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Abstract: The aim of this paper is to introduce an orignal coupling procedure between surface
integral equation formulations and on-surface radiation condition (OSRC) methods for solving
two-dimensional scattering problems for non convex structures. The key point is that the use of
the OSRC introduces a sparse block in the surface operator representation of the wave field while
the integral part leads to an improved accuracy of the OSRC method in the non convex part of the
scattering structure. The procedure is given for both the Dirichlet and Neumann scattering problems.
Some numerical simulations show the improvement induced by the coupling method.

Keywords: acoustics; integral equation; on-surface radiation condition

1. Introduction

During the last decades, time-harmonic wave propagation has proved to be cen-
tral in many engineering and technological key developments, based, e.g., on acoustics,
electromagnetism or elastic mechanisms. When one wants to simulate the associated
boundary-value problem, one of the difficulties is related to the fact that the solution which
has to be computed is set in an exterior unbounded domain Ω+ defined as the complemen-
tary of a finite scatterer Ω−. Therefore, to use a standard numerical method, it is necessary
to bound the computational domain. One well-known possibility is to use an absorbing
boundary condition [1–7] or a Perfectly Matched Layer [8–13] to bound the domain and
then solve the resulting problem by the finite element method [14–16]. Another widely
used alternative is to rewrite equivalently the initial exterior PDE problem as an integral
equation over the finite surface Γ of the scatterer Ω− based on the Green’s function [17–28].
Then, this has the advantage of reducing from one the dimension of the problem. One of
the main drawbacks is that, unlike the initial problem which involves partial differential
operators, the integral equation is defined by construction as a nonlocal pseudodifferential
operator. When a discretization technique is then applied, as the boundary element method,
then the corresponding discrete version of the integral equation leads to the numerical
solution of a highly indefinite complex-valued dense linear system which is particularly
difficult to tackle in the high-frequency regime. Many technical aspects are then necessary
to make it working correctly for some applications, for example to reduce the storage and
to accelerate the solution of the linear system [17,18,29]. Various numerical methods were
further developed to propose some other ways to solve, at least approximately, the initial
scattering problem. One of them is the On-Surface Radiation Condition (OSRC) method
introduced in [30] and further developed by many authors (see, e.g., [31]). Without giving
too much details now, the OSRC approach also leads to solve an equation given over the
surface of the scatterer, but defined through local surface partial differential operators.
Therefore, after the application of the boundary element method, the linear system is highly
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sparse, yielding an efficient way to solve the scattering problem. The price to pay is that the
method can be considered as a numerical asymptotic method, and therefore can lose some
accuracy in some cases, in particular when the scatterer is not convex and includes some
concave parts [31] where multiple scattering effects are present. Considering the problem
of getting better accuracy for OSRC based techniques, a coupled formulation between
the OSRC method and a two-dimensional finite element technique was proposed in [32]
for scattering by single non convex obstacles. For the numerical simulation of multiple
scattering problems (then leading to non convex global structures), coupled OSRC/integral
equation formulations were presented in [33,34], where the shapes of the single obstacles
are convex [33] or slightly non convex [34]. The aim of the present paper is to contribute
to the improvement of the OSRC method for non convex single obstacles by proposing
a direct simple coupling between the OSRC and the surface integral equation method.
Unlike [32], the presented method is naturally only set on the boundary of the scatterer
and does not suffer from the pollution error related to the finite element method.

The plan of the paper is the following: In Section 2, we introduce the two-dimensional
Dirichlet scattering problem and the basic informations about the integral equation rep-
resentations and their numerical approximation. Section 3 presents the notion of OSRC
and its numerical discretization after writing the variational formulation. Section 4 devel-
ops the original coupling procedure for the Dirichlet problem. In particular, we explain
how to formulate the problem and to improve its convergence properties if it is used in a
Krylov solver, based on operator preconditioning. The coupling is validated in a simple
two-dimensional example. The extension to the Neumann problem is shortly given in
Section 5. Finally, Section 6 is a conclusion.

2. Two-Dimensional Scattering-Integral Equation Formulations
2.1. The Two-Dimensional Scattering Problem

Let us consider Ω− as a scatterer with polygonal boundary Γ := Ω−. The homoge-
neous isotropic exterior domain of propagation is denoted by Ω+ = R2 \Ω−. For the
sake of conciseness in the presentation, we first assume that the scatterer is acoustically
sound-soft (i.e., Dirichlet boundary condition). Nevertheless, the case of a sound-hard scat-
tering problem (Neumann boundary condition) is also treated shortly in Section 5. We now
consider a time-harmonic incident plane wave uinc(x) = eikθinc·x (with x = (x1, x2) ∈ R2)
illuminating Ω−, with an incidence direction θinc = (cos(θinc), sin(θinc)) for a time depen-
dence e−iωt, setting ω as the wave pulsation and k as the wavenumber. The sound-soft
scattering problem of uinc by Ω− leads to the computation of the scattered wavefield
u ∈ C2(Ω+) ∩ C0(Ω+) as the solution to the boundary-value problem

(∆ + k2)u = 0, in Ω+,
u = −uinc, on Γ,

lim
||x||→+∞

||x||1/2(∇u · x
||x|| − iku) = 0.

(1)

We designate by (∆ + k2) the Helmholtz operator, where ∆ = ∂2
x1
+ ∂2

x2
is the laplacian.

The gradient operator is∇ and ||x|| =
√

x · x, where x · y is the scalar product of two vectors
x and y of R2. The last equation of (1) is the well-known Sommerfeld’s radiation condition
at infinity that ensures the uniqueness of the scattered wave field u. The outwardly
directed unit normal vector to Ω− is n. A schematic representation of the problem is
given in Figure 1. The existence and uniqueness of the solution to this BVP is well-known
and detailed in [20], Theorem 2.12. From standard arguments connecting formulations in
classical and Sobolev spaces ([20], p. 107), then u ∈ H1

loc(Ω
+) and u is C∞ up to Γ, excluding

the corners of the polygonal curves ([20], Lemma 2.35). Following [20], Theorem 2.12, then
it can also be proved that ∂u

∂n ∈ L2(Γ).
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Figure 1. Scattering configuration and notations.

2.2. Integral Operators for Scattering

Let us define G as the two-dimensional free-space Green’s kernel

∀x, y ∈ R2, x 6= y, G(x, y) =
i
4

H(1)
0 (k‖x− y‖), (2)

where H(1)
0 is the first-kind Hankel’s function of order zero. Building an integral equation

needs the Helmholtz integral representation formula ([20], Theorems 2.20 and 2.21).

Proposition 1. If v ∈ C2(Ω+) ∩ H1
loc(Ω

+) is a solution to the Helmholtz equation in an un-
bounded domain Ω+ which also satisfies the Sommerfeld radiation condition, then the following
relation holds∫

Γ
−G(x, y)∂nv(y) + ∂ny G(x, y)v(y)dΓ(y) =

{
v(x) if x ∈ Ω+,
0 otherwise.

(3)

In addition, let us assume that v− ∈ C2(Ω−)∩H1(Ω−) is solution to the Helmholtz equation
in a bounded domain Ω−. One can write∫

Γ
−G(x, y)∂nv−(y) + ∂ny G(x, y)v−(y)dΓ(y) =

{
0 if x ∈ Ω+,
−v−(x) otherwise.

(4)

Let us now introduce the volume single- and double-layer integral operators, respec-
tively, denoted by L and M , that are defined for ρ ∈ L2(Γ) by

∀x ∈ R2 \ Γ, L : ρ 7−→ L ρ(x) =
∫

Γ
G(x, y)ρ(y)dΓ(y),

∀x ∈ R2 \ Γ, M : ρ 7−→ M ρ(x) = −
∫

Γ
∂ny G(x, y)ρ(y)dΓ(y).
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The wave fields v and v− (see (3) and (4)) can be expressed asv(x) = −L (∂nv|Γ)(x)−M (v|Γ)(x), ∀x ∈ Ω+,

v−(x) = L (∂nv−|Γ)(x) +M (v−|Γ)(x), ∀x ∈ Ω−.

Furthermore, the single- and double-layer integral operators provide some outgoing
solutions to the Helmholtz equation [20].

2.3. Direct Boundary Integral Equations for the Dirichlet Problem

The aim of this section is to provide without any detail the standard integral equation
formulations for solving the two-dimensional scattering problem with Dirichlet boundary
condition that will be used later. More details can be found in [17,20,28] for the derivation
and properties of these integral equations (well-posedness, existence of resonant modes,. . . ).
Let us introduce the following boundary integral operators

Lρ(x) =
∫

Γ
G(x, y)ρ(y)dΓ(y),

Mρ(x) = −
∫

Γ
∂ny G(x, y)ρ(y)dΓ(y),

Nρ(x) =
∫

Γ
∂nx G(x, y)ρ(y)dΓ(y),

Dρ(x) = −∂nx

∫
Γ

∂ny G(x, y)ρ(y)dΓ(y).

(5)

Then, based on the expressions of the trace and normal derivative trace of the volume
single- and double-layer potentials (see, e.g., [20] for further details), a first formulation is
based on the trace of the single-layer operator

Lρ = −uinc|Γ in L2(Γ), (6)

where the unknown density ρ is an element of L2(Γ). The equation is well-posed and
equivalent to the exterior scattering problem (1) as soon as k is not an irregular interior
frequency of the associated Dirichlet boundary-value problem [17,20,28]. This integral
equation is called Electric Field Integral Equation (EFIE) in electromagnetism. In the sequel,
this formulation will be denoted by Single-Layer Integral Equation (SLIE). In the case of a
closed boundary Γ, which is the situation in the paper, it can be proved that the spurious
internal modes do not radiate. Therefore, there is no pollution in the far-field computation,
which justifies that the SLIE can be considered as a reference solution. In addition, for an
open surface Γ, the SLIE is the only possible integral equation that can be written.

Another surface integral formulation is given by (see [20] for the functional framework
associated to the integral equations)

(
1
2

I + N)ρ = −∂nuinc|Γ. (7)

It is also well-posed and equivalent to the exterior scattering problem (1) if k is not
an interior Neumann resonance [17,28]. This formulation is often designated by Magnetic
Field Integral Equation (MFIE). Nevertheless, this integral equation is not recommended
in practice since the spurious modes radiate and introduce some errors when computing
the far-field pattern. To avoid the interior resonance problem, Burton and Miller [17,19,28]
proposed to rather use a linear combination between the EFIE and MFIE. If α is a real-
valued parameter such that 0 < δ < 1 and if η is a complex parameter with =(η) 6= 0,
where =(η) is the imaginary part of η, then one gets the Combined Field Integral Equation
(CFIE) [17,23,28] or Burton-Miller Integral Equation (BWIE)[

(1− δ)(
1
2

I + N) + δηL
]

ρ = −(1− δ)∂nuinc|Γ − δηuinc|Γ. (8)
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This integral equation is well-posed for any wavenumber k but can only be applied to
closed surfaces.

An important point is that all these integral equations are based on the
single-layer representation

∀x ∈ Ω+, u(x) = L ρ(x), (9)

where the unknown surface field ρ is the physical quantity defined by the jump (set as the
difference between the interior and exterior traces)

ρ = [∂nu]Γ := −∂nu+
|Γ + ∂nu−|Γ = −(∂nu|Γ + ∂nuinc

|Γ ). (10)

To compute the far-field pattern, let us recall that we have: u = L ρ + M λ, where
ρ and λ are two unknown densities. In the polar coordinates system (r, θ), the use of
asymptotic expansions when r → +∞ leads to the following relation [22]

∀θ ∈ [0, 2π], u(r, θ) =
eikr

r1/2 [aL (θ) + aM (θ)] + O
(

1
r3/2

)
,

where aL and aM are the radiated far-fields for the single- and double-layer potentials,
respectively, defined for any angle θ of [0, 2π] by

aL (θ) =
1

8
√

kπ
eiπ/4

∫
Γ

e−ikθ·yρ(y)dΓ(y),

aM (θ) =
1

8
√

kπ
eiπ/4

∫
Γ
− ik
‖y‖θ · ye−ikθ·yλ(y)dΓ(y),

with θ := (cos(θ), sin(θ)). In addition, the Sonar Cross Section (SCS) (in dB) is such that

∀θ ∈ [0, 2π], σ(θ) = 10 log10(2π|aL (θ) + aM (θ)|2). (11)

When using the single-layer representation (9), only aL is needed while aM is set to
zero. In the paper, we will focus on the SLIE.

2.4. Numerical Approximation

To numerically solve Equation (6) (or (8)), we first introduce a polygonal interpolating
surface Γh which approximates Γ. The triangularization of Γh is built by using nK linear
segments Kj of size h. Therefore, we have Γh = ∪nK

j=1Kj. In the numerical examples, we
take about 10 elements per wavelength which is enough to get a suitable accuracy for the
Boundary Element Method (BEM). The notation P` designates the space of complex-valued
polynomials of order `. In (6) (or (8)), no derivative operator is applied to the unknown ρ.
However, as seen below, the OSRC method, and the integral equation technique for the
Neumann problems introduce some tangential derivatives that apply to the surface fields.
For this reason, we propose to use the linear BEM all along the paper, where the conformal
finite element space Vh of P1 piecewise continuous functions is defined by

Vh :=
{

φ′h ∈ C
0(Γh); φ′Kj

:= φ′h|Kj
∈ P1, ∀j = 1, ..., nK

}
.

For the Dirichlet problem, a P0 (constant per segment) BEM could also be applied. For
the numerical approximation, we naturally use the weak form of the integral Equation (6)
which leads to [27]

∀q ∈ L2(Γ),
∫

Γ

∫
Γ

G(x, y)ρ(y)q(x)dΓ(y)dΓ(x) = −
∫

Γ
uinc|Γ(x)q(x)dΓ(x). (12)
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Let us consider now that the BEM is applied. To compute the elementary interaction

I(K1, K2) :=
∫

K1

∫
K2

G(x, y)dK2(y)dK1(x), (13)

for two segments K1 and K2 of Γh, a standard semi-analytical integration formula is used.
This means that there is a first outer integration in (13) according to x on K1 and based
on a two-points Gauss–Legendre quadrature. Next, for the inner integral with respect to
y on K2, if K1 6= K2, then again a two-points Gauss–Legendre quadrature is applied, an
exact integration formula is used [35] when K1 = K2. By using the interpolating surface
Γh and the linear approximations of both ρ and q in Vh, the discrete form of (12) yields the
linear system

Lρ = −Muinc, (14)

where L is the complex-valued matrix associated with the single-layer operator and M
is the surface mass matrix. If nP is the number of points of the curve Γh, then all the
matrices are elements of the spaceMnP(C) of complex-valued matrices of size nP × nP.
Indeed, assuming that Γ is a closed boundary, then the number of degrees of freedom of
the linear boundary element method, i.e., the number of points nP := dim(Vh), is equal
to the number of segments: nP = nK. In addition, the unknown complex-valued nodal
vector ρ and the nodal incident vector uinc are in CnP . For computing the coefficients of L,
some semi-analytical quadrature formula are used to integrate the kernel singularity. If
one rather uses the BWIE (8), the discrete form leads to

[(1− δ)(
1
2
M+N) + δηV)]ρ = −(1− δ)M∂nuinc − δηMuinc, (15)

where ∂nuinc is the nodal complex-valued vector related to the normal trace of the incident
field. Finally, we have

ρ = −(∂nu + ∂nuinc). (16)

3. Loss of Accuracy of the OSRC Method for Non Convex Scatterers
3.1. First and Second-Order OSRCs

The on-surface radiation condition (OSRC) method was introduced in the middle
of the eighties by Kriegsmann, Taflove and Umashankar [30]. At that time, the main
idea was to develop an approximate but efficient and low memory numerical solution for
scattering problems, most particularly in the high-frequency regime. Starting from local
approximations of the Dirichlet-to-Neumann (DtN) operator, they were able to propose
the computation of the scattered field by two-dimensional simple obstacles. Since then,
the OSRC method has received much attention from many researchers and many improve-
ments and extensions have been proposed (see, e.g., [31]). For the sake of conciseness,
we restrict our presentation to the so-called first- and second-order Bayliss–Turkel-like
radiation conditions [36].

The first-order OSRC (that we denote by OSRC1) is given by

∂nu1 + (−ik +
κ

2
)u1 = 0, on Γ. (17)

In the above equation, (u1, ∂nu1) is the OSRC Cauchy data that approximate the exact
Cauchy data (u, ∂nu) on Γ. Here, let us remark that (u1, ∂nu1) must be understood as a
notation since the OSRC is an approximate DtN map, which means that we do not a priori
know if ∂nu1 is the normal derivative trace of a function u1. The function κ := κ(s) is the
curvature at a point s of the surface, where s is the curvilinear abscissa counterclockwise
directed along Γ. Equation (17) can be seen as a simple impedance boundary condition for
the exterior domain Ω+. Various ways of deriving (17) are available in the literature. Let
us mention for example [1] were formal and rigorous approaches are developed.
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The first-order OSRC (17) can be improved, leading to the so-called symmetrical
second-order Bayliss–Turkel condition (denoted by OSRC2 in the sequel)

∂nu2 + (−ik +
κ

2
− κ2

8(κ − ik)
)u2 − ∂s(

1
2(κ − ik)

∂s)u2 = 0, on Γ. (18)

In (18), the curvilinear derivative operator is written ∂su = ∇u · τ, where τ is the
tangent vector to Γ (n · τ = 0). In the same spirit, an Engquist–Majda-like OSRC can be
derived [1,31]. However, some numerical simulations in various papers show that the
boundary condition (18) provides a higher accuracy. Therefore, in the present paper, we
restrict our study to (18).

3.2. Numerical Approximation

To solve (18), we introduce the weak formulation∫
Γ

∂nu2vdΓ +
∫

Γ
(−ik +

κ

2
− κ2

8(κ − ik)
)u2vdΓ +

∫
Γ

1
2(κ − ik)

∂su2∂svdΓ = 0, on Γ, (19)

for some suitable test-functions v in H1(Γ). The pair of approximate Cauchy data (u2, ∂nu2)
is discretized in the finite element space Vh ×Vh. When the BEM is introduced, then the
discretization of (19) can be rewritten at the matrix level as

M∂nu2 + (Mβ + Sα)u2 = 0, (20)

where the functions α and β are defined for OSRC2 by

α =
1

2(κ − ik)
, β = −ik +

κ

2
− κ2

8(κ − ik)
.

The matrices Sα and Mβ are, respectively, the (sparse) nP × nP generalized stiffness
and mass matrices associated with the functions α and β. In addition, the vectors u2 and
∂nu2 are complex-valued vector fields of CnK . Finally, the second-order OSRC method
requires the following stable approximation scheme for the curvature [36]: let K = (a1a2a3)
be a triangle whose vertices aj, j = 1, 2, 3, are points on Γh, then, the curvature at the vertex
a2 can be approximated by

κ(a2) =
4× area(K)

a1a2a3
, (21)

where aj, for j = 1, . . . , 3, are the lengths of the edges of K ordered with respect to the
increasing size. This formula is directly applied on the triangles associated with the surface
mesh and built on two adjacent segments. Using Formula (21) implies that the curvature
is not equal to zero at the corner of the square since the triangle used to compute the
numerical curvature is not flat. For a uniform surface mesh with size h, the numerical
curvature is given as

√
2/h. This allows us to reproduce the scattering phenomenon arising

at the corner (see also [36]).
Since we are solving a scattering problem with given Dirichlet boundary condition,

then u2 is given by −uinc and then

M∂nu2 = (Mβ + Sα
h)u

inc. (22)

This means that ∂nu2 is simply obtained through the solution of a complex-valued
sparse linear system defined by the mass matrix. Once the unknown is obtained then one
can compute an approximation of the jump of the normal derivative trace by the relation

ρ2 = −(∂nu2 + ∂nuinc). (23)
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Another way of writing this relation is that ρ2 is solution to

Mρ2 = −(Mβ2
+ Sα2

h )uinc −M∂nuinc := g2. (24)

The far-field can be directly obtained through expressions (11).
Even if the boundary condition (17) can be a priori applied to any scatterer Ω−, we will

see during the numerical simulations that a serious loss of accuracy is observed when the
scatterer presents some concave parts (see [36] and Figures 1–3). Indeed, in the concavity,
the presence of multiply bounced rays cannot be modeled by local differential operators
since the nature of this phenomena is nonlocal. Therefore, the aim of the next sections is to
provide an original way to directly couple the OSRC formulation in the convex part of the
scatterer to the SLIE restricted to the concave part to improve the accuracy.

0 50 100 150 200 250 300 350 400

 (degrees)

−10

−5

0

5

10

15

(
) 

(d
B

)

SLIE (reference)

OSRC2

SLIE-OSRC2

0 50 100 150 200 250 300 350 400

 (degrees)

−30

−25

−20

−15

−10

−5

0

5

10

15

20

(
) 

(d
B

)

SLIE (reference)

OSRC2

SLIE-OSRC2

0 50 100 150 200 250 300 350 400

 (degrees)

−40

−30

−20

−10

0

10

20

30

(
) 

(d
B

)

SLIE (reference)

OSRC2

SLIE-OSRC2

Figure 2. Bistatic SCS for the unit square cylinder with cavity and Dirichlet boundary condition: Case 1: k = 2 and
θinc = 135 deg., Case 2: k = 8 and θinc = 160 deg. and Case 3: k = 14 and θinc = 150 deg.
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Figure 3. Bistatic SCS for the unit square cylinder with cavity and Neumann boundary condition:
Case 1: k = 9 and θinc = 140 deg.; Case 2: k = 13 and θinc = 160 deg.

4. The Coupling Procedure for Non Convex Scatterers
4.1. Weak Coupling Procedure and Boundary Element Approximation

Since the OSRC solution is locally inaccurate in the non convex part of the domain, we
propose to build a solution which is computed first by the OSRC method and improved
thanks to the integral equation where the quality of the OSRC approximation deteriorates.
To this end, let us assume that the geometry Γ can be decomposed into two non-overlapping
parts Γ := Γ1 ∪ Γ2, with Γ1 ∩ Γ2 = {a1; a2}. The geometry Γ1 is related to the boundary part
of Γ which is convex, the complementary (where we will use an integral equation) is Γ2 (see
Figure 1). The proposed procedure uses 1) a global computation of an approximate surface
density ρ2 through the OSRC on Γ and 2) injects the restriction of this approximation to
Γ1 into the global integral equation formulation on Γ to obtain an approximate density on
Γ2. This way of partitioning the computation allows us to solve a smaller size boundary
element system and can be seen as a ”one shot” computation.

In the following, if A is a global matrix on Γ, we denote by Aj` the extracted matrix
related to the interaction between the part Γj of the boundary and Γ`, j, ` = 1, 2. We
then have

A =

(
A11 A12
A21 A22

)
. (25)

In a similar way, the restriction of a nodal complex-valued vector z to the part of the
boundary Γ` is written z`, for ` = 1, 2. Then, we propose the following algorithm for the
SLIE formulation: compute ρ2 := (ρ2

1, ρ̃2
2) ∈ CnP such that

(1) OSRC: extract ρ2
1 = (ρ2)1 ∈ CnP1−2 from the computation of Mρ2 = g2,

(2) SLIE: compute ρ̃2
2 ∈ CnP2 as the solution to L22ρ̃2

2 = −L21ρ2
1 − (Muinc)2.

(26)

Even if other coupling possibilities are available, this one has the advantage that
no modification of an existing code is required. Let us denote by nKj (respectively, nPj)
the number of segments (respectively, points) of the boundary Γj, j = 1, 2, based on
the uniform mesh used for the full BEM on Γh. Then, we have nK = nK1 + nK2 and
nP = nP1 + nP2 − 2 (the two junction points a1 and a2 must be counted once). In step
1), we only retain the values of the OSRC solution that are not considered in the cavity,
including the two endpoints a1 and a2. This first step needs O(nK) operations to solve the
sparse complex-valued linear system (by using an LU factorization or a preconditioned
iterative Krylov solver [37]) while the memory storage is O(nK1). In the second step, the
solution to a complex-valued full matrix is necessary. If a full storage is considered, then
the linear system solution needs O(n3

K2) elementary operations and the memory storage
is O(n2

K2). Usually, in integral equation solvers, most particularly for high-frequency
scattering, it is preferable to use a subspace Krylov solver [17,37,38] in conjunction with a
fast matrix-vector product algorithm like for example the Multilevel Fast Multipole Method
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(FMM) [24], high-order solvers [18] or the recent direct Adaptive Cross Approximation
(ACA) techniques [29]. In this case, the memory requirement isO(nK2) for a computational
cost O(nK2 log nK2). In addition, it is well-known that preconditioning is a requirement
to get a fast convergence. The second equation of (26) is defined through the single-layer
integral operator. Then, the integral equation is a first-kind Fredholm equation which is
known to be badly conditioned. To improve this, we propose a preconditioned version of
the algorithm (26) based on the Caldèron relations [17] and well-adapted to fast iterative
solvers but without modifying the solution of the initial coupling procedure. Let D be
the discrete version of the normal derivative trace operator D and D22 its restriction to Γ2.
Then, the preconditioned version of (26) is given by: find ρ2 := (ρ2

1, ρ̃2
2) ∈ CnP such that

(1) compute ρ2
1 = (ρ2)1 ∈ CnP1−2 solution to Mρ2 = g2,

(2) obtain ρ̃2
2 ∈ CnP2 as the solution to D22L22ρ̃2

2 = −D22L21ρ2
1 −D22(Muinc)2.

(27)

The second equation of (27) is defined by a second-kind integral equation formulation
which has better clustering properties for the convergence of Krylov subspace solvers. The
price to pay is that each iteration of a Krylov solver requires to apply L22 first and next
D22. The preconditioned Caldèron SLIE coupling procedure (27) is called SLIE-OSRC2.
Once ρ̃2 := (ρ2

1, ρ̃2
2) ∈ CnP has been computed, all the usual quantities of interest can be

obtained like for the SCS given by (11).
The SLIE-OSRC2 formulation may suffer from the existence of interior resonances.

Even if the spurious modes do not radiate for the SLIE, it can be better to have access to
a stable formulation. To this end, the following BWIE-OSRC2 coupling procedure could
alternatively be used: compute ρ̃2 := (ρ2

1, ρ̃2
2) ∈ CnP such that

(1) ρ2
1 = (ρ2)1 ∈ CnP1−2 is solution to Mρ2 = g2,

(2) extract ρ̃2
2 ∈ CnP2 from the solution to

[(1− δ)( 1
2M22 +N22) + δηV22)]ρ̃

2
2 = −[(1− δ)( 1

2M21 +N21) + δηV21)]ρ
2
1

−(1− δ)(M∂nuinc)22 − δη(Muinc)22.

(28)

Unlike the SLIE-OSRC2 formulation, the BWIE-OSRC2 approach is defined by a
second-kind Fredholm integral equation and does not really need to be preconditioned
when correctly choosing δ and η (see, e.g., [17]). An extra computational cost and mem-
ory storage is required since the evaluation of the double-layer potentials N22 and N21
are required.

In the following examples, we will report only the results related to the SLIE-OSRC2

formulation since no resonance were met and we always plot the SCS. In addition, we do
not use any iterative solver for the resulting linear systems because we are considering
toys problems for a proof of concept. However, for three-dimensional problems, where the
method directly extends, the difference between all the formulations may be important in
terms of convergence rate. Here, we rather focus on the accuracy improvement. Further
investigations are therefore needed, as well as improved formulations and implementation
of higher order OSRCs.

4.2. A Numerical Example-Validation of the Procedure

As previously said, we use the SLIE-OSRC2 formulation. The model toy problem
is the following. We consider the obstacle Ω− as being composed of the square cylinder
centered at the origin and with side length 2, with an inner square cavity defined by the
corners (1/3,−1/3), (1,−1/3), (1, 1/3) and (1/3, 1/3). The boundary Γ2 is then defined
as the internal boundary to the cavity (blue curve on Figure 1) and Γ1 is the complementary
boundary on Γ (red curve on Figure 1). For an incident plane wave, the reference solution
is given by the SLIE (14) discretized by the BEM (with 10 points per wavelength). The
results are clearly improved compared to the pure OSRC approach for wave numbers
k ≤ 15 and this, independently of the angle of attack θinc. As it can be observed on the first
picture of Figure 2 (Case 1, for k = 2), we almost obtain the reference solution by using the
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SLIE-OSRC2 approach while a pure OSRC approximation gives a poor accuracy which
deteriorates as k increases. For a higher wave number (Case 2, k = 8), the results are still
accurate (see Figure 2). By increasing the frequency, we still have an acceptable solution as
seen on the third example of Figure 2 (Case 3, k = 14). For both the integral equations and
OSRCs, since we consider a mesh with ten elements per wavelength, the size of the matrix
L2,2 is about nK2 = 2.5k, which is more than four times less than for a pure SLIE solution.

5. The Neumann Scattering Problem

The Neumann scattering problem, i.e., considering (1) but with the boundary condi-
tion: ∂nu = −∂nuinc on Γ, can be treated similarly with the EFIE [17] based on the normal
derivative trace of the double-layer potential written under its weak form (called DLIE). A
hyper-singular kernel must then be integrated carefully by semi-integration techniques.
For the OSRC, the method applies quite similarly and leads to the solution of a sparse
linear system.

In general, the coupling procedure (called DLIE-OSRC2) has proved to be less accurate
than for the Dirichlet problem (i.e., for SLIE-OSRC2). We think that this is due to the fact
that the OSRC approach requires a higher order operator to provide a suitable fast solution
during the first step of the method. We recommend to rather use the square-root OSRC
developed in [2]. The resulting coupling technique will be analyzed in a forthcoming work.
For low and moderate wave numbers (k ≤ 4), we still get quite acceptable results having
always in mind the lower computational cost of the DLIE-OSRC2 method. However, there
is a moderate accuracy for wave numbers such that k ≥ 10 as seen on the two cases reported
in Figure 3. Nevertheless, this must be counterbalanced by the lower cost of the procedure
and the possibility to increase the OSRC accuracy in the convex part. In addition, we
always obtain a good prediction of the main lobs where the energy is mostly radiating. As
a general concluding remark, the coupling DLIE-OSRC2 algorithm provides an interesting
alternative to the DLIE. Furthermore, the method is always more accurate than a classical
OSRC approach and gives a possibility of its extension to non-convex obstacles.

6. Conclusions

In this paper, we introduced a simple and original algorithm coupling the surface
integral equation method and the OSRC technique for solving the scattering problem by
nonconvex scatterers. While simple, the coupling method leads to an improved accuracy
compared with the pure OSRC approach and reduces the computational cost of a direct
integral equation formulation. In addition, we explain how operator preconditioning can
be directly included into the formulations. The method is validated on a simple two-
dimensional problem as a proof of concept. In particular, the method is accurate for the
Dirichlet problem, but still needs to be further investigated by using high-order OSRCs
in the case of the Neumann problem. We expect that the formulation can be useful for
three-dimensional high-frequency scattering problems solved iteratively by Krylov solvers
with acceleration algorithms.

Author Contributions: Conceptualization, software, formal analysis, investigation, writing—original
draft preparation, writing—review and editing, S.M.A., X.A. and C.C.; project administration, fund-
ing acquisition, S.M.A. and C.C. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura
University for supporting this work by Grant code 18-SCI-1-01-0017.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 2299 12 of 13

Abbreviations
The following abbreviations are used in this manuscript:

OSRC On-Surface Radiation Condition
EFIE Electric Field Integral Equation
SLIE Single-Layer Integral Equation
MFIE Magnetic Field Integral Equation
CFIE Combined Field Integral Equation
BWIE Burton-Miller Integral Equation
SCS Sonar Cross Section
BEM Boundary Element Method
DtN Dirichlet-to-Neumann
DLIE Double-Layer Integral Equation
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