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Abstract: The outbreak of coronavirus disease 2019 (COVID-19) has caused a global disaster, se-
riously endangering human health and the stability of social order. The purpose of this study is
to construct a nonlinear combinational dynamic transmission rate model with automatic selection
based on forecasting effective measure (FEM) and support vector regression (SVR) to overcome the
shortcomings of the difficulty in accurately estimating the basic infection number R0 and the low
accuracy of single model predictions. We apply the model to analyze and predict the COVID-19
outbreak in different countries. First, the discrete values of the dynamic transmission rate are cal-
culated. Second, the prediction abilities of all single models are comprehensively considered, and
the best sliding window period is derived. Then, based on FEM, the optimal sub-model is selected,
and the prediction results are nonlinearly combined. Finally, a nonlinear combinational dynamic
transmission rate model is developed to analyze and predict the COVID-19 epidemic in the United
States, Canada, Germany, Italy, France, Spain, South Korea, and Iran in the global pandemic. The
experimental results show an the out-of-sample forecasting average error rate lower than 10.07% was
achieved by our model, the prediction of COVID-19 epidemic inflection points in most countries
shows good agreement with the real data. In addition, our model has good anti-noise ability and
stability when dealing with data fluctuations.

Keywords: COVID-19; SARS-CoV-2; dynamic transmission rate; forecasting effective measure;
combined prediction model; support vector regression

1. Introduction

Coronavirus disease 2019 (COVID-19), which was first reported in Hubei, China at
the end of 2019, has spread globally during 2020. The World Health Organization (WHO)
renamed this disease as COVID-19 in 11 February 2020 and made the assessment that
COVID-19 can be characterized as the third pandemic caused by coronavirus, after SARS-
CoV (2002) and MERS-CoV (2012) [1]. According to a report from Johns Hopkins University,
by 18 July 2021, there were 183.82 million confirmed cases and 3.97 million deaths from
COVID-19 worldwide. More than 190 countries have confirmed cases of COVID-19, and
the cumulative number of confirmed cases in eight countries exceeds 500,000, these being
the United States (USA), India, Brazil, France, Russia and Turkey, and four countries (USA,
India, Brazil and Mexico) have more than 200,000 deaths. There is no doubt that COVID-19
has brought a serve threat to the health and livelihoods of people all over the world. In
the face of the wanton spread of the epidemic, it is important to effectively discover the
internal dynamic laws of the epidemic and build an effective epidemic model to analyze
and predict the spread of the disease. Implementation of such a model can minimize the
impact of the epidemic on the community economy and help countries around the world
take reasonable epidemic prevention and control measures.
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The prediction of an epidemic refers to the application of dynamical, statistical, and
other models to estimate the trend of the number of future cases, this being the compass
of epidemic prevention and control. According to the prediction principle, the existing
COVID-19 epidemic models can be divided into the dynamical models based on mech-
anistic analysis and the statistical models based on actual data. Among the dynamical
models, the SIR model, the SEIR model, and their extensions can reflect the intrinsic dy-
namical characteristics of the spread of infectious diseases and can better reproduce the
development process of diseases, reveal the epidemic law, and predict the change trend, so
they are favored by researchers. Yang et al. [2] used the improved SEIR model to predict
and analyze the epidemic under the prevention and control policies, and the experimental
results showed that strong prevention and control policies could effectively inhibit the
spread of the epidemic. Wu et al. [3] predicted the global spread of COVID-19 using
an improved SEIR model. Lopez et al. [4] used the modified SEIR model to predict the
COVID-19 outbreak in Spain and Italy. Ashutosh et al. [5] estimated pure asymptomatic
infection cases based on a SEIR model. The results showed that infection may last for a
long time without a vaccine. Tang et al. [6] proposed that the risk of secondary outbreaks
can be effectively reduced by intermittent population mobility and effective isolation of
infected people in the floating population based on a novel stochastic discrete transmission
model. In the meantime, the data-driven statistical models were also widely used in the
prediction and analysis of COVID-19 epidemics, including function fitting models [7–9],
machine learning [10,11], deep learning [12,13], and time series models [14,15].

It is well-known that the basic infection number R0 plays an important role in such
dynamical models. However, it is difficult to accurately estimate this parameter due to the
fact that it can vary depending on a number of factors [16]. To overcome this difficulty,
Huang et al. [17] proposed a data-driven, simple calculation of the dynamic propagation
rate to replace R0 based on the law of natural growth. Subsequently, Hu et al. [18] used
a power function to fit the dynamic transmission rate to predict and analyze epidemic
in China. Hu et al. [19] developed a dynamic growth rate model (DGRM) to predict
and analyze epidemic at abroad. Both of studies used a single prediction model that
could not be adjusted adapted according to the actual situation. Inspired by existing
work [17–19], Xie et al. [20] proposed an nonlinear combinational dynamic transmission
rate model based on support vector regression (SVR) to analyze the epidemic situation of
major cities in China. Their work improved the problem of insufficient prediction accuracy
of single model, but the sub-model selection method was manual selection, which lacked
interpretability, and the selection method needed to be strengthened. In addition, in the
face of complex epidemic data abroad, the results of using a single kernel function for
research are often unsatisfactory.

In the present work, we propose an improved nonlinear combinational dynamic
transmission rate model (INCDTRM), that can automatically select the optimal sub-model
based on forecasting effective measure (FEM) and SVR. We employ the model to predict the
existing cases and inflection points of COVID-19 for USA, Canada, Germany, Italy, France,
Spain, South Korea, Iran and the global epidemic, and we present a comparative case
analysis. The results show that such a combinational model is able to predict new cases with
very high efficiency, in some countries above 95%. This study may help in understanding
the development trend of COVID-19 and the effectiveness of mitigation measures.

The remainder of this article is organized as follows. Section 2 introduces the dynamic
transmission rate, and explains the use of SVR and FEM. Section 3 discusses our simulations
and empirical studies, including dataset description, choice of sliding window period,
weight and parameters setting in SVR, comparative analysis of different models, inflection
point prediction, sensitivity analysis and the global epidemic forecast. Some conclusions
are drawn in Section 4.
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2. Methodology
2.1. Dynamic Transmission Rate

Let N(t) = L(t)− K(t)− D(t) be the existing number of cases at time t, where L(t),
K(t), and D(t) are cumulative confirmed cases, cumulative cures and cumulative deaths,
respectively. Then, we have

N(t + 1)− N(t) = q(t)N(t), (1)

where q(t) is the growth rate of the number of existing infections at time t. It follows from
Equation (1) that

q(t) =
N(t + 1)

N(t)
− 1. (2)

Considering that only taking the number of existing cases in two adjacent days to
calculate the dynamic growth rate is not robust and is vulnerable to data fluctuations,
a sliding window period k is introduced into Equation (1) to obtain the following new
dynamic growth rate, i.e.,

q(t) =
[ N(t + 1)

N(t− k + 1)

]1/k
− 1, (3)

which is similar to the average growth rate. It follows that q(t) > −1. Equaiton (3) is the
geometric average of the ratio of the number of existing infections during a sliding window
period, and the calculated results will be more robust. The corresponding dynamic growth
rate sequence becomes smoother with the increasing of the sliding window period.

To facilitate the calculation, the discrete value of dynamic transmission rate is given by

ht = q(t) + 1. (4)

where ht is non-negativity. It should be noted that when the ht is close to 0, which means
the epidemic has basically ended, that is, the cumulative confirmed cases are not changing
again. In addition, we define this special case, i.e., ht = 1, as the inflection point of the
epidemic [18]. We record the farthest day of the dataset as 1 and the nearest as T, so it
follows that t ∈ [k, T].

According to the discrete value of the dynamic transmission rate ht, selecting an
effective function f (t) to fit ht is the key to accurately predicting a COVID-19 outbreak.
Some well-known fitting functions f (t) in Table 1 are considered in this paper.

Table 1. Four fitting functions.

Fitting Function Function Expression Parameter Reference

Two-parameter power function f1(t) = β1tβ2−1 β1 > 0, β2 > 0 [18]

Three-parameter logarithmic function f2(t) = β1 ln(β2t) + β3 β1 < 0, β2 > 0, β3 ∈ R new

Three-parameter hyperbolic function f3(t) =
β1+t

β2+β3t β1 ∈ R, β2 + tβ3 6= 0 [20]

Three-parameter logistic function f4(t) =
β1

(1−β2 exp(−β3t)) + β4 β1 > 0, β2 < 0, β3 < 0, β4 ∈ R [8]

It should be noted that the parameters β1 and β2 of f1(t) can respectively reflect the
severity of the initial epidemic and the degree of human interference in the development
of the epidemic, including the effectiveness of preventive measures and the abundance
of medical resources. For the three-parameter logarithmic function f2(t), the parameters
β1 and β2 have similar role to the corresponding parameters in fitting function f1(t), and
β3 can reflect the number of people infected in the initial epidemic. However, for the
fitting functions f3(t) and f4(t), the parameters of f3(t) can be positive or negative, and
the parameters of f4(t) fluctuate strongly. In fact, the parameters of f1(t) and f2(t) have
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strong interpretability, and their prediction abilities are poor, while the parameters of f3(t)
and f4(t) have poor interpretability, and their prediction abilities are strong (shown in
Section 3.4).

Therefore, we use the functions fi(t)(i = 1, 2, 3, 4) to fit the discrete value of dynamic
transmission rate ht and build a nonlinear weighted least squares model as follows:

arg min
n

∑
t=1

θt[ fi(t)− ht]
2, i = 1, 2, . . . , 4 (5)

where θt = exp{−0.1(T − t)} is the weighting function. By solving the above model, we
can obtain the values of the unknown parameters in fi(t)(i = 1, 2, 3, 4), so that the concrete
form of ht can be obtained.

In order to make full use of the data during the optimal sliding window period, the
number of existing cases is predicted by

N̂(t) =
1
k

k

∑
i=1

N(t− i)× (ĥt−1)
i, (6)

where ĥt−1 and N̂(t) represent the predicted value of dynamic transmission rate at time
t− 1 and the estimated numbers of existing cases at time t, respectively. When N(t− i) is
unknown, we can use N̂(t− i) instead of it.

2.2. Support Vector Regression

The support vector machine (SVM) is one of the most important predictive models;
it has been widely used in various fields and has achieved great success. In addition, it
has the advantages of fast learning, global optimization and strong generalization ability.
In particular, SVR is an important application of SVM. The main idea is to introduce an
ε-insensitive loss function in SVM to adapt to the regression problem and use a kernel
function to map the sample set to the high-dimensional feature space to achieve nonlinear
regression. Due to its powerful fitting and generalization abilities, SVR has been widely
used in various fields, such as in industry [21,22] and atmospheric field [23,24].

Let D = {(xi, yi)}N
i=1 be the learning sample set, where xi ∈ Rn and yi ∈ R represent

the input values and the corresponding desired output, respectively, and N is the number
of samples. The general form of the regression function of SVR can be formulated by:

d(x) = ω · x + b (7)

where ω ∈ Rn and b stand for the weight vector and the offset, respectively. The original
problem of SVR can be transformed into the following optimization problem:

min
ω,b,ξ∗i ,ξi

1
2
‖ω‖2 + C

N

∑
i=1

(ξ∗i + ξi)

s.t.


(ω · xi) + b− yi ≤ ε + ξi,
yi − (ω · xi)− b− ≤ ε + ξ∗i ,
ξi, ξ∗i ≥ 0,

i = 1, 2, . . . , N

(8)

where slack variables ξi, ξ∗i make the SVR tolerate the noises or errors and C is a pre-set
penalty factor. Though constructing a Lagrangian function and using the KKT conditions,
the entire problem can be formulated as the following optimization problem:
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minisize
αi ,α∗i

1
2

N

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)(xi · xj) + ε(α∗i + αi)− yi

N

∑
i=1

(α∗i − αi)

s.t.


N
∑

i=1
(α∗i − αi) = 0,

0 ≤ αi, α∗i ≤ C,

(9)

where αi and α∗i are Lagrange multipliers.
Let (α̂T , (α̂∗)T) = (α̂1, . . . , α̂N , α̂∗1 , . . . , α̂∗N) be the optimal solution of the optimization

problem (9). Then the decision function can be expressed as follows:

d(x) =
N

∑
i=1

(α̂i − α̂∗i )(x · xi) + α̂0, (10)

where α̂i, α̂∗i ∈ [0, C] and α̂0 is a scalar in d(x) called bias term. More discussions of SVR
and SVM can be found in the work by Vapnik et al. [25,26] and references within.

It is well-known that the performance of an SVR model is mainly dependent on the
so-called kernel functions; these include the linear kernel function, the polynomial kernel
function, the Gaussian kernel function, and so on. Peng et al. [27] reported that overfitting
for the Gaussian kernel function and the linear kernel function had the worst in-sample
but the best out-of-sample performance when predicting the epidemic pattern. Therefore,
we combine these two kernel functions linearly, and the expression of the combined kernel
function is given by

K
(

xi, xj
)
= λ exp(−γ ·

∥∥xi − xj
∥∥2
) + (1− λ)[γ · (xi · xj) + 2], (11)

where λ is the weight coefficient, γ represents the kernel parameter, and xi and xj represent
the i-th and j-th samples, respectively.

SVR has many advantages in measuring tolerance error, solving nonlinear and high
dimensional pattern recognition, and then use these to improve the forecasting. Also, it is
advantageous to forecast COVID-19 cumulative cases, especially when the sample sizes
are small [28]. In this paper, SVR is used to combine multiple single models nonlinearly,
i.e., multiple fitting functions, to construct a nonlinear combination dynamic transmission
rate model.

2.3. Forecasting Effective Measure

FEM was proposed by Chen in 2001 [29] as an indicator to measure the effectiveness
of a model; this can be used to select the optimal sub-models to build a combination
forecasting model. In addition, FEM represents the average and comprehensive accuracy
of the model, which can be described by the mean of accuracy and the standard deviation
reflecting the degree of dispersion.

Let S = {(ht, ĥit)}T
t=k(i = 1, 2, 3, 4) be a learning sample, and

ait =

{
1−|εit|, |εit| ≤ 1

0, |εit| > 1
, i = 1, 2, 3, 4, t ∈ [k, T],

(12)

where ht is the actual value at time t and εit = (ht − ĥit)/ht is the relative error of the i-th
model at time t. Then the expression for FEM of the i-th model Mi is provided below, i.e.,

FEM(Mi) = E(Mi)(1− σ(Mi)). (13)
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where E(Mi) and σ(Mi) represent the mathematical expectation and the standard deviation
of the i-th model Mi, respectively, which are defined by

E(Mi) =
T

∑
t=k

θt
N
∑

t=k
θt

ait (14)

and

σ(Mi) =

 T

∑
t=k

θt
T
∑

t=k
θt

(ait − E(Mi))
2


1/2

, (15)

where the θt is same in Equation (5).
The fundamental purpose of the combined forecasting is to add additional single

models to the existing model to improve the forecasting effect. If the new model cannot
improve the accuracy of the combined model (a so-called “redundant” model), then we
eliminate it. The algorithm for selecting the optimal sub-model employed in this paper is
given in Algorithm 1 below.

Algorithm 1 Selecting the optimal combined model based on FEM and SVR
Input: Sub-models Mi,(i = 1, 2, 3, 4)
Output: The optimal combined model Mc

1: begin
2: Evaluate FEM(Mi) using Equation (13), i = 1, 2, 3, 4.
3: Sort FEM(Mi) : FEM(M(1)) ≥ FEM(M(2)) ≥ FEM(M(3)) ≥ FEM(M(4)).
4: Let FEMMAX ← FEM(M(1)), Mc ← M(1).
5: for i = 2→ 4 do
6: Get the corresponding estimated dynamic transmission rate by Mc and M(i).
7: Call SVR, take the estimated and the real dynamic transmission rate as the training

input and the desired output of SVR to construct a combination model Mc&(i), and
evaluate FEM(Mc&(i)) using Equation (13).

8: if FEM(Mc&(i)) ≥ FEMMAX then
9: Let FEMMAX ← FEM(Mc&(i)), and Mc ← Mc&(i).

10: end if
11: end for
12: Calculate the number len(Mc) of sub-models in Mc.
13: if len(Mc)=1 then

14: Let (Mc)← max
{

FEM(M(1)&(2)), D(M(1)&(3)), FEM(M(1)&(4))
}

.

15: end if
16: return Mc

2.4. Process Steps

The forecasting framework of INCDTRM is carried out in seven main stages, that are
shown in Figure 1 and explained below.

Input Cumulative confirmed cases L(t), Cumulative deaths D(t), Cumulative cures
K(t), t = 1, 2, . . . , T.

Output Estimates of the existing cases N̂(t), t = T + 1, T + 2, . . . .
Step 1. Calculating the existing cases N(t) = L(t)− K(t)− D(t), t = 1, 2, . . . , T.
Step 2. Choosing the best sliding window period k.
Step 3. Calculating ht using Equations (3) and (4), and divided the result into two

parts. 3/4 sub-sets are used as the training set where time t = k, k + 1, . . . , m and the
remaining sub-sets are devoted as the validation set, t = m + 1, . . . , T.
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Step 4. Fitting the training set based on four fitting functions fi(t) (i = 1, 2, 3, 4), and
getting the estimated dynamic transmission rate ĥit,t = [k, T]

Step 5. Introducing ĥit (t ∈ [k, m]) into SVR, and using SVR to estimate the dynamic
transmission rate ĥit (t ∈ [k, T]) corresponding to the validation set. Then selecting the
optimal combined model based on FEM and SVR by Algorithm 1.

Step 6. Predicting the dynamic transmission rate from the optimal combined model
Mc, and calculating the estimated number of existing cases using Equation (6) after the
T-th periods, respectively.

Step 7. The performance of the model is determined by the mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE),
which are given by

MAE =
1
T

T

∑
t=1
|N(t)− N̂(t)|, (16)

RMSE =

√√√√ 1
T

T

∑
t=1

(N(t)− N̂(t))2 (17)

and

MAPE =
1
T

T

∑
t=1

∣∣∣∣N(t)− N̂(t)
N(t)

∣∣∣∣× 100%, (18)

respectively, where N̂(t) and N(t) are the estimated numbers of existing cases and actual
numbers of existing cases, respectively.

Figure 1. Forecasting framework of INCDTRM.

It should be noted that in Step 6, training set and validation set are used to train
the SVR and select the corresponding model parameters, respectively. Therefore, in the
calculation of FEM, we consider the fitting ability and prediction ability of the model,
which effectively avoids the overfitting of the model.
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3. Results and Discussion

All our numerical experiments are carried out on a PC with AMD Ryzen 7 4800u
CPU at 1.80 GHz and 16 GB of physical memory. The PC runs Python Version: 3.7.2 on
Window 10 Enterprise 64-bit operating system, and the nonlinear fitting model and the
SVR regression model are imported from the SVM class of sklearn python library and
leastsq class of scipy python library.

3.1. Dataset Description

The COVID-19 data repository (https://github.com/CSSEGISandData/COVID-19,
accessed on 17 September 2021) used in the study was obtained from the Johns Hopkins
University Center for Systems Science and Engineering (JHU CSSE) [30]. In this paper, we
consider the following countries: USA, Canada, Germany, Italy, France, Spain, South Korea
and Iran. The cumulative confirmed cases and deaths in each country, as well as the period
from the first and last reports, are listed in Table 2.

Table 2. First and last report dates by country.

Continent Country Number of
Observed Days First Report Last

Report

Cumulative
Confirmed

Cases

Cumulative
Deaths

North America USA 111 28/01/2020 17/05/2020 1,507,773 90,113
North America Canada 111 28/01/2020 17/05/2020 77,257 5801

Europe Germany 111 28/01/2020 17/05/2020 176,369 7958
Europe Italy 109 31/01/2020 17/05/2020 224,760 31,763
Europe France 87 21/02/2020 17/05/2020 179,630 27,532
Europe Spain 107 01/02/2020 17/05/2020 276,505 27,563

Asia South Korea 111 31/01/2020 17/05/2020 11,050 262
Asia Iran 89 19/02/2020 17/05/2020 120,198 6988

17 May 2020 is the end date of the first wave of the epidemic in most countries. When
sliding window period is set to 7, the resulting dynamic transmission rates of the eight
countries are shown in Figure 2.

(a) North America (b) Europe (c) Asia

Figure 2. Dynamic transmission rate (k = 7).

Figure 2 shows that most countries experienced three stages, including a slow growth
in the early stage, a rapid increase in the middle stage and a slow decline in the later stage.
The experimental objects of this paper are mainly the third stage of overseas countries,
i.e., the data after the dynamic transmission rate reaches the peak, and the subsets before
28 April 2020 are used to train the model to predict cases from 28 April 2020 to 17 May
2020. The data is normalized before training SVR and the normalized formula is given by

h∗it =
ĥit −min(ĥit)

max(ĥit)−min(ĥit)
. (19)

https://github.com/CSSEGISandData/COVID-19
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3.2. Choice of Sliding Window Period

The best sliding window period can effectively improve the prediction ability of the
model. The basic idea of selecting the best sliding window period employed in this paper
is to calculate the average mean absolute error (AVG_MAE) of four single models under
different sliding window periods, and then determine the best sliding window period
k according to the minimum AVG_MAE. The algorithm used for selecting the sliding
window period in this paper is given in Algorithm 2 below.

Algorithm 2 Selecting the best sliding window period
Input: Existing cases N(t), t = 1, 2, . . . , T
Output: The best sliding window period k
1: begin
2: Divide the data into two parts, a training set where t = 1, 2, . . . , N − 7 and a testing set

where t = T − 6, T − 5, . . . , T.
3: for k = 1→ 7 do
4: Evaluate the dynamic transmission rate using Equations (3) and (4) with the training

set.
5: Built four prediction models using Equation (5).
6: Predict the dynamic transmission rate using four single models fi(t), i = 1, 2, . . . , 4,

and evaluate the estimated values of existing cases using (6), t = T − 6, T − 5, . . . , T.
7: Evaluate the MAE of the four models using Equation (16), and calculate AVG_MAE.
8: end for
9: return min(AVG_MAE)→ best k

Using Algorithm 2, we obtain the best sliding window periods for eight countries
(Table 3). The results show that the best sliding window periods for North American and
European countries are larger than those for Asia. The result is attributed to the sliding
window period being capable of effectively suppressing data fluctuations due to the large
numbers of existing cases in North American and European countries.

Table 3. The best sliding window period.

Country Best k

USA 7
Canada 4

Germany 2
Italy 7

France 4
Spain 2

South Korea 1
Iran 1

3.3. Weight and Parameters Setting in SVR

Reasonable parameters for SVR can effectively improve the model’s fitting and pre-
dictive ability. In this paper, we use the grid search to select the weight λ of the combined
kernel function, and Figure 3 shows the average MAPE of the epidemic prediction in eight
countries under different weights λ.

It can be seen from Figure 3 that with the increase of weight, the average MAPE shows
a decreasing trend, and when the weight is 0.9, the predicted average MAPE takes the
minimum value, so the weight of the combined kernel function is set to 0.9 in this paper.
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Figure 3. Average MAPE of eight countries under different weights λ.

In addition, the particle swarm optimization (PSO) algorithm is used to search the
optimal parameters for SVR. The initial values of the parameters in the PSO algorithm are
set as shown in Table 4 and the results are displayed in Table 5.

Table 4. Parameters search range.

Parameters Min Max

C 0.1 1
γ 0.1 1

Table 5. Parameter values.

Country C γ ε

USA 0.2370 0.9997 0.0001
Canada 0.1000 0.3817 0.0001

Germany 0.3000 0.9387 0.0001
Italy 0.2050 0.5301 0.0001

France 1.0000 0.1728 0.0001
Spain 0.1555 1.0000 0.0001

South Korea 0.6988 0.5003 0.0001
Iran 1.0000 0.1950 0.0001

3.4. Comparative Analysis of Different Models

To verify the validity of each model, we present the experimental results in detail in
this subsection; at the same time, we also compare the performance results of our proposed
method with the six different regression models, including four single methods, DGRM [19],
and nonlinear combinational dynamic transmission rate model (NCDTRM). In Table 6,
we present the predictive performance on the testing set of seven models (from 28 April
2020 to 17 May 2020). Table 6 shows that INCDTRM achieves the best results in multiple
countries, followed by NCDTRM, and both combinational models obtain better prediction
performance than single models. The MAPEs of INCDTRM are calculated as 1.20%, 3.11%,
7.81%, 3.97%, 8.66%, and 4.42% for USA, Canada, Germany, Italy, Spain and South Korea,
respectively. These results illustrate the accuracy of INCDTRM in estimating the number
of existing COVID-19 daily cases. Among them, the MAE and RMSE of INCDTRM are
the smallest for Germany, but the MAPE is larger than that of the model f4(t). This is
because when INCDTRM is used to predict the epidemic in Germany, the date with the
largest number of existing cases is relatively accurate, but the date of the smallest number
of existing cases has a larger prediction error.

Although the prediction accuracy of INCDTRM is not as good as that of SVR when
predicting the epidemic pattern in USA and Iran, the overall accuracy of INCDTRM is
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better than that of the other six models, and the AVG_MAPE of INCDTRM is 10.07%,
indicating the reliability and feasibility of the FEM in selecting the optimal sub-model.

It should be noted that when forecasting the epidemic pattern in France and Iran,
all models perform very poorly. This situation occurs because the number of confirmed
cases in these two countries has unpredictably increased and second wave of the epidemic
has appeared. Moreover, the fitting functions used in this paper are all monotonically
decreasing functions. If the predicted country has a second wave of the epidemic, i.e., the
dynamic transmission rate increases instead of decreasing, then all models in this paper
will fail. This is the defect of this type of model.

Table 6. Forecast accuracy of different models.

Country Criteria
Model

f1(t) f2(t) f3(t) f4(t) DGRM [19] NCDTRM [20] INCDTRM

MAE 181,553.51 203,871.45 86,416.17 39,651.20 181,553.51 32,902.72 12,068.99
USA RMSE 213,320.96 239,621.02 100,376.01 57,410.14 21,3320.96 48,042.41 16,261.69

MAPE 17.91% 20.11% 8.54% 3.83% 17.91% 3.18% 1.20%

MAE 2794.54 7550.63 5460.93 2077.57 2452.26 1160.59 1007.98
Canada RMSE 3345.02 8740.13 6285.81 2267.68 2973.74 1320.66 1300.06

MAPE 8.63% 23.37% 16.91% 7.39% 7.56% 3.59% 3.11%

MAE 4067.54 2377.99 1784.45 1784.76 4996.27 2717.74 1595.88
Germany RMSE 4871.16 3044.10 2028.51 2028.81 5505.85 3374.36 1782.99

MAPE 22.33% 13.21% 7.70% 7.70% 26.24% 15.10% 7.81%

MAE 13,804.08 18,131.27 6579.78 6580.14 13,804.08 3763.30 3509.84
Italy RMSE 14,792.03 19,482.71 8047.19 8047.59 14,792.03 4104.03 3856.71

MAPE 16.13% 21.24% 8.03% 8.03% 16.13% 4.27% 3.97%

MAE 32,738.55 36,091.83 15,380.00 15,378.93 28,154.59 9239.81 15,694.11
France RMSE 37,108.48 40,924.42 18,531.11 18,529.96 32,288.02 11,827.25 19,165.06

MAPE 35.16% 38.77% 16.53% 16.53% 30.25% 9.93% 16.87%

MAE 16,646.87 22,236.10 16,259.88 16,259.61 8,681.20 10,815.32 5910.42
Spain RMSE 20,180.09 26,274.62 19,429.43 19,429.11 9,974.91 11,061.34 6619.12

MAPE 26.48% 35.21% 25.80% 25.80% 12.95% 15.85% 8.66%

MAE 237.76 207.44 104.72 54.87 194.70 48.07 46.15
South Korea RMSE 277.01 247.12 133.12 74.67 225.65 61.45 57.95

MAPE 22.82% 20.05% 10.20% 5.34% 18.59% 4.62% 4.42%

MAE 7622.71 6945.72 5692.07 4353.94 7667.84 5104.99 5534.86
Iran RMSE 9134.48 8412.68 7103.17 5715.05 9040.22 6613.54 7046.04

MAPE 48.41% 43.96% 35.72% 26.95% 48.85% 31.72% 34.55%

AVG_MAPE 24.73% 26.99% 16.18% 12.70% 22.31% 11.03% 10.07%

3.5. Inflection Point Prediction

In this subsection, we estimate the inflection points of the epidemics in these countries.
The definition of the inflection point is that the number of existing cases does not increase
until it starts to decline, i.e., the dynamic transmission rate is equal to 1 [18]. The epidemic
has the following properties around the inflection point: Before the inflection point, the
epidemic is at an increasing stage; at the inflection point, the epidemic has the greatest
pressure on the prevention and the medical system; after the inflection point, the epidemic
situation has eased, and the pressure on prevention and control has gradually reduced.
The emergence of an inflection point indicates that the number of existing infections has
reached the maximum and has since been declining, which means that the epidemic is
turning from bad to good. Using this model to estimate the inflection point of the epidemic
can provide a reference value for understanding the epidemic spreading trend and can
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guide the timely release of relevant policies. The results are displayed in Table 7 and
Figure 4.

Table 7. The inflection point.

Country Estimated Inflection Point Actual Inflection Point

USA 04/08/2020 31/05/2020
Canada 26/05/2020 31/05/2020

Germany 14/04/2020 08/04/2020
Italy 24/04/2020 20/04/2020

France 27/04/2020 16/04/2020
Spain 22/04/2020 25/04/2020

South Korea 15/03/2020 12/03/2020
Iran 06/04/2020 05/04/2020

Figure 4 shows that there is a delay between the estimated inflection point and the
actual inflection point. This due to the fact that the model introduces the sliding window
period k, which delays the transmission and updating of information, and the delay
increases with the size of the sliding window period. However, most of the inflection point
estimation errors are within one week.

Figure 4a,b show that the epidemic spread in North American countries is relatively
late. The fitting curve of USA is relatively flat, but the change in the dynamic transmission
rate from 22 April 2020 to 27 April 2020 is very small, and the decline in the curve is
not obvious in the subsequent prediction, which is approximately a straight line, and
resulting in a backward estimate of the inflection point. The outbreak in Canada fluctuate
considerably, but overall shows a downward trend, and the inflection point is estimated in
26 May 2020.

Figure 4c–f show that European countries do not pay enough attention to the epidemic
in the early stages, and the epidemic spread more rapidly, meaning that the dynamic
transmission rate is larger. Then, with the subsequent strengthening of the prevention and
control measures, the epidemic trend improves. Finally, the inflection points of Germany,
Italy, France and Spain are estimated in 14 April 2020, 24 April 2020, 27 April 2020 and 22
April 2020, respectively. It should be noted that the dynamic transmission rate of France
hovered in Annex 1 from 15 April to 27 April, which led to the delay of the estimated
inflection point.

Figure 4g,h show that in the epidemic curves for South Korea and Iran, the declines
are larger in the early days, meaning that the slopes of the curves are comparatively
large. This is mainly due to the two countries implementing strong prevention and control
measures in the early stages, and the epidemic situation is quickly brought under control.
The inflection points for South Korea and Iran are estimated to be 14 March 2020 and 5
April 2020, respectively, earlier than those for European and North American countries.
However, the outbreak in Iran rebounds again in May, and this is the main reason for the
relatively large error in the forecast.
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(a) USA (b) Canada (c) Germany

(d) Italy (e) France (f) Spain

(g) South Korea (h) Iran

Figure 4. Fitting diagrams of dynamic transmission rate.

3.6. Sensitivity Analysis

Due to the deviation of epidemic statistics and the lag of data updating in various
countries, whether the prediction model can effectively resist noise, that is, the impact
of small changes in the original data on the output of the model, is also an important
evaluation index in this paper.

The data is processed as follows: the daily number of existing cases is randomly added
or reduced by 0–1% of its own value. Then the output of the model is compared with the
output of the original model, and the formula of relative change rate is as follows:

Q̃ =
1
T

T

∑
t=1

∣∣∣∣∣ Ñ(t)− N̂(t)
N̂(t)

∣∣∣∣∣× 100%, (20)

where Ñ(t) and N̂(t) represent the output of the noise model and the output of the original
model, respectively. Each country has done 10 experiments, and the experimental results
are shown in the form of average ± standard deviation.

As shown in Table 8, in terms of dynamic transmission rate, the average rate of change
in all countries is less than 0.3%. Except Germany and France, all average variabilities
of the existing number of cases in other countries are not greater than 3%. For Germany,
the fluctuation of the early dynamic transmission rate is obvious, and the later dynamic
transmission rate fluctuates periodically (as shown in Figure 4), which are the reasons
for the larger average rate of change. It is noteworthy that the standard deviation of the
change rate in the existing number of cases in Italy is greater than that in Germany, but
the average ± standard deviation is better than that in Germany. The average change rate
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of the dynamic transmission rate in all experiments was smaller than that of the existing
infected population. This is because that the base number of the existing cases was large,
and the small change of the dynamic transmission rate would cause large changes in the
existing infected population. On the whole, our model has good anti-noise ability and
stability when dealing with data fluctuations.

Table 8. First and last report dates by country.

Country Dynamic Transmission Rate The Existing Number of Cases

USA 0.16% ± 0.09% 1.65% ± 1.05%
Canada 0.14% ± 0.06% 1.31% ± 0.50%

Germany 0.30% ± 0.22% 3.46% ± 2.74%
Italy 0.24% ± 0.28% 2.76% ± 3.19%

France 0.25% ± 0.09% 3.03% ± 1.18%
Spain 0.23% ± 0.15% 2.18% ± 1.44%

South Korea 0.25% ± 0.16% 2.56% ± 1.64%
Iran 0.22% ± 0.17% 2.14% ± 1.69%

3.7. Global Epidemic Forecast

Accurate prediction of the global epidemic is the key to effectively grasping the
overall trend of the COVID-19 pandemic. Based on the high performance of INCDTRM,
we analyze and forecast the global epidemic. Since the global epidemic database is large
and the data period is long, the late dynamic transmission rate is almost linear, and we do
not have the ability to predict it. Therefore, the data are preprocessed as follows. First, we
select the data from 1 April to 30 June 2021. Then, the existing case sequence is calculated,
and the sequence is subtracted from the number of the existing cases on 31 March 2021.
Finally, we take the sequence as experimental dataset. Figure 5 shows the development
trend of the global epidemic in the future using INCDTRM.

As shown in Figure 5a, the spread of the global epidemics is falling, but with the
increase of time, the declining trend of the global dynamic transmission rate begins to slow
down. The inflection point is predicted as 10 May 2021, in which the actual inflection point
was 9 May 2021, indicating that the model in this paper has high reliability. In addition,
the number of existing infections is predicted in the global epidemic from 1 June to 30
June 2021, a total of 30 days. In Figure 5b, the number of existing infections in the global
epidemic is decreasing, and the estimated number of existing cases is consistent with the
actual trend of the number of existing cases. The estimated errors of MAE, RMSE and
MAPE are 141,374.15, 182,765.24 and 0.522%, respectively.

However, the number of existing infections in the global epidemic fluctuated in
June 2021. Therefore, we should continue to appeal to wear masks and stop large-scale
gatherings to avoid the rebound of the epidemic trend. At the same time, the development
of a vaccine for COVID-19 is also an effective way to effectively suppress the spread
of infectious diseases [31]. In addition, we can update the prediction model in real time
according to the daily new data, and thus we can grasp the spread trend of global epidemics
in a timely manner.
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(a) Dynamic transmission rate

(b) Numbers of existing cases

Figure 5. Global epidemic forecast.

4. Conclusions

In this paper, we have presented an INCDTRM based on FEM and SVR for analyzing
and predicting the COVID-19 pandemic in eight countries. The experimental results show
that INCDTRM has smaller prediction error and stronger generalization ability than the
single prediction models, DGRM and NCDTRM that have been used previously; forecast
errors for epidemics in USA, Canada, Italy and South Korea were within 5%. This shows
the rationality of using dynamic transmission rate to replace the basic infection number R0,
and our model can thus be utilized for predicting the COVID-19 epidemic.

Furthermore, we also used INCDTRM to model the global COVID-19 pandemic. The
experimental results predict that the inflection point of the global epidemic is May 10, 2021.
and the estimated errors of MAE, RMSE and MAPE are 141,374.15, 182,765.24 and 0.522%,
respectively. As Ferguson et al. [32] pointed out that we are now at a critical moment of
the epidemic, and any slackening in prevention and control will lead to a rebound in the
spread of the epidemic.

It should be noted that this paper has the following defects: (1) Due to the monotonicity
of the fitting functions, INCDTRM is not suitable for predicting a rebound in an epidemic;
(2) The weights of the combined kernel function and the initial parameters of PSO need to
be set according to experience; (3)The spread of COVID-19 epidemic is affected by social
factors [33], population [34], climate, environment [35] and other factors, which is very
complex, but this paper only considers a single epidemic data, without considering other
factors that may affect the spread of the epidemic.

According to the above limitations, the future work of this paper is as follows: (1) Find-
ing a suitable COVID-19 multi-stage infectious disease development model; (2) Using more
effective multi kernels learning models and adaptive optimization algorithms; (3) We will
further collect relevant data and conduct research with data assimilation or SEIR and its
extended model.
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