238 31.632 4.541 11.425 5.772 5.195 5.189 5.240 5.269 5.178 5.209
CongressEW 34.109 52.574 6.453 15.527 7.252 6.474 6.468 6.448 6.830 6.486 6.474
Exactly 26.764 57.360 6.686 16.482 7.891 7.202 7.058 7.033 7.349 7.110 7.066
Exactly2 33.948 49.714 6.936 16.190 7.772 6.856 6.889 6.988 7.584 7.025 6.968
M-of-n 14.282 57.857 6.887 16.764 8.054 7.205 7.231 7.227 7.554 7.200 7.232
Vote 34.804 52.274 6.439 15.561 7.247 6.527 6.466 6.544 6.733 6.557 6.508
krvskp 122.824 169.704 10.450 29.577 14.121 12.649 12.548 12.698 13.119 12.573 11.564
heart 33.902 51.467 10.302 24.904 11.529 10.486 10.318 10.322 11.038 10.278 10.636

Figures 5 and 6 depict the average of fitness value and their boxplots, respectively.
From these curves it can be seen that the AOAGA has convergence rate better than other
methods. This can be observed from the second half of iterations in most datasets. In
addition, it can be noticed from boxplot that the developed AOAGA has the lower box in
addition to SMA is the worst MH technique according to the obtained results in this study.
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(a) breastWDBC (b) clean1data

(c) CongressEW (d) ecoli

(e) Exactly (f) ionosphere
Figure 5. Examples of the convergence curves for the compared methods.
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(a) Lymphography (b) krvskp

(c) SPECT (d) Vote

(e) Zoo (f) waveform
Figure 6. Examples of the boxplot for the compared methods.
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Table 9 shows the mean rank obtained by using non-parametric Friedman test. The
main objective of this test is to determine if there is significant difference between the
developed AOAGA and other methods. From these results it can be seen that the developed
AOAGA has smallest mean rank at thirteen datasets which represent nearly 65% from all
datasets. Followed by PSO which has the best mean rank at six datasets nearly 30% from
all datasets. This results indicates the ability of developed method to convergence faster
than other methods.

Table 9. Results of the Friedman statistical test.

Dataset AOAGA AOA SMA HHO GA MVO SSA MFO GOA PSO GWO

breastWDBC 3.100 4.050 10.033 5.667 5.917 6.367 4.533 8.667 9.900 3.217 4.550
ionosphere 2.050 2.817 10.333 5.333 6.550 6.233 6.717 8.217 10.000 3.800 3.950
wine 3.900 5.633 10.133 4.000 4.600 4.733 6.000 8.933 9.667 4.033 4.367
breastcancer 2.267 3.150 10.117 5.417 6.767 6.517 6.467 8.083 10.200 3.383 3.633
glass 2.717 3.117 9.900 4.700 6.333 5.800 5.117 9.167 10.067 4.117 4.967
sonar 3.583 3.983 10.700 5.967 6.567 5.350 5.700 7.883 9.583 3.483 4.700
Lymphography 2.917 3.767 10.517 4.800 6.700 5.600 4.933 8.817 9.400 3.250 5.300
tic-tac-toe 3.817 4.567 9.917 4.417 5.750 5.633 4.000 9.300 9.467 4.350 5.783
waveform 4.133 5.600 10.800 6.683 5.800 6.250 5.517 6.933 9.867 2.050 5.367
clean1data 4.068 4.700 10.850 7.033 6.133 5.517 6.450 6.783 9.950 3.750 3.150
SPECT 3.500 6.550 10.033 5.367 6.750 6.300 5.700 8.133 9.817 3.750 5.100
Zoo 3.717 6.067 9.600 3.717 5.300 5.200 5.967 9.017 9.200 3.717 4.500
ecoli 2.933 4.700 9.083 4.300 5.783 5.583 4.950 8.983 9.833 4.617 5.233
CongressEW 3.683 3.833 10.283 4.417 6.350 5.450 6.000 8.867 9.317 2.783 5.567
Exactly 3.650 6.200 10.017 4.567 5.767 5.567 4.333 8.500 10.183 3.167 4.050
Exactly2 3.850 4.667 8.733 4.317 6.300 6.317 5.650 8.967 10.133 4.083 4.983
M-of-n 3.917 6.150 9.933 4.750 6.333 4.833 4.283 8.483 9.833 3.433 4.050
Vote 3.867 4.100 10.250 4.283 6.867 5.767 5.350 8.333 10.117 4.367 4.700
krvskp 2.900 4.450 10.833 6.700 7.633 5.533 6.200 4.967 10.050 1.533 5.200
heart 2.400 3.817 10.317 4.917 6.267 6.283 5.033 7.917 9.700 3.817 5.533

4.2.2. Comparison with State-of-the-Art Methods

In this section, the developed AOAGA is compared with other state-of-the-art FS meth-
ods namely SMAFA [9], BSSAS3 [67], bGWO2 [68], SbBOA [69], BGOAM [70], Das [71],
and S-bBOA [69].

The comparison results between the developed method and other FS methods are
given in Table 10. From this table it can be noticed that the developed AOAGA shows good
performance and it obtains the higher accuracy at sixteen datasets. Whereas, the SMAFA
has the best accuracy at seven dataset, as well as, BGOAM is the best at two datasets.

4.3. Experimental Series 2: Real Application of AOAGA

Survival data with censoring have appeared frequently in real application, such as
biology and epidemiology [72,73]. Nowadays, the data of gene expression are increasingly
applied to different clinical outcomes in order to facilitate disease diagnosis. Such these data
are high dimensional where the number of genes exceeds the number of observations [74].
Regression technique is a standard practice to study jointly the influence of multiple
predictors on a response. The Cox regression technique is one of the most standard
regression techniques of survival data with censoring. When the the dimensionality of the
predictors being large, the traditional method of estimating Cox regression technique is
undesirable since its prediction accuracy is low and is hard to interpret [75]. To tackle this
issue, feature selection has become an important focus in Cox regression technique.
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Table 10. Comparison with the state-of-the-art methods.

Datasets AOAGA SMAFA [9] BSSAS3 [67] bGWO2 [68] SbBOA [69] BGOAM [70] Das [71] S-bBOA [69]

breastWDBC 0.990 0.989 0.948 0.935 0.971 0.970 - 0.971
ionosphere 0.979 0.971 0.918 0.834 0.907 0.946 0.865 0.907
wine 1.000 1.000 0.993 0.920 0.984 0.989 0.961 0.984
breastcancer 0.973 0.976 0.976 0.975 0.969 0.974 0.971 0.969
glass 0.807 0.795 - - - - 0.692 -
sonar 0.985 0.989 0.937 0.729 0.936 0.915 0.793 0.936
Lymphography 0.932 0.930 0.890 0.700 0.868 0.912 - 0.868
tic-tac-toe 1.000 0.857 0.821 - 0.798 0.791 - 0.798
waveform 0.793 0.793 0.733 0.789 0.743 0.751 - 0.743
clean1data 0.947 0.949 0.880 0.727 0.883 - - 0.883
SPECT 0.910 0.906 0.836 0.822 0.846 0.826 - 0.846
Zoo 1.000 1.000 1.000 0.879 0.978 0.958 0.960 0.978
ecoli 0.840 0.857 - - - - 0.789 -
CongressEW 0.988 0.987 0.963 0.938 0.959 0.976 0.526 0.959
Exactly 1.000 0.999 0.980 0.776 0.972 1.000 - 0.972
Exactly2 0.779 0.774 0.758 0.750 0.760 0.736 - 0.760
M-of-n 1.000 1.000 0.991 0.963 0.972 1.000 - 0.972
Vote 0.987 0.981 0.951 0.920 0.965 0.963 - 0.965
krvskp 0.976 0.976 0.964 0.956 0.966 0.974 - 0.966
heart 0.887 0.885 0.860 0.776 0.824 0.836 0.784 0.824

To examine the performance of the proposed hybrid algorithm, AOAGA, two real gene
datasets were used. The first dataset is the Diffuse large B-cell lymphoma (DLBC2002) [54].
DLBC2002 contains 240 lymphoma patients’ samples in which Each patient has 7399 gene
expression measurements. The second dataset is the Lung cancer dataset (Lung-cancer) [55].
This dataset contains 86 lung cancer patients’ information, for each of whom 7129 gene
expression were measured. For both datasets, the response variable is the survival time
including censored or not.

Results and Discussion of Real Gene Datasets

In order to show the performance that can be achieved by our AOAGA and other
used algorithms on the two used datasets, the average values, MIN and MAX values of the
log-likelihood as a fitness function were given in Tables 11–13, respectively. From Table 11,
the proposed algorithm, AOAGA, achieved a better performance for the two datasets,
respectively. Moreover, it is clear from the results that the AOAGA more successful than
the AOA for all datasets. This enhancement is mainly becuase of the developed algorithm
ability in taking into account the limitation of the standard AOA algorithm. In terms of
standard deviation criterion in Table 14, the AOAGA attained the lowest standard deviation
value in both DLBC2002 and Lung-cancer dataset and considered the most stable one than
the compared algorithms.

Table 15 summarize the results in average of different used algorithms applied. Ac-
cording to Table 15, the numbers of genes selected by MFO are larger than those of the
all used algorithms. Among the other used algorithms, the proposed algorithm, AOAGA,
selected less genes. In Lung-cancer dataset, for example, the AOAGA selected least ratio of
genes. In DLBC2002 dataset, the AOAGA showed comparable results to SMA algorithm.

Table 11. Real Application: Average of the fitness value.

Dataset AOAGA AOA SMA GA HHO PSO SSA MFO GOA

DLBC2002 −234.3245 −230.2966 −233.6701 −230.0083 −232.3211 −230.4959 −229.1562 −228.8837 −227.5548
Lung_cancer −62.9218 −59.5755 −57.7912 −60.0389 −62.3429 −59.6144 −58.6842 −57.4670 −58.4467
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Table 12. Real Application: Minimum of the fitness value.

MIN AOAGA AOA SMA GA HHO PSO SSA MFO GOA

DLBC2002 −236.4848 −234.0571 −236.4848 −234.8838 −235.6193 −234.8838 −232.6768 −231.3313 −230.0000
Lung_cancer −63.9350 −63.9350 −59.1967 −63.9350 −63.9350 −63.9350 −63.9350 −60.8395 −60.8263

Table 13. Real Application: Maximum of the fitness value.

AOAGA AOA SMA GA HHO PSO SSA MFO GOA

breastWDBC −231.3218 −227.6297 −231.2671 −227.3983 −231.1883 −227.8288 −226.5824 −226.0087 −224.0000
Lung_cancer −59.2110 −57.5195 −55.8756 −57.5195 −59.1744 −57.5195 −56.9506 −56.1811 −56.0671

Table 14. Real Application: Standard deviation of the fitness value.

AOAGA AOA SMA GA HHO PSO SSA MFO GOA

DLBC2002 1.3164 1.9293 1.7683 2.1215 1.4501 2.1030 1.7937 1.6517 2.3251
Lung_cancer 1.1933 1.8862 1.2576 2.2921 1.8003 1.8522 1.9929 1.2527 2.3796

Table 15. Real Application: Ratio of the selected features.

AOAGA AOA SMA GA HHO PSO SSA MFO GOA

DLBC2002 0.2809 0.2831 0.2762 0.4987 0.2867 0.5010 0.5010 0.5312 0.5008
Lung_cancer 0.3504 0.3589 0.3521 0.5036 0.3987 0.4983 0.5001 0.5227 0.4961

5. Conclusions

This paper proposed a novel feature selection method based on an improved Arith-
metic Optimization Algorithm (AOA) to generate a new subset of best features. The main
idea of the proposed method, called AOAGA is to apply the operators of the genetic algo-
rithm (GA) to boost the performance of the traditional AOA. The traditional AOA suffers
from weaknesses, the local search strategy, and the trade-off between the search strategies.
Thus, the proposed method works using a new transition mechanism to transfer between
the AOA with the GA operators are used to guarantee the solutions’ diversity is kept. We
evaluated the AOAGA with twenty well-known benchmark datasets to verify its effective-
ness in solving different feature selection problems. More so, several standard evaluation
criteria were used to evaluate the results of the AOAGA, including accuracy, the number of
selected features, and fitness function. Moreover, to further assess the performance of the
proposed AOAGA method, two real-world problems containing gene datasets are used.
Finally, the results were compared with several well-known state-of-the-art techniques to
prove the performance of the proposed AOAGA method. The results illustrated that the
proposed AOAGA method finds new best solutions for different test cases, and it made
promising results compared to other comparative methods published in the literature.
However, there is certain limitation that must be addressed, such as the computational
time of the proposed method in case of high dimensional datasets.

For future work, the proposed AOAGA can be investigated further in order to adapt
its operator accurately and get further improvement. It can also be modified differently to
adjust its search operators. Moreover, the proposed AOAGA can be tested to solve other
benchmark optimization and real-world problems such as clustering, image segmentation,
task scheduling in fog computing, medical data classification, sentiment analysis, parameter
estimation, and others.
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