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Abstract: This paper considers an optimal investment problem with mispricing in the family of
4/2 stochastic volatility models under mean–variance criterion. The financial market consists of
a risk-free asset, a market index and a pair of mispriced stocks. By applying the linear–quadratic
stochastic control theory and solving the corresponding Hamilton–Jacobi–Bellman equation, explicit
expressions for the statically optimal (pre-commitment) strategy and the corresponding optimal
value function are derived. Moreover, a necessary verification theorem was provided based on an
assumption of the model parameters with the investment horizon. Due to the time-inconsistency
under mean–variance criterion, we give a dynamic formulation of the problem and obtain the closed-
form expression of the dynamically optimal (time-consistent) strategy. This strategy is shown to
keep the wealth process strictly below the target (expected terminal wealth) before the terminal time.
Results on the special case without mispricing are included. Finally, some numerical examples are
given to illustrate the effects of model parameters on the efficient frontier and the difference between
static and dynamic optimality.

Keywords: mean–variance investment; 4/2 stochastic volatility model; mispricing; Hamilton–Jacobi–
Bellman equation; dynamic optimality

1. Introduction

The development of continuous-time stochastic volatility models is deemed crucial
in the field of modern finance. The attraction of stochastic volatility models mainly re-
sides in their capacity to explain many stylized facts observed in the financial market
such as fat tails, the leverage effect and the volatility smile/skew on implied volatility
surfaces. See, for example, Hull and White [1], Stein and Stein [2], Heston [3] and Lewis [4].
In 2017, Grasselli [5] proposed a new model called the 4/2 stochastic volatility model
which embraces the celebrated Heston model and the 3/2 model (Lewis [4]) as special
cases. The superposition of these two parsimonious models makes it possible for the new
4/2 model to better predict the evolution of the implied volatility surface. This leads to
emerging interests in applications of Grasselli’s work to derivative pricing problems, such
as Cui et al. [6], Cui et al. [7] and Zhu and Wang [8]. In view of the success of the 4/2
model in terms of option pricing, Cheng and Escobar-Anel [9] recently investigated a utility
maximization problem under the 4/2 model. It seems, however, that little attention has
been paid to portfolio optimization problems with the 4/2 model under Markowitz [10]’s
mean–variance criterion.

The single-period portfolio selection problem under mean–variance criterion can be
traced back to the seminar work of Markowitz [10]. Li and Ng [11] and Zhou and Li [12]
generalized Markowitz’s work to multi-period and continuous settings, respectively. In par-
ticular, Zhou and Li [12] applied the standard results on the linear–quadratic stochastic
control theory combined with an embedding technique to solve the problem in a financial
market where all the market coefficients are deterministic. Many researchers then realized
the potential of diversification. For example, Shen et al. [13] solved the problem under the
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constant elasticity of the variance model by imposing an exponential integrability condition
on the market price of risk. Shen and Zeng [14] went a step forward by considering the
optimal investment–reinsurance problem for a mean–variance insurer in an incomplete
market where the market price of risk depends on an affine-form and square-root process,
and they derived the modified locally square-integrable optimal strategy. Sun et al. [15]
further extended Shen and Zeng [14]’s results to the case with multiple risky assets and
random liabilities. For other previous works, one can refer to Chiu and Wong [16], Yu [17],
Lv et al. [18], Tian et al. [19], Sun and Guo [20] and the references therein.

In the aforementioned literature, however, the optimal strategies depend on the initial
position of state variables, which is due to the non-separability of the variance operator
under mean–variance criterion in the sense of Bellman’s optimality principle. In other
words, once the investor arrives at any new position at a future time, the optimal strategy
determined at the new position is inconsistent with the initial one unless the investor
commits to the initial strategy over the whole investment period. This optimal strategy
is therefore time-inconsistent, and is referred to as the pre-commitment strategy in the
literature. The notion of time-inconsistency under mean–variance paradigm stemmed
from the work of Strotz [21]. In recent years, the time-inconsistency of the mean–variance
portfolio selection problem has received considerable attention. For example, Basak and
Chabakauri [22] determined a time-consistent strategy by using a backward recursion
approach starting from the terminal time. Alternatively, Björk et al. [23] proposed the
game theoretical approach and studied the subgame-perfect Nash equilibrium for the
mean–variance problem. The equilibrium value function and the equilibrium strategy
can be explicitly derived under Markovian settings by essentially solving an extended
Hamilton–Jacobi–Bellman (HJB) equation. Rather than searching for the time-consistent
equilibrium strategy, Pedersen and Peskir [24] pioneered the dynamically optimal approach
to deal with the time-inconsistency of the statically optimal (pre-commitment) strategy.
Along with this approach, previous works include Pedersen and Peskir [25], Zhang [26]
and the references therein.

According to the law of one price, identical assets must have an identical price. There
is, however, ample evidence of violations in the law of one price and of the prevalence of a
mispricing phenomenon in the financial market. See, for example, Lamont and Thaler [27],
Liu and Longstaff [28] and Liu and Timmermann [29]. This leads to growing interests in
portfolio optimization problems with mispricing in recent years. Yi et al. [30] studied a
utility maximization problem with model ambiguity and mispricing in a financial market
consisting of a risk-free asset, a market index, and a pair of mispricing stocks with the
constant return rate and volatility. Ma et al. [31] considered a problem for a defined
contribution plan with mispricing under the Heston model. Considering the methodology
developed by Björk et al. [23] to deal with the time inconsistency under mean–variance
paradigm, Wang et al. [32] investigated a mean–variance investment–reinsurance problem
with mispricing in the context of constant volatility. Other preceding research outputs on
the portfolio optimization problems with mispricing include Gu, Viens and Yi [33], Gu,
Viens and Yao [34], Wang et al. [35], to name but only a few.

Motivated by the above aspects, within the framework introduced by Pedersen and
Peskir [24] to overcome the time inconsistency under mean–variance criterion, in this paper
we study a mean–variance portfolio selection problem that takes into consideration the
family of 4/2 stochastic volatility models and mispricing simultaneously. The financial
market consists of a risk-free asset, a market index and a pair of mispriced stocks. To solve
this problem, we first apply the Lagrange multiplier method to relate the original problem
to an unconstrained optimization problem. To solve the latter by using the dynamic
programming approach, we establish the corresponding HJB equation. By solving the
HJB equation explicitly, closed-form expressions of the statically optimal strategy and the
corresponding optimal value function are derived. Based on an assumption on the model
parameters combined with the investment horizon, we prove the necessary verification
theorem from scratch and verify the admissibility of the optimal strategy. By solving the
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statically optimal strategy each time, the dynamically optimal strategy is explicitly derived.
This time-consistent strategy keeps the wealth process strictly below the target (expected
terminal wealth) before the terminal time. Moreover, we provide the results without
mispricing and consider the special cases under the Heston and the 3/2 models. Finally,
we present some numerical examples to illustrate the effects of some model parameters on
the efficient frontier and the difference between static and dynamic optimality. In summary,
compared with some related current research studies, the main contributions of this paper
are as follows:

• The market model incorporates the 4/2 model and mispricing simultaneously;
• By making an assumption on the model parameters, a verification theorem is provided

to guarantee that the candidate solution to the HJB equation is the optimal value
function, and the admissibility of the optimal strategy is verified;

• We derive both the statically optimal (pre-commitment) and the dynamically optimal
(time-consistent) strategies explicitly for the mean–variance problem.

The remainder of this paper is structured as follows. In Section 2, we formulate the
market model and the mean–variance portfolio problem. Section 3 is devoted to solving the
HJB equation and deriving the closed-form expression of the optimal investment strategy
of the unconstrained problem. In Section 4, we present the statically optimal strategy and
the dynamically optimal strategy for the mean–variance problem, and provide the results
on some special cases. In Section 5, some numerical examples are given to illustrate our
theoretical results. Section 6 concludes the paper.

2. Formulation of the Problem

Let T > 0 be a fixed terminal time of decision making and (Ω,F , P) be a com-
plete probability space carrying five one-dimensional, mutually independent standard
Brownian motions W1, W2, Z, Z1, Z2. The probability space is further equipped with a
right-continuous, P-complete filtration (Ft)t∈[0,T] generated by the Brownian motions.

We consider a financial market setting where a risk-free asset, a market index, and a
pair of stocks with mispricing can be continuously traded. The risk-free asset price
B = (Bt)t∈[t0,T] evolves over time as:

dBt = rBt dt,

with the initial value Bt0 = b0 ∈ R+ at time t0 ∈ [0, T), where the positive constant r > 0 is
the risk-free interest rate. Let the price dynamic of the market index Sm = (Sm,t)t∈[t0,T] be
governed by the 4/2 stochastic volatility model (Grasselli [5]):

dSm,t = (r + λ(c1Vt + c2))Sm,t dt +
(

c1
√

Vt +
c2√
Vt

)
Sm,t dW1

t ,

dVt = κ(θv −Vt) dt + σv
√

Vt

(
ρ dW1

t +
√

1− ρ2 dW2
t

)
,

(1)

with Sm,t0 = sm,0 ∈ R+ and Vt0 = v0 ∈ R+ at time t0 ∈ [0, T), where the constant λ > 0
stands for a controller of the excess return, and the variance process Vt follows a Cox–
Ingersoll–Ross (CIR) process with mean-reversion speed κ > 0, long-term mean θv > 0
and volatility of volatility σv > 0. The Feller condition 2κθv > σ2

v is required such that Vt is
strictly positive. We assume that two parameters c1 and c2 are non-negative constants and
ρ ∈ [−1, 1].

Remark 1. It should be noted that the two non-negative constants c1 ≥ 0 and c2 ≥ 0 are critical
in the 4/2 model (1), which makes the 4/2 model a superposition of the Heston model (Heston [3])
and the 3/2 model (Lewis [4]). Specifically, the case (c1, c2) = (1, 0) is known as the Heston model,
while the case (c1, c2) = (0, 1) corresponds to the 3/2 model.
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The two mispriced processes are modeled as a pair of stocks S1 = (S1,t)t∈[t0,T] and
S2 = (S2,t)t∈[t0,T] which are coupled via the pricing error:

Mt = ln
S1,t

S2,t
,

where S1,t and S2,t evolve according to the following system of stochastic differential
equations (SDEs):

dS1,t =(r + βλ(c1Vt + c2))S1,t dt + β

(
c1
√

Vt +
c2√
Vt

)
S1,t dW1

t

+ σS1,t dZt + bS1,t dZ1
t − l1MtS1,t dt,

dS2,t =(r + βλ(c1Vt + c2))S2,t dt + β

(
c1
√

Vt +
c2√
Vt

)
S2,t dW1

t

+ σS2,t dZt + bS2,t dZ2
t + l2MtS2,t dt,

(2)

with initial values S1,t0 = s1,0 and S2,t0 = s2,0 at time t0 ∈ [0, T), where l1, l2, β, σ and

b are constant parameters. The term β
(

c1
√

Vt +
c2√
Vt

)
dW1

t characterizes the systematic

risk of the market, while σ dZt + b dZi
t stands for the idiosyncratic risk of stock i, i = 1, 2.

In particular, σ dZt describes the common risk whereas b dZi
t represents the individual

risk generated by the stock i, i = 1, 2, respectively. The term li Mt reveals the effect of
mispricing on ith stock’s price via the pricing error Mt defined above. Moreover, it can be
shown that the pricing error Mt follows an Ornstein–Uhlenbeck (OU) process as a result of
Itô’s formula:

dMt = −(l1 + l2)Mt dt + b dZ1
t − b dZ2

t , (3)

with Mt0 = m0 = ln(s1,0/s2,0) ∈ R, where two constant parameters l1 and l2 can be
explained as liquidity terms which control the mean-reversion rate of the pricing error.
To be specific, the lower liquidity decreases the velocity of reversion of the pricing error
towards the long-term mean of zero. Following some previous studies, such as Liu and
Timmermann [29], Ma et al. [31] and Wang et al. [32], we hereby assume that l1 + l2 > 0,
which ensures the stability of the financial market.

Let πm(t, Vt, Mt, Xπ
t ), π1(t, Vt, Mt, Xπ

t ), π2(t, Vt, Mt, Xπ
t ) be three Markov controls de-

noting the proportions of wealth invested in the market index Sm, and the pair of stocks S1
and S2 at time t, respectively. We write π := (πm, π1, π2) and such deterministic functions
πm, π1, π2 are referred to as feedback control laws in the literature. Suppose that the market
is frictionless and no restrictions on leverage and short-selling are enforced, the investor
decides to construct a self-financing portfolio of B, Sm, S1 and S2 over the investment period
[t0, T]. So the controlled wealth process Xπ = (Xπ

t )t∈[t0,T] is described by the following
system of SDEs:

dXπ
t =Xπ

t [r + um(t, Vt, Mt, Xπ
t )λ(c1Vt + c2)− (π1(t, Vt, Mt, Xπ

t )l1

−π2(t, Vt, Mt, Xπ
t )l2)Mt] dt + Xπ

t

(
c1
√

Vt +
c2√
Vt

)
um(t, Vt, Mt, Xπ

t ) dW1
t

+ Xπ
t σ(π1(t, Vt, Mt, Xπ

t ) + π2(t, Vt, Mt, Xπ
t )) dZt

+ Xπ
t b
(

π1(t, Vt, Mt, Xπ
t ) dZ1

t + π2(t, Vt, Mt, Xπ
t ) dZ2

t

)
,

dVt =κ(θv −Vt) dt + σv
√

Vt

(
ρ dW1

t +
√

1− ρ2 dW2
t

)
,

dMt =− (l1 + l2)Mt dt + b dZ1
t − b dZ2

t ,

(4)

with Xπ
t0

= x0, where we write um := πm + β(π1 + π2) to simplify our notation. Let
Pt0,v0,m0,x0 denote the probability measure with the initial value (Vt0 , Mt0 , Xπ

t0
) = (v0, m0, x0)

at time t0 ∈ [0, T). Accordingly, Et0,v0,m0,x0 [·] and Vart0,v0,m0,x0(·) denote the associated
expectation and variance under the probability measure Pt0,v0,m0,x0 , respectively.
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Definition 1 (Admissible strategy). Given any fixed t0 ∈ [0, T), a strategy π is said to be
admissible if for any (v0, m0, x0) ∈ R+ ×R×R, it holds that:

1. Et0,v0,m0,x0

[∫ T
t0
(Xπ

t )
2
(

c1
√

Vt +
c2√
Vt

)2
u2

m(t, Vt, Mt, Xπ
t ) dt

]
< ∞,

2. Et0,v0,m0,x0

[∫ T
t0
(Xπ

t )
2(π2

1(t, Vt, Mt, Xπ
t ) + π2

2(t, Vt, Mt, Xπ
t )
)

dt
]
< ∞,

3. Et0,v0,m0,x0

[
supt∈[t0,T] |Xπ

t |2
]
< ∞.

The set of all admissible strategies is denoted by A.

The investor wishes to determine an admissible strategy π ∈ A solving the following
mean–variance portfolio problem.

Definition 2. The mean–variance portfolio problem is a stochastic optimization problem denoted by min
π∈A

Vart0,v0,m0,x0(Xπ
T )

subject to Et0,v0,m0,x0 [X
π
T ] = ξ,

(5)

where ξ is a fixed and given constant serving as a target. We denote the corresponding optimal
value function by VMV(t0, v0, m0, x0).

Remark 2. Here, we impose ξ > x0er(T−t0), which precludes the trivial case when the investor
simply takes the risk-free strategy π ≡ 0 over the investment period [t0, T]. This condition is
consistent with some previous studies, such as Shen et al. [13], Sun and Guo [20] and Sun et al. [15].

As discussed in the Introduction, the mean–variance problem (5) is time-inconsistent
due to the presence of the variance operator in the mean–variance objective. We take the
dynamically optimal approach as championed by Pedersen and Peskir [24] to address the
problem of time-inconsistency. For readers’ convenience, we adapted the definition of the
dynamic optimality (Definition 2 in Pedersen and Peskir [24]) into the current context.

Definition 3 (Dynamic optimality). A control πd∗ is said to be dynamically optimal in mean–
variance portfolio problem (5) for (t0, v0, m0, x0) given and fixed, if for every given and fixed
(t, v, m, x) ∈ [t0, T) × R+ × R × R and every strategy u ∈ A such that u(t, v, m, x) 6=
πd∗(t, v, m, x) with Et,v,m,x[Xu

T ] = ξ, there exists a control w satisfying w(t, v, m, x) = πd∗(t, v, m,
x) with Et,v,m,x[Xw

T ] = ξ such that

Vart,v,m,x(Xw
T ) < Vart,v,m,x(Xπ

T ).

Upon considering the nature of the dynamically optimal approach, as discussed in
the Introduction, we shall first pay attention to the static optimality (pre-commitment) for
the mean–variance problem (5).

Due to the convexity of the objective function in the problem (5), we can deal with
the linear constraint Et0,v0,m0,x0 [X

π
T ] = ξ by introducing a Lagrange multiplier θ ∈ R.

The associated (dual) Lagrangian is formulated as follows:

L(x0, v0, m0; π, θ) =Et0,v0,m0,x0 [(Xπ
T − ξ)2] + 2θEt0,v0,m0,x0 [X

π
T − ξ]

=Et0,v0,m0,x0

[
(Xπ

T − (ξ − θ))2
]
− θ2.

(6)

According to the Lagrangian duality theorem (Luenberger [36]), the mean–variance
problem (5) is, in fact, equivalent to the following min–max stochastic optimization problem:

max
θ∈R

min
π∈A

L(x0, v0, m0; π, θ). (7)
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This suggests that two steps are involved to obtain the static optimality of the mean–
variance problem (5). First of all, we should solve the internal unconstrained stochastic
optimization problem with regard to π ∈ A with θ ∈ R fixed and given. Subsequently, we
turn to optimize Lagrange multiplier θ ∈ R in the external static problem. Hence, we are
supposed to determine the optimal strategy of the following quadratic-loss minimization
problem in the first place:

min
π∈A

J(x0, v0, m0; π, γ) = Et0,v0,m0,x0

[
(Xπ

T − γ)2
]
, (8)

with γ = ξ − θ fixed and given.

3. Solution to the Unconstrained Problem

In this section, we devote to solving the unconstrained quadratic-loss minimization
problem (8) by using the dynamic programming approach. For this, we first define the
optimal value function as

H(t, x, v, m) = inf
π∈A

Et,v,m,x

[
(Xπ

T − γ)2
]
, t0 ≤ t ≤ T, (9)

where Et,v,m,x[·] is short for E[·| Xπ
t = x, Vt = v, Mt = m] at time t ∈ [t0, T]. For the function

H(t, x, v, m) ∈ C1,2,2,2([t0, T]×R×R+ ×R), it must satisfy the following HJB equation
due to dynamic programming principle:

inf
π∈A
Dπ∈AH(t, x, v, m) = 0, (10)

where we denote Dπ∈AH(t, x, v, m) as the following differential operator:

Dπ∈AH(t, x, v, m) =Ht + Hxx[umλ(c1v + c2)− (π1l1 − π2l2)m + r] + κ(θv − v)Hv

+
1
2

Hxxx2

[(
c1
√

v +
c2√

v

)2
u2

m + σ2(π1 + π2)
2 + b2(π2

1 + π2
2)

]

+ Hxvumρσvx(c1v + c2) +
1
2

σ2
v vHvv − (l1 + l2)mHm

+ Hxmxb2(π1 − π2) + b2Hmm,

for t ∈ [t0, T), with the boundary condition H(T, x, v, m) = (x− γ)2. Then, the first-order
minimization condition yields the optimal control:

u∗m = − (Hxλ + Hxvρσv)v
Hxxx(c1v + c2)

,

π∗1 = − Hxm

Hxxx
+

Hxm[(σ2 + b2)l1 + σ2l2]
Hxxx(2σ2 + b2)b2 ,

π∗2 =
Hxm

Hxxx
− Hxm[(σ2 + b2)l2 + σ2l1]

Hxxx(2σ2 + b2)b2 .

(11)

Inserting (11) into the HJB Equation (10) and simplifying the expression, we obtain
the following second-order partial differential Equation (PDE) for function H:

Ht +
1

2Hxx

[
2Hx Hxmm(l1 + l2)− H2

xλ2v− 2Hx Hxvρσvλvs.− H2
xvρ2σ2

v v− 2H2
xmb2

]
+κ(θv − v)Hv −

H2
xm2

2Hxx(2σ2 + b2)b2

[
(σ2 + b2)(l2

1 + l2
2) + 2σ2l1l2

]
+rxHx +

1
2

σ2
v vHvv − (l1 + l2)mHm + b2Hmm =0.

(12)
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In the next proposition, we shall construct an explicit solution denoted by G(t, x, v, m)
to PDE (12).

Proposition 1. One solution to second-order PDE (12) is

G(t, x, v, m) = eα(t)+β(t)v+γ(t)m2
(

x− γe−r(T−t)
)2

, (13)

and the optimal feedback control is given by

u∗m(t, v, m, x) = −
(λ + ρσvβ(t))

(
x− γe−r(T−t)

)
v

x(c1v + c2)
,

π∗1 (t, v, m, x) =
[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]m
(

x− γe−r(T−t)
)

x
,

π∗2 (t, v, m, x) =
[

2γ(t)− (σ2 + b2)l2 + σ2l1
(2σ2 + b2)b2

]m
(

x− γe−r(T−t)
)

x
,

(14)

where

α(t) =
∫ T

t
κθvβ(s) + 2b2γ(s) + 2r ds, (15)

β(t) =



λ2(t− T), ρ2 =
1
2

, k + 2λρσv = 0;

λ2

k + 2λρσv

(
e(k+2λρσv)(t−T) − 1

)
, ρ2 =

1
2

, k + 2λρσv 6= 0;

n1n2(1− e
√

∆(T−t))

n1 − n2e
√

∆(T−t)
, ρ2 6= 1

2
, ∆ > 0;

σ2
v (ρ

2 − 1
2 )(T − t)n2

0

σ2
v (ρ2 − 1

2 )(T − t)n0 − 1
, ρ2 6= 1

2
, ∆ = 0;

√
−∆

σ2
v (2ρ2 − 1)

tan

(
arctan

(
k + 2λρσv√
−∆

)
−
√
−∆
2

(T − t)

)
+ n0, ρ2 6= 1

2
, ∆ < 0

(16)

with 

∆ = (k + 2λρσv)
2 − (4ρ2 − 2)σ2

v λ2,

n1 =
−(k + 2λρσv) +

√
∆

σ2(2ρ2 − 1)
,

n2 =
−(k + 2λρσv)−

√
∆

σ2(2ρ2 − 1)
,

n0 =
−(k + 2λρσv)

σ2(2ρ2 − 1)
,

(17)

and

γ(t) =
√
−∆γ

8b2 tan

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√
−∆γ

2
(T − t)

)
+

l1 + l2
4b2 , (18)

with ∆γ = 4(l1 + l2)2 − 16(σ2+b2)(l2
1+l2

2)+32σ2l1l2
(2σ2+b2)

< 0.

Proof. We propose a candidate solution to the second-order PDE (12) in the following form:

G(t, x, v, m) = eα(t)+β(t)v+γ(t)m2
[x− a(t)]2,
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with α(T) = β(T) = γ(T) = 0 and a(T) = γ. Then, we have the following partial deriva-
tives: 

Gt =

[
dα(t)

dt
+

dβ(t)
dt

v +
dγ(t)

dt
m2
]

G− 2eα(t)+β(t)v+γ(t)m2

· (x− a(t))
da(t)

dt
,

Gx =2eα(t)+β(t)v+γ(t)m2
(x− a(t)), Gm = 2γ(t)mG, Gv = β(t)G,

Gxx =2eα(t)+β(t)v+γ(t)m2
, Gmm = 2γ(t)G + 4γ2(t)m2G, Gvv = β2(t)G,

Gxm =4γ(t)meα(t)+β(t)v+γ(t)m2
(x− a(t)),

Gxv =2β(t)eα(t)+β(t)v+γ(t)m2
(x− a(t)).

(19)

Substituting (19) into (12) and reshuffling terms yield

G

[
dα(t)

dt
+

dβ(t)
dt

v +
dγ(t)

dt
m2 + 4γ(t)m2(l1 + l2 − λ2v)− λ2v− 2ρσvλvβ(t)− ρ2σ2

v vβ2(t)

− 8b2m2γ2(t) + κ(θv − v)β(t)−
(σ2 + b2)(l2

1 + l2
2) + 2σ2l1l2

(2σ2 + b2)b2 m2 +
1
2

σ2
v vβ2(t) + 4b2γ2(t)m2

− 2(l1 + l2)γ(t)m2 + 2b2γ(t) + 2r

]
+ 2(x− a(t))eα(t)+β(t)v+γ(t)m2

[
ra(t)− da(t)

dt

]
= 0.

This indicates that we have the following two identities:

ra(t)− da(t)
dt

= 0, (20)

and

dα(t)
dt

+
dβ(t)

dt
v +

dγ(t)
dt

m2 + 4γ(t)m2(l1 + l2 − λ2v)− λ2v− 2ρσvλvβ(t)− ρ2σ2
v vβ2(t)

− 8b2m2γ2(t) + κ(θv − v)β(t)−
(σ2 + b2)(l2

1 + l2
2) + 2σ2l1l2

(2σ2 + b2)b2 m2 +
1
2

σ2
v vβ2(t) + 4b2γ2(t)m2

− 2(l1 + l2)γ(t)m2 + 2b2γ(t) + 2r = 0.

(21)

Upon considering the boundary condition a(T) = γ, we obtain the following expres-
sion of a(t) by solving (20):

a(t) = γe−r(T−t).

As for (21), we can separate it with respect to variables v and m2 as follows:[
dβ(t)

dt
− (2ρσv + κ)λβ(t) +

(
1
2
− ρ2

)
σ2

v β2(t)− λ2
]

v +

[
dγ(t)

dt
− 4b2γ2(t)

+2(l1 + l2)γ(t)−
(σ2 + b2)(l2

1 + l2
2) + 2σ2l1l2

(2σ2 + b2)b2

]
m2 +

dα(t)
dt

+ κθvβ(t) + 2b2γ(t) + 2r = 0.
(22)

Thus, we have the following system of ordinary differential equations (ODEs) from (22)
due to the arbitrariness of v ∈ R+ and m ∈ R:

dβ(t)
dt

=

(
ρ2 − 1

2

)
σ2

v β2(t) + (κ + 2λρσv)β(t) + λ2, β(T) = 0, (23)

dγ(t)
dt

= 4b2γ2(t)− 2(l1 + l2)γ(t) +
(σ2 + b2)(l2

1 + l2
2) + 2σ2l1l2

(2σ2 + b2)b2 , γ(T) = 0, (24)

dα(t)
dt

= −κθvβ(t)− 2b2γ(t)− 2r, α(T) = 0. (25)
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We see that both (23) and (24) are Riccati ODEs, and once these two equations are
solved, the explicit expression of solution α(t) to (25) can be immediately derived.

In the following, we first solve Equation (23) of β(t). When ρ2 = 1
2 and κ + 2λρσv = 0,

we have
β(t) = λ2(t− T).

When ρ2 = 1
2 and κ + 2λρσv 6= 0, Riccati ODE (23) is reduced to the following

linear ODE:
dβ(t)

dt
= (κ + 2λρσv)β(t) + λ2. (26)

Integrating both sides of (26) with respect to time t yields

β(t) =
λ2

k + 2λρσv

(
e(k+2λρσv)(t−T) − 1

)
.

When ρ2 6= 1
2 , we set ∆ := (k + 2λρσv)2 − (4ρ2 − 2)σ2

v λ2 as given in (17) above.
If ∆ > 0, we can rewrite (23) as follows:

dβ(t)
dt

= σ2
v

(
ρ2 − 1

2

)
(β(t)− n1)(β(t)− n2), (27)

where n1 and n2 are given by (17). Upon considering the boundary condition β(T) = 0,
we find

β(t) =
n1n2

(
1− e

√
∆(T−t)

)
n1 − n2e

√
∆(T−t)

.

If ∆ = 0, then (27) can be simplified to

1
(β(t)− n0)2 dβ(t) = σ2

v

(
ρ2 − 1

2

)
dt, (28)

where n0 is given in (17) above. Integrating both sides of (28) with respect to time t upon
considering the boundary condition β(T) = 0, we obtain

β(t) =
σ2

v (ρ
2 − 1

2 )(T − t)n2
0

σ2
v (ρ

2 − 1
2 )(T − t)n0 − 1

.

If ∆ < 0, then (23) can reformulated as follows:

dβ(t)(
β(t) + k+2λρσv

σ2
v (2ρ2−1)

)2
+ −∆

σ4
v (2ρ2−1)2

= σ2
v

(
ρ2 − 1

2

)
dt.

After calculations upon considering the boundary condition β(T) = 0, we find

β(t) =
√
−∆

σ2
v (2ρ2 − 1)

tan

(
arctan

(
k + 2λρσv√
−∆

)
−
√
−∆
2

(T − t)

)
+ n0.

Then, we pay attention to the ODE (24) of γ(t). Considering

∆γ :=4(l1 + l2)2 −
16(σ2 + b2)(l2

1 + l2
2) + 32σ2l1l2

(2σ2 + b2)

=
−8σ2(l1 + l2)2 − 4b2(l1 − l2)2 − 8b2(l2

1 + l2
2)

2σ2 + b2 < 0,
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we can rearrange the terms in (24) to have the following formulation:

dγ(t)(
γ(t)− 1

4b2 (l1 + l2)
)2

+
−∆γ

64b4

= 4b2 dt. (29)

After some calculations, upon considering the boundary condition γ(T) = 0, we have

γ(t) =
√
−∆γ

8b2 tan

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√
−∆γ

2
(T − t)

)
+

l1 + l2
4b2 .

Finally, a direct integral calculation on both sides of (25) upon considering the bound-
ary condition α(T) = 0 yields (15).

The following proposition presents strict monotonicity results of β(t) and γ(t) with
respect to time t, which in turn leads to the non-positiveness of β(t) and γ(t) over [t0, T].

Proposition 2. Functions β(t) and γ(t) given by (16) and (18), respectively, are strictly increasing
with respect to time t, and thus non-positive over [t0, T].

Proof. By differentiating β(t) given in (16) with respect to t, we obtain

dβ(t)
dt

=



λ2, ρ2 =
1
2

, k + 2λρσv = 0;

λ2e(k+2λρσv)(t−T), ρ2 =
1
2

, k + 2λρσv 6= 0;

4λ2∆e
√

∆(T−t)

σ4
v (2ρ2 − 1)2

1

(n1 − n2e
√

∆(T−t))2
, ρ2 6= 1

2
, ∆ > 0;

σ2
v (ρ

2 − 1
2 )n

2
0

(σ2
v (ρ2 − 1

2 )(T − t)n0 − 1)2
, ρ2 6= 1

2
, ∆ = 0;

−∆
2σ2

v (2ρ2 − 1)
sec2

(
arctan

(
k + 2λρσv√
−∆

)
−
√
−∆
2

(T − t)

)
, ρ2 6= 1

2
, ∆ < 0.

It is obvious that dβ(t)
dt > 0 holds for the first three cases. As for the fourth and the fifth

cases, note that when ∆ ≤ 0, we must have ρ2 > 1
2 .

Similarly, a direct differentiation of γ(t) given in (18) leads to

dγ(t)
dt

=
−∆γ

16b2 sec2

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√
−∆γ

2
(T − t)

)
> 0.

Finally, upon considering the boundary condition β(T) = γ(T) = 0, we can conclude
that β(t) and γ(t) are non-positive over [t0, T].

To facilitate further discussions, we now present some auxiliary results on the OU
process and the CIR process in the literature. The first lemma (Lemma 1) is adapted from
Lemma 4.3 in Benth and Karlsen [37].

Lemma 1. Consider the OU process Mt in (3). If ε is a constant such that

ε <
l1 + l2

4b2(T − t0)
,

then we have

Et0,v0,m0,x0

[
exp

(
ε
∫ T

t0

M2
u du

)]
< ∞.

The second lemma (Lemma 2) follows from Theorem 5.1 in Zeng and Taksar [38].
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Lemma 2. Consider the CIR process Vt in (1). We have

Et0,v0,m0,x0

[
exp

(
ε
∫ T

t0

Vt dt
)]

< ∞ if and only if ε ≤ κ2

2σ2
v

.

Inspired by the above results, throughout the rest of paper, we impose the following
assumption on the model parameters and the investment horizon [t0, T]:

Assumption 1. The model parameters and the investment horizon [t0, T] satisfy:

Cb ≤
κ2

2σ2
v

and Cγ <
l1 + l2

4b2(T − t0)
,

where

Cb = max

{
24λ(λ− σv|ρ|β(t0)), (1128 + 96

√
138)

(
λ2 + ρ2σ2

v β2(t0)
)}

,

and

Cγ = max
{
(564 + 48

√
138)

(l1 − l2)2σ2

(2σ2 + b2)2 ,

(1128 + 96
√

138)
(

4b2γ2(t0) +
((σ2 + b2)l1 + σ2l2)2

(2σ2 + b2)2b2

)
,

(1128 + 96
√

138)
(

4b2γ2(t0) +
((σ2 + b2)l2 + σ2l1)2

(2σ2 + b2)2b2

)}
.

Remark 3. It follows from Proposition 2 above that as t0 → T, we have Cb → (1128 +
96
√

138)λ2, which indicates the feasibility of the assumption on Cb. As for the assumption
on Cγ, it is straightforward to have (l1 + l2)/4b2(T − t0) and Cγ are decreasing and increasing
with respect to T, respectively. This means when the investment horizon T − t0 is small enough,
the assumption on Cγ is well established as well.

We next define four Doléans–Dade exponential processes Π0,t, Π1,t, Π2,t and Π3,t
as follows:

Π0,t = exp
(∫ t

t0

−(λ + ρσvβ(s))
√

Vs dW1
s −

1
2

∫ t

t0

(λ + ρσvβ(s))2Vs ds
)

,

Π1,t = exp
(∫ t

t0

(l1 − l2)σ
2σ2 + b2 Ms dZs −

1
2

∫ t

t0

(l1 − l2)2σ2

(2σ2 + b2)2 M2
s ds
)

,

Π2,t = exp

( ∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)
bMs dZ1

s −
1
2

∫ t

t0

(−2γ(s)

+
(σ2 + b2)l1 + σ2l2

(2σ2 + b2)b2

)2

b2 M2
s ds

)
,

Π3,t = exp

( ∫ t

t0

(
2γ(s)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)
bMs dZ2

s −
1
2

∫ t

t0

(2γ(s)

− (σ2 + b2)l2 + σ2l1
(2σ2 + b2)b2

)2

b2 M2
s ds

)
.

(30)

We shall study the integrability of Π0,t, Π1,t, Π2,t and Π3,t which will be used in the
proof of Theorem 1 below.
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Lemma 3. Suppose that Assumption 1 holds. Then, Π0,t, Π1,t, Π2,t and Π3,t satisfy

Et0,v0,m0,x0

[
sup

t∈[t0,T]
|Π0,t|24 + sup

t∈[t0,T]
|Π1,t|24 + sup

t∈[t0,T]
|Π2,t|24 + sup

t∈[t0,T]
|Π3,t|24

]
< ∞. (31)

Proof. Let p > 1 be any given constant. Then, the following equation of k

p =
k

2
√

k− 1

admits two positive roots:

k1 = p(2p− 1) + 2p
√

p(p− 1) and k2 = p(2p− 1)− 2p
√

p(2p− 1),

with the first root satisfying k1 > 1. In particular, when p = 24, we have k1 = 1128+ 96
√

138.
From Assumption 1, we have

Et0,v0,m0,x0

[
exp

(
(564 + 48

√
138)

∫ T

t0

(λ + ρσvβ(s))2Vt dt
)]

< ∞.

According to Theorem 15.4.6 in Cohen and Elliott [39], we then find that Π0 satisfies

Et0,v0,m0,x0

[
sup

t∈[t0,T]
|Π0,t|24

]

≤24
23

{
Et0,v0,m0,x0

[
exp

(
(564 + 48

√
138)

∫ T

t0

(λ + ρσvβ(s))2Vt dt
)]}√1128+96

√
138−1√

1128+96
√

138

<∞.

By applying the same technique to Π1, Π2 and Π3, it is straightforward to obtain (31)
due to Assumption 1. So we omit the details here.

To end this section, we shall prove a verification theorem from scratch which guar-
antees that the candidate solution G(t, x, v, m) derived in (13) coincides with the optimal
value function H(t, x, v, m) defined in (9) to the quadratic-loss minimization problem (8).
Furthermore, we will also prove the admissibility of the optimal strategy obtained in (14)
in the sense of Definition 1.

Theorem 1 (Verification theorem). Suppose that Assumption 1 holds. Then, the optimal strat-
egy given in (14) for the problem (8) is admissible, and the optimal controlled wealth process X∗t
evolves as

X∗t =Π0,tΠ1,tΠ2,tΠ3,t exp

{ ∫ t

t0

[
2(l1 + l2)γ(u)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2
)

(2σ2 + b2)b2

]
M2

u

− λ(λ + ρσvβ(u))Vu du

}(
x0er(t−t0) − γe−r(T−t)

)
,

(32)

for t ∈ [t0, T], with (t0, v0, m0, x0) ∈ [0, T)×R+×R×R given and fixed such that x0er(T−t0) <
ξ, where processes Π0,t, Π1,t, Π2,t, and Π3,t are given in (30). Moreover, we have

G(t, x, v, m) = H(t, x, v, m)



Mathematics 2021, 9, 2293 13 of 25

for any (t, x, v, m) ∈ [t0, T]×R×R+×R. In particular, the optimal value function of problem (8)
is given by

G(t0, x0, v0, m0) = eα(t0)+β(t0)v0+γ(t0)m2
0

(
x0 − γe−r(T−t0)

)2
, (33)

with α(t), β(t), and γ(t) given by (15), (16), and (18), respectively.

Proof. In the following, we will finish the proof with two steps. At step 1, we show that
the optimal strategy π∗ = (u∗m, π∗1 , π∗2 ) given in (14) is admissible. At step 2, we verify that
the candidate solution G given in (13) is indeed the optimal value function H defined in (9).

Step 1. Substituting the optimal strategy (14) into the controlled wealth process (4)
leads to

dX∗t =

{[
2(l1 + l2)γ(t)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2)

(2σ2 + b2)b2

](
X∗t − γe−r(T−t)

)
M2

t

− λ(λ + ρσvβ(t))
(

X∗t − γe−r(T−t)
)

Vt + rX∗t

}
dt− (λ + ρσvβ(t))

·
(

X∗t − γe−r(T−t)
)√

Vt dW1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
b

·
(

X∗t − γe−r(T−t)
)

Mt dZ1
t +

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
b

·
(

X∗t − γe−r(T−t)
)

Mt dZ2
t +

(l1 − l2)σ
2σ2 + b2

(
X∗t − γe−r(T−t)

)
Mt dZt,

with X∗t0
= x0. Applying Itô’s lemma to Yt := er(T−t)X∗t − γ, we have

dYt =

{[
2(l1 + l2)γ(t)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2)

(2σ2 + b2)b2

]
Yt M2

t − λ(λ + ρσvβ(t))YtVt

}
dt

− (λ + ρσvβ(t))Yt
√

Vt dW1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
bYt Mt dZ1

t

+

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
bYt Mt dZ2

t +
(l1 − l2)σ
2σ2 + b2 Yt Mt dZt,

with Yt0 = x0er(T−t) − γ. By explicitly solving the linear SDE of Yt, we then have the
following closed-form expression:

Yt =
(

x0er(T−t0) − γ
)

Π0,tΠ1,tΠ2,tΠ3,t exp

{ ∫ t

t0

[
2(l1 + l2)γ(u)

−
σ2(l1 + l2)2 + b2(l2

1 + l2
2)

(2σ2 + b2)b2

]
M2

u − λ(λ + ρσvβ(u))Vu du

}
,

where Π0,t, Π1,t, Π2,t and Π3,t are defined in (30) above. This in turn shows the optimal
controlled wealth process X∗t given by (32). We now proceed to show that the optimal
strategy π∗ = (u∗m, π∗1 , π∗2 ) given in (14) is admissible. To this end, we first show that

Et0,v0,m0,x0

[
sup

t∈[t0,T]
|X∗t |4

]
< ∞. (34)
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Indeed, from the expression of X∗t given in (32), we have

Et0,v0,m0,x0

[
sup

t∈[t0,T]
|X∗t |4

]

≤KEt0,v0,m0,x0

[
sup

t∈[t0,T]

∣∣∣∣Π0,tΠ1,tΠ2,tΠ3,t exp
(∫ t

t0

−λ(λ + ρσvβ(u))Vu du
)

· exp

(∫ t

t0

(
2(l1 + l2)γ(u)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2)

(2σ2 + b2)b2

)
M2

u du

)∣∣∣∣4 + 1

]

≤K

{
Et0,v0,m0,x0

[
1 + sup

t∈[t0,T]
Π24

0,t + Π24
1,t + Π24

2,t + Π24
3,t

]

+ Et0,v0,m0,x0

[
exp

(
24λ(λ− σv|ρ|β(t0))

∫ T

t0

Vt dt
)]

+ Et0,v0,m0,x0

[
exp

(
−

24σ2(l1 + l2)2 + 24b2(l2
1 + l2

2)

(2σ2 + b2)b2

∫ T

t0

M2
t dt

)]}
<∞,

where the positive constant K might differ between lines, the second inequality makes use of
Jensen’s inequality and the non-positiveness of functions β(t) and γ(t) from Proposition 2,
and the last strictly inequality is due to Assumption 1 on Cb and Lemma 1. This in turn
leads to the establishment of Condition 3 in Definition 1 by Jensen’s inequality. Then, we
show that Condition 1 in Definition 1 is satisfied:

Et0,v0,m0,x0

[∫ T

t0

(X∗t )
2(u∗m(t, Vt, Mt, X∗t ))

2
(

c1
√

Vt +
c2√
Vt

)2
dt

]
< ∞.

Indeed, in view of the expression of u∗m given in (14), we obtain

Et0,v0,m0,x0

[∫ T

t0

(X∗t )
2(u∗m(t, Vt, Mt, X∗t ))

2
(

c1
√

Vt +
c2√
Vt

)2
dt

]

=Et0,v0,m0,x0

[∫ T

t0

(λ + ρσvβ(t))2Vt

(
X∗t − γe−r(T−t)

)2
dt
]

≤K

{
Et0,v0,m0,x0

[
sup

t∈[t0,T]
|X∗t |4

]
+
∫ T

t0

Et0,v0,m0,x0

[
V2

t

]
dt

}
< ∞,

where K is a positive constant, and the last strict inequality follows from (34) as well as
the fact that the CIR process Vt has a finite second moment at time t ∈ [t0, T], which is
continuous in time t (see, for example, Cox et al. [40]). Recalling that Mt given in (3) is an
OU process, we can write the solution explicitly:

Mt = m0e−(l1+l2)t +
√

2b
∫ t

t0

e−(l1+l2)(t−s) dZ3
s ,

where Z3
t = Z1

t /
√

2− Z2
t /
√

2 is Pt0,v0,m0,x0 Brownian motion due to Lévy’s characterization
of Brownian motion. Then, upon noticing that

∫ t
t0

e−(l1+l2)(t−s) dZ3
s is normally distributed

with mean zero and variance
∫ t

t0
e−2(l1+l2)(t−s) ds, we find that
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Et0,v0,m0,x0 [M
4
t ] ≤ K

[
1 + Et0,v0,m0,x0

[(∫ t

t0

e−(l1+l2)(t−s) dZ3
s

)4
]]

= K

[
1 + 3

(∫ t

t0

e−2(l1+l2)(t−s) ds
)2
]

≤ K
(

1 + 3(t− t0)
2
)

,

where K > 0 is a positive constant. Therefore, in view of the expressions of π∗1 and π∗2
given in (14), we find that Condition 2 in Definition 1 holds as well:

Et0,v0,m0,x0

[∫ T

t0

(X∗t )
2(π∗1 (t, Vt, Mt, X∗t ))

2 dt
]

=Et0,v0,m0,x0

[∫ T

t0

(
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)
M2

t

(
X∗t − γe−r(T−t)

)2
]

≤K

{
Et0,v0,m0,x0

[
sup

t∈[t0,T]
|X∗t |4

]
+
∫ T

t0

Et0,v0,m0,x0

[
M4

t

]
dt

}
< ∞,

where K is a positive constant. Using the same technique, we also have

Et0,v0,m0,x0

[∫ T

t0

(X∗t )
2(π∗2 (t, Vt, Mt, X∗t ))

2 dt
]
< ∞.

The above results show that the optimal strategy (14) π∗ ∈ A and completes the first
part of the proof.

Step 2. Applying Itô’s lemma to the candidate solution G given in (13) of the HJB
Equation (10) for any admissible strategy π ∈ A, we have

dG(t, Xπ
t , Vt, Mt)

=Dπ∈AG(t, Xπ
t , Vt, Mt) dt + Gv(t, Xπ

t , Vt, Mt)

(
ρ dW1

t +
√

1− ρ2 dW2
t

)
· σv
√

Vt + Gx(t, Xπ
t , Vt, Mt)

[
Xπ

t

(
c1
√

Vt +
c2√
Vt

)
um(t, Vt, Mt, Xπ

t ) dW1
t

+ Xπ
t σ(π1(t, Vt, Mt, Xπ

t ) + π2(t, Vt, Mt, Xπ
t )) dZt +

(
π1(t, Vt, Mt, Xπ

t ) dZ1
t

+ π2(t, Vt, Mt, Xπ
t ) dZ2

t

)
Xπ

t b

]
+ Gm(t, Xπ

t , Vt, Mt)
(

b dZ1
t − b dZ2

t

)
.

(35)

Due to the pathwise continuity of Xπ , π1, π2, um, V, Gx, Gm, all the stochastic integrals
on the right-hand side of (35) are clearly continuous local martingales under measure
Pt0,v0,m0,x0 . Then, there exists a sequence of stopping times localizing all the local mar-
tingales (see, for example, page 76 in Le Gall [41]). We therefore denote the associated
localizing sequence by (τn)n≥1 such that τn → ∞ Pt0,v0,m0,x0 almost surely as n→ ∞. Simi-
lar to the preceding definition of the probability measure Pt0,v0,m0,x0 , we let Pt,v,m,x denote
the probability measure with initial data (Vt, Mt, Xπ

t ) = (v, m, x) given and fixed at time
t ∈ [t0, T). Thus, integrating both sides of (35) from t to T ∧ τn and taking expectation
lead to

Et,v,m,x
[
G(T ∧ τn, Xπ

T∧τn
, VT∧τn , MT∧τn)

]
=Et,v,m,x

[∫ T∧τn

t
Dπ∈AG(t′, Xπ

t′ , Vt′ , Mt′) dt′
]
+ G(t, x, v, m).

(36)
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From the expression of candidate function G given in (13), we find

G(T ∧ τn, Xπ
T∧τn

, VT∧τn , MT∧τn)

=
(

Xπ
T∧τn
− γe−r(T−T∧τn)

)2
exp(α(T ∧ τn) + β(T ∧ τn)VT∧τn

+γ(T ∧ τn)M2
T∧τn

)
≤K
(

Xπ
T∧τn
− γe−r(T−T∧τn)

)2
,

(37)

where K is a positive constant independent of V and M2, and the inequality makes use
of the non-positiveness of functions β(t) and γ(t) over [t0, T] from Proposition 2. On the

one hand, we notice that
(

Xπ
T∧τn
− γe−r(T−T∧τn)

)2
is Pt,v,m,x integrable for any admissible

strategy π ∈ A. On the other hand, since candidate function G given in (13) satisfies the
HJB Equation (10), then we must have Dπ∈AG(t′, Xπ

t′ , Vt′ , Mt′) ≥ 0, Pt,v,m,x almost surely
for all t′ ∈ [t, T]. Hence, passing to the limit in (36) and applying Lebesgue’s dominated
convergence theorem to the left-hand side and the monotone convergence theorem to the
right-hand side of (36), respectively, we obtain

Et,v,m,x

[
(Xπ

T − γ)2
]

=Et,v,m,x

[∫ T

t
Dπ∈AG(t′, Xπ

t′ , Vt′ , Mt′) dt′
]
+ G(t, x, v, m)

≥G(t, x, v, m),

(38)

which implies that, for any admissible strategy π ∈ A, we have

H(t, x, v, m) = inf
π∈A

Et,v,m,x

[
(Xπ

T − γ)2
]
≥ G(t, x, v, m)

with any (t, x, v, m) ∈ [t0, T]×R×R+×R fixed and given. Meanwhile, from Proposition 1
above, we know:

G(t, x, v, m) = Et,v,m,x

[
(X∗T − γ)2

]
with admissible strategy π∗ = (u∗m, π∗1 , π∗2 ) ∈ A given by (14), which means

H(t, x, v, m) = inf
π∈A

Et,v,m,x

[
(Xπ

T − γ)2
]
≤ Et,v,m,x

[
(X∗T − γ)2

]
= G(t, x, v, m).

Combining these two results, we can finally conclude that the candidate solution G
coincides with the optimal value function H, i.e.,

G(t, x, v, m) = H(t, x, v, m),

for any (t, x, v, m) ∈ [t0, T]×R×R+ ×R fixed and given. In particular, the optimal value
function of the quadratic-loss minimization problem (8) is given by (33).

4. Static and Dynamic Optimality of the Problem

In this section, we derive the statically optimal strategy and the dynamically optimal
strategy of the mean–variance portfolio problem (5) by utilizing the preceding results.
As a matter of fact, in view of (6) and (7) above, we now only need to solve the following
static optimization problem with respect to the Lagrange multiplier θ ∈ R to obtain the
static optimality and the corresponding optimal value function for the mean–variance
problem (5)

max
θ∈R

J(x0, v0, m0; π∗, ξ − θ)− θ. (39)
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Reformulating (39) as a quadratic functional over θ ∈ R, we find that the optimal
value function of the mean–variance problem (5) can be obtained from

VMV(t0, v0, m0, x0)

=max
θ∈R

{[
eα(t0)+β(t0)v0+γ(t0)m2

0−2r(T−t0) − 1
]
θ2 + 2eα(t0)+β(t0)v0+γ(t0)m2

0−r(T−t0)

·
(

x0 − ξe−r(T−t0)
)

θ + eα(t0)+β(t0)v0+γ(t0)m2
0

(
x0 − ξe−r(T−t0)

)2
}

,

(40)

if the coefficient of the quadratic term is strictly negative. Indeed, upon noticing that π∗

given in (14) is the unique optimal strategy for the quadratic loss minimization problem (8),
we must have

H(t0, x0, v0, m0) = eα(t0)+β(t0)v0+γ(t0)m2
0

(
x0 − γe−r(T−t0)

)2

<
(

x0er(T−t0) − γ
)2

= Et0,v0,m0,x0

[
(Xπ̄

T − γ)2
]
,

where: π̄ := (π̄m, π̄1, π̄2) = (0, 0, 0) stands for the risk-free strategy over the period
[t0, T]. This implies that the quadratic coefficient of θ in (40) is strictly negative as desired.
Therefore, the maximum to the right-hand side of (40) is uniquely attained at

θ∗ =
x0er(T−t0) − ξ

e−α(t0)−β(t0)v0−γ(t0)m2
0+2r(T−t0) − 1

. (41)

Theorem 2. Suppose that Assumption 1 holds. For any initial data (t0, v0, m0, x0) ∈ [0, T)×
R+ × R× R given and fixed such that x0 < e−r(T−t0)ξ, the statically optimal strategy of the
mean–variance portfolio problem (5) is given by

π∗m(t, v, m, x) = −
[
(λ + ρσvβ(t))v

c1v + c2
+

βm(l1 − l2)
2σ2 + b2

]
x− (ξ − θ∗)e−r(T−t)

x
,

π∗1 (t, v, m, x) =
[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
m

x− (ξ − θ∗)e−r(T−t)

x
,

π∗2 (t, v, m, x) =
[

2γ(t)− (σ2 + b2)l2 + σ2l1
(2σ2 + b2)b2

]
m

x− (ξ − θ∗)e−r(T−t)

x
,

(42)

for t ∈ [t0, T], and the corresponding optimal value function is

VMV(t0, v0, m0, x0) =
1

e−α(t0)−β(t0)v0−γ(t0)m2
0+2r(T−t0) − 1

(x0er(T−t0) − ξ)2, (43)

where α(t), β(t), and γ(t) are given in (15), (16), and (18), respectively, and θ∗ is given by (41).
The controlled wealth process X∗t is given by

X∗t =Π0,tΠ1,tΠ2,tΠ3,t exp

( ∫ t

t0

[
2(l1 + l2)γ(u)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2
)

(2σ2 + b2)b2

]
M2

u

− λ(λ + ρσvβ(u))Vu du

)(
x0er(t−t0) − (ξ − θ∗)e−r(T−t)

)
,

(44)

where processes Π0,t, Π1,t, Π2,t, and Π3,t are given in (30). Moreover, the statically optimal strategy
given by (42) is admissible, i.e., π∗ = (π∗m, π∗1 , π∗2 ) ∈ A.
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Proof. Substituting θ∗ given by (41) into (40) leads to the optimal value function (43).
Replacing γ in (14) and (32) with ξ − θ∗ gives the statically optimal strategy (42) and
the statically optimal controlled wealth process (44), respectively. Following the proof in
Theorem 1 above, it is obvious to see that the statically optimal strategy π∗ ∈ A.

Remark 4. If we set either (c1, c2) = (1, 0) or (c1, c2) = (0, 1) in (42), then we obtain explicit
solutions to the mean–variance problem with mispricing under the Heston model and the 3/2 model,
respectively.

Corollary 1. (No mispricing under the 4/2 model). Suppose that Assumption 1 holds. For any
initial data (t0, v0, x0) ∈ [0, T)×R+×R given and fixed such that x0 < e−r(T−t0)ξ, the statically
optimal strategy of the mean–variance portfolio problem (5) without mispricing is given by

π∗m(t, v, x) = − (λ + ρσvβ(t))v
c1v + c2

x− (ξ − θ̄∗)e−r(T−t)

x
, (45)

for t ∈ [t0, T]. The corresponding optimal value function is

VMV(t0, v0, x0) =
1

e−ᾱ(t0)−β(t0)v0+2r(T−t0) − 1
(x0er(T−t0) − ξ)2, (46)

where β(t) is given in (16) and ᾱ(t) is given by

ᾱ(t) =
∫ T

t
κθvβ(s) + 2r ds, (47)

and θ̄∗ is given by

θ̄∗ =
x0er(T−t0) − ξ

e−ᾱ(t0)−β(t0)v0+2r(T−t0) − 1
. (48)

The controlled wealth process X∗t is given by

X∗t = exp
{∫ t

t0

−λ(λ + ρσvβ(u))Vu du
}

Π0,t

(
x0er(t−t0) − (ξ − θ̄∗)e−r(T−t)

)
, (49)

with Π0,t given in (30). Moreover, the optimal strategy given in (45) is admissible, i.e., π∗m ∈ A.

Proof. If there is no mispricing in the market, then Mt ≡ 0, which reveals that π∗1 = π∗2 = 0
and π∗m = u∗m due to (11). Moreover, since m vanishes from the HJB Equation (10) in this
case, then γ(t) disappears as well. This in turn leads to (45)–(49) following from (15),
(41)–(44), respectively.

As discussed in Section 2, the statically optimal strategy π∗ = (π∗m, π∗1 , π∗2 ) in Theorem 2
relies on the initial position of state variables (t0, v0, m0, x0). We will now proceed to
derive the dynamically optimal strategy under the framework developed by Pedersen and
Peskir [24].

Theorem 3. Suppose that Assumption 1 holds. For any initial data (t0, v0, m0, x0) ∈ [0, T)×
R+ ×R×R given and fixed such that x0 < e−r(T−t0)ξ, the dynamically optimal strategy of the
mean–variance portfolio problem (5) is given by
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

πd∗
m (t, v, m, x) = −

[
(λ + ρσvβ(t))v

c1v + c2
+

βm(l1 − l2)
2σ2 + b2

]
x− ξe−r(T−t)(

1− eα(t)+β(t)v+γ(t)m2−2r(T−t)
)

x
,

πd∗
1 (t, v, m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

] m
(

x− ξe−r(T−t)
)

(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x

,

πd∗
2 (t, v, m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

] m
(

x− ξe−r(T−t)
)

(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x

,

(50)

for t ∈ [t0, T). The controlled wealth process Xd∗
t evolves over time as

Xd∗
t =Γ0,tΓ1,tΓ2,tΓ3,t exp

( ∫ t

t0

[(
2(l1 + l2)γ(s)−

σ2(l1 + l2)2 + b2(l2
1 + l2

2
)

(2σ2 + b2)b2

)
M2

s

− λ(λ + ρσvβ(s))Vs

]
f (s, Vs, Ms) ds

)(
x0er(t−t0) − ξe−r(T−t)

)
+ ξe−r(T−t),

(51)

with Xd∗
t er(T−t) < ξ for t ∈ [t0, T), where processes Γ0, Γ1, Γ2, and Γ3 are given by

Γ0,t = exp

( ∫ t

t0

−(λ + ρσvβ(s))
√

Vs f (s, Vs, Ms) dW1
s −

1
2

∫ t

t0

(λ + ρσvβ(s))2Vs f 2(s, Vs, Ms) ds

)
,

Γ1,t = exp
(∫ t

t0

(l1 − l2)σ
2σ2 + b2 Ms f (s, Vs, Ms) dZs −

1
2

∫ t

t0

(l1 − l2)2σ2

(2σ2 + b2)2 M2
s f 2(s, Vs, Ms) ds

)
,

Γ2,t = exp

( ∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)
bMs f (s, Vs, Ms) dZ1

s

− 1
2

∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)2

b2 M2
s f 2(s, Vs, Ms) ds

)
,

Γ3,t = exp

( ∫ t

t0

(
2γ(s)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)
bMs f (s, Vs, Ms) dZ2

s

− 1
2

∫ t

t0

(
2γ(s)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)2

b2 M2
s f 2(s, Vs, Ms) ds

)
,

(52)

and the help function f (t, v, m) : [t0, T)×R+ ×R 7→ R is given by

f (t, v, m) =
1

1− exp(α(t) + β(t)v + γ(t)m2 − 2r(T − t))
, (53)

with α(t), β(t), and γ(t) given in (15), (16), and (18), respectively.

Proof. We start with identifying t0 with t, x0 with x, v0 with v and m0 with m in (42). This
leads to the following candidate:

πd∗
m (t, v, m, x) = −

[
(λ + ρσvβ(t))v

c1v + c2
+

βm(l1 − l2)
2σ2 + b2

]
x− ξe−r(T−t)(

1− eα(t)+β(t)v+γ(t)m2−2r(T−t)
)

x
,

πd∗
1 (t, v, m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

] m
(

x− ξe−r(T−t)
)

(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x

,

πd∗
2 (t, v, m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

] m
(

x− ξe−r(T−t)
)

(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x

.

(54)

We next show that this candidate πd∗ = (πd∗
m , πd∗

1 , πd∗
2 ) (54) is dynamically optimal in

the mean–variance portfolio problem (5). To this end, we first take any other admissible
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strategy u ∈ A such that u(t, v, m, x) 6= πd∗(t, v, m, x) with Et,v,m,x[Xu
T ] = ξ. Then, set

w = π∗ under the measure Pt,v,m,x. Replacing (t0, v0, m0, x0) with (t, v, m, x) in (42), we
see from (42) that π∗(t, v, m, x) = πd∗(t, v, m, x), and thus w(t, v, m, x) = π∗(t, v, m, x) =
πd∗(t, v, m, x) 6= u(t, v, m, x) for any t ∈ [0, T). Due to the continuity of functions u and
w, there exists a ball Bε := [t, t + ε]× [v− ε, v + ε]× [m− ε, m + ε]× [x − ε, x + ε] such
that w(t̃, ṽ, m̃, x̃) 6= u(t̃, ṽ, m̃, x̃) for (t̃, ṽ, m̃, x̃) ∈ Bε when ε > 0 is small enough such that
t+ ε ≤ T. Therefore, since w = π∗ is the unique continuous function such that the infimum
within the HJB Equation (10) is attained for any (t, v, m, x), then we can set the exiting time
τε = inf{t ∧ T| (t, Vt, Mt, Xu

t ) /∈ Bε} such that for t̃ ≤ τε, it holds that

Du∈AH(t̃, Xu
t̃ , Vt̃, Mt̃) ≥ ζ > 0, Pt,v,m,x − a.s.

where ζ is a fixed positive constant. Replacing γ by ξ − θ̃∗ in the boundary condition of
the HJB Equation (10) with θ̃∗ given by

θ̃∗ =
xer(T−t) − ξ

e−α(t)−β(t)v−γ(t)m2+2r(T−t) − 1
,

it follows from (38) with ξ − θ̃∗ in place of γ that

Et,v,m,x

[
(Xπ

T − (ξ − θ̃∗))2
]

=Et,v,m,x

[∫ τε

t
Du∈AH(t̃, Xu

t̃ , Vt̃, Mt̃) dt̃
]
+ Et,v,m,x

[∫ T

τε

Du∈AH(t′, Xu
t′ , Vt′ , Mt′) dt′

]
+ eα(t)+β(t)v+γ(t)m2

(
x− (ξ − θ̃∗)e−r(T−t)

)2

≥ζEt,v,m,x[τε − t] + eα(t)+β(t)v+γ(t)m2
(

x− (ξ − θ̃∗)e−r(T−t)
)2

>eα(t)+β(t)v+γ(t)m2
(

x− (ξ − θ̃∗)e−r(T−t)
)2

=Et,x,v,m

[
(Xw

T − (ξ − θ̃∗))2
]
,

(55)

where the strict inequality follows from the fact that τε > t, since the triple (V, M, Xu)
has continuous sample paths with probability one under Pt,v,m,x measure. From (55), we
then have

Vart,v,m,x(Xu
T) = Et,v,m,x[(Xu

T)
2]− ξ2

= Et,v,m,x[(Xu
T − (ξ − θ̃∗))2]− (θ̃∗)2

> Et,v,m,x[(Xw
T − (ξ − θ̃∗))2]− (θ̃∗)2

= Vart,v,m,x(Xw
T ).

This shows that the candidate πd∗ = (πd∗
m , πd∗

1 , πd∗
2 ) proposed in (54) is the dynami-

cally optimal strategy for mean–variance portfolio problem (5).
Substitute πd∗ into (4) and denote the corresponding wealth process by Xd∗

t . Applying
Itô’s lemma to Yt := er(T−t)Xd∗

t − ξ yields

dYt =

{[
2γ(t)(l1 + l2)−

b2(l2
1 + l2

2) + σ2(l1 + l2)2

(2σ2 + b2)b2

]
M2

t f (t, Vt, Mt)

− λ(λ + ρσvβ(t)) f (t, Vt, Mt)Vt

}
Yt dt +

(l1 − l2)σ
2σ2 + b2 Mt f (t, Vt, Mt)Yt dZt

− (λ + ρσvβ(t))
√

Vt f (t, Vt, Mt)Yt dW1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
bMt

· f (t, Vt, Mt)Yt dZ1
t +

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
bMt f (t, Vt, Mt)Yt dZ2

t ,

(56)
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where the help function f is defined in (53). Solving this linear SDE (56) of Yt explicitly, we
obtain the closed-form expression of Xd∗

t given in (51). Moreover, it is easy to see that the
initial value Yt0 = x0er(T−t0) − ξ < 0 leads to Xd∗

t er(T−t) < ξ for t ∈ [t0, T).

Corollary 2. (No mispricing under the 4/2 model). Suppose that the Assumption 1 holds. For any
initial data (t0, v0, x0) ∈ [0, T)×R+ ×R given and fixed such that x0 < e−r(T−t0)ξ, the dynami-
cally optimal strategy of the mean–variance portfolio problem (5) without mispricing is given by

πd∗
m (t, v, x) = − (λ + ρσvβ(t))v

c1v + c2

x− ξe−r(T−t)(
1− eᾱ(t)+β(t)v−2r(T−t)

)
x

,

for t ∈ [t0, T). The controlled wealth process Xd∗
t evolves as:

Xd∗
t =

(
x0er(t−t0) − ξe−r(T−t)

)
exp

{
−
∫ t

t0

(λ + ρσvβ(u))
√

Vu f̄ (u, Vu) dW1
u

}
exp

{∫ t

t0

−λ(λ + ρσvβ(u)) f̄ (u, Vu)Vu −
1
2
(λ + ρσvβ(u))2Vu f̄ 2(u, Vu) du

}
+ ξe−r(T−t),

with Xd∗
t er(T−t) < ξ for t ∈ [t0, T), where the help function f̄ (t, v) : [t0, T) × R+ 7→ R is

given by

f̄ (t, v) =
1

1− eᾱ(t)+β(t)v−2r(T−t)
,

with ᾱ(t) and β(t) are given in (47) and (16), respectively.

Proof. The results follow from Corollary 1 and Theorem 3 directly.

Remark 5. If we specify (c1, c2) = (1, 0) in Corollary 2, then we have the dynamically optimal
strategy under the Heston model without mispricing; if we choose (c1, c2) = (0, 1) instead, then
the results in Corollary 2 correspond to the ones under the 3/2 model without mispricing.

5. Numerical Examples

This section presents some numerical results to illustrate the theoretical results de-
rived in the previous section. Throughout this section, unless stated otherwise, we con-
sider the following market parameter setting adapted from Cheng and Escobar-Anel [9]
and Ma et al. [31]: κ = 7.3479, θv = 0.0328, σv = 0.6612, c1 = 0.9051, c2 = 0.0023,
λ = 2.9428, ρ = −0.7689, r = 0.05, σ = 0.3, b = 0.3, l1 = 0.1, l2 = 0.2, β = 1.1, x0 = 1,
ξ = 3, v0 = 0.02, m0 = 0.04, T = 1.

Figures 1 and 2 below display the effects of r and λ on the efficient frontier, respectively.
As a matter of fact, when the interest rate r increases, the investor can obtain more expected
return by investing in the risk-free asset, and thus undertake less risk. Meanwhile, from the
economic implications of λ, the investor can obtain a higher risk premium of W1 as λ
increases. This leads to a lower value of Vart0,v0,m0,x0(X∗T) when the same Et0,v0,m0,x0 [X

∗
T ] is

asked for.
Figure 3 contributes to the evolution of the efficient frontier with respect to l1. When

we vary l1 from 0.1 to 0.5, the efficient frontier moves downwards. One possible explanation
is that since l1 partially characterizes the liquidity term, then as l1 increases, the pricing
error Mt in (3) has a faster mean-reversion rate towards the long-term zero such that the
investor can bear less risk coming out of the pricing error between S1 and S2.

We finally give a simulation experiment to illustrate the difference between the dy-
namics of X∗ and Xd∗. As shown in Figure 4 below, two optimal wealth processes have
significantly different trajectories while using the same random numbers. Particularly, we
observe that the dynamically optimal wealth process Xd∗ is strictly below the expected
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terminal wealth ξ = 3 when t < T = 1 in this case, which is consistent with the conclusion
derived in Theorem 3 above.

Figure 1. Effects of r on the efficient frontier.

Figure 2. Effects of λ on the efficient frontier.

Figure 3. Effects of l1 on the efficient frontier.
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Figure 4. Trajectories of static and dynamic optimality.

6. Conclusions

In this paper, we consider an optimal investment problem with mispricing in the
family of 4/2 stochastic volatility models (Grasselli [5]) which embraces the 3/2 and the
Heston models as special cases under Markowitz’s mean–variance criterion.

By applying the dynamic programming approach and establishing the correspond-
ing HJB equation, we derive the closed-form expressions of the statically optimal (pre-
commitment) strategy and the optimal value function. A verification theorem is further
provided from scratch to ensure that the candidate solution to the HJB equation coincides
with the optimal value function and that the optimal strategy is admissible. By recomput-
ing the statically optimal strategy in an infinitesimally small period of time, we explicitly
obtain the dynamically optimal (time-consistent) strategy (Pedersen and Peskir [24]). More-
over, some results on special cases, such as that without mispricing and that under the
3/2 and Heston models, are included. Finally, some numerical examples are presented
to illustrate our results. To the best of our knowledge, there is no existing literature on
the mean–variance problem with the new influential 4/2 stochastic volatility model and
mispricing taken into consideration simultaneously.

Based on our current work, several potential topics in the future may be followed; for
example, one may incorporate the stochastic interest rate into the model. One may also
introduce random liabilities into the mean–variance problem.
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