
mathematics

Article

Voxel-Based 3D Object Reconstruction from Single 2D Image
Using Variational Autoencoders

Rohan Tahir, Allah Bux Sargano * and Zulfiqar Habib

����������
�������

Citation: Tahir, R.; Sargano, A.B.;

Habib, Z. Voxel-Based 3D Object

Reconstruction from Single 2D Image

Using Variational Autoencoders.

Mathematics 2021, 9, 2288. https://

doi.org/10.3390/math9182288

Academic Editor:

Akemi Galvez Tomida

Received: 26 August 2021

Accepted: 11 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, COMSATS University Islamabad, Lahore 54000, Pakistan;
rohaantahir@gmail.com (R.T.); drzhabib@cuilahore.edu.pk (Z.H.)
* Correspondence: allahbux@cuilahore.edu.pk

Abstract: In recent years, learning-based approaches for 3D reconstruction have gained much popu-
larity due to their encouraging results. However, unlike 2D images, 3D cannot be represented in its
canonical form to make it computationally lean and memory-efficient. Moreover, the generation of a
3D model directly from a single 2D image is even more challenging due to the limited details avail-
able from the image for 3D reconstruction. Existing learning-based techniques still lack the desired
resolution, efficiency, and smoothness of the 3D models required for many practical applications. In
this paper, we propose voxel-based 3D object reconstruction (V3DOR) from a single 2D image for
better accuracy, one using autoencoders (AE) and another using variational autoencoders (VAE). The
encoder part of both models is used to learn suitable compressed latent representation from a single
2D image, and a decoder generates a corresponding 3D model. Our contribution is twofold. First, to
the best of the authors’ knowledge, it is the first time that variational autoencoders (VAE) have been
employed for the 3D reconstruction problem. Second, the proposed models extract a discriminative
set of features and generate a smoother and high-resolution 3D model. To evaluate the efficacy of the
proposed method, experiments have been conducted on a benchmark ShapeNet data set. The results
confirm that the proposed method outperforms state-of-the-art methods.

Keywords: voxels; geometric modeling; 3D surface reconstruction; variational autoencoders; deep
learning

1. Introduction

In recent years, imaging devices such as cameras have become common, and people
have easy access to these devices; however, most of these devices can only capture the scene
in 2D format. Originally, the real-world scenes exist in a 3D format, but the third dimension
gets lost during image acquisition. The recovery of the lost dimension is important for many
applications such as robotic vision, medical imaging, 3D printing, and the TV industry. In a
2D image, a basic element is known as a pixel having coordinates, X and Y. In contrast,
in a 3D model, the basic element is a voxel consisting of three coordinates X, Y, and Z [1],
as shown in Figure 1. Interpreting 3D shapes is a primary function of the human visual
system. Hence, we can easily infer the object’s 3D shape by viewing it from one or more
viewpoints. However, it is quite a trivial task for machines to infer the lost third dimension
due to the absence of important geometrical information in the 2D format.

Literature confirms that different approaches have been employed for 3D reconstruc-
tion over the last few decades, such as generating a 3D model from point cloud data
and generating a 3D model directly from 2D images. The point-cloud-based approach
employs skeletons, meshes, and Voronoi diagrams for 3D reconstruction [2]. The point
cloud data are the 3D unstructured data gathered using a 3D laser scanner and 3D cam-
eras [3]. Constructing a 3D model from point cloud data is highly mathematical because
complex geometrical information is required. However, some approaches are data-driven
in which machine learning techniques are used for 3D reconstruction from point cloud
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data [3]. In the second approach, initially, researchers proposed several methods for 3D
reconstruction using a large collection of images of the same object. For this purpose,
the geometrical properties were extracted from images using direct minimization of projec-
tion errors or dense matching. In addition to this, implicit volumetric reconstruction or
explicit mesh-based techniques were also used for 3D reconstruction. However, in both
cases, a large amount of input data and mathematical knowledge are required to estimate
sufficient geometrical properties [4].

Figure 1. 2D image and its corresponding 3D model.

Recently, after the availability of large 3D data sets such as ShapeNet [5] and advance-
ment in machine learning techniques, several successful attempts have been made for 3D
reconstruction directly from 2D images using learning-based methods [6–9]. These tech-
niques include multiple-view-based methods [10], panoramic-view-based methods [11],
and single-view-based methods [12]. In multiple-view-based methods, special image cap-
turing devices, such as 3D cameras, are required to capture the multiview images of an
object or scene used for 3D model reconstruction. In contrast, the panoramic image of a
scene or object estimates the geometry and reconstructs the layout in a 3D model. Both
approaches are quite tedious because extensive mathematical information is required for
3D reconstruction using these methods. Constructing a 3D model from a single view 2D
image is more promising because of the easy availability of single-view image capturing
devices. Several methods have been proposed for 3D reconstruction from a single 2D image;
however, there is still a need to address many issues such as low resolution, inefficiency,
and low accuracy of existing methods [13–15].

In this work, simple-autoencoder (AE)- and variational-autoencoder (VAE)-based
methods are presented for 3D reconstruction from a single 2D image. Our contribution is
twofold. First, to the best of the authors’ knowledge, it is the first time that VAE have been
employed for the 3D reconstruction problem. Second, the model is designed in such a way
that it could extract a discriminative set of features for improving reconstruction results.
The proposed method is evaluated on the ShapeNet benchmark data set, and the results
confirm that it outperforms state-of-the-art methods for 3D reconstruction. The rest of the
paper is organized as follows. In Section 2, related work for 3D model reconstruction is
presented. In Section 3, we elaborate regarding the proposed methodology. Experimenta-
tion results and discussion are presented in Section 4. Finally, the paper is concluded in
Section 5.

2. Related Work

In this section, we provide background information and discuss state-of-the-art meth-
ods used for 3D model reconstruction. These methods can be divided into geometry-based
reconstruction and learning-based reconstruction methods.
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2.1. Background Study

Recovering the lost dimension during image acquisition from any normal camera
has been a hot research area in the field of computer vision for more than a decade.
The literature review shows that the research methodology has been changed from time to
time. More precisely, we can divide the conversion of 2D images to 3D model reconstruction
into three generations. The first generation learns the 3D to 2D image projection process
by utilizing the mathematical and geometrical information using some mathematical or
algorithmic solution. These types of solutions usually require multiple images that are
captured using specially calibrated cameras. For example, using some multiview of an
object with constant angle changing that can cover all the 360 degrees of an object, we can
compute the geometrical points of the object [16]. Using some triangularization techniques,
we can join these points to make a 3D model [2]. The second generation of 2D to 3D model
conversion utilizes the accurately segmented 2D silhouettes. This generation leads to a
reasonable 3D model generation, but it requires specially designed calibrated cameras to
capture the image of the same object from every different angle. This type of technique is
not feasible or more practical because of the complex image capturing techniques [10,17].

Humans can assume the shape of the object using prior knowledge about some objects
and predict what an object will look like from another unseen viewpoint. The computer-
vision-based techniques are inspired by human vision to convert 2D images to 3D models.
With the availability of large-scale data sets, deep learning research has evolved in 3D
reconstruction from a single 2D image. A deep-belief-network-based 3D model was
proposed [12] to learn the 3D model from a single 2D image. It is considered one of the
earlier neural-network-based data-driven models to reproduce the 3D model. Although the
results were not promising, it was considered a good start in 3D reconstruction using
the computer-vision-based method. After this success, another research study based on
a recurrent neural network became popular for 3D reconstruction [13]. This method
employed encoder–decoder-based architecture while considering single or multiple images
as input. The latent vector was produced using input, and then this latent layer vector was
given to the decoder module with a residual network to reproduce the 3D model. This
also became an achievement in computer vision, but the quality of results depended on the
number of images given as input.

Similarly, the authors of some other studies such as [15] proposed an attentional
aggregation module (AttSets) between the latent layer vector and decoder. This method
could work as an intermediary between latent vector space and decoder to generate the 3D
model using single-view 2D or multiview images. This study also uses a recurrent-based
3D decoder to decode latent space to generate a 3D volumetric grid. Moreover, other
studies such as [18–23] used a similar kind of encoder–decoder-based architecture with
some alterations to perform direct 3D model reconstruction from a 2D image.

2.2. Geometry-Based Reconstruction

The 3D reconstruction using geometry-based methods requires complex geometrical
information, and most of these methods are scene-dependent. A method for 3D human
reconstruction was proposed based on geometric information [24,25]. Some other methods
focused on improving the quality of 3D sensory inputs such as multiview cameras and 3D
scanners and then converting these data into a 3D model [26,27]. However, all of these
methods required more than one view of an object to capture sufficient geometry for 3D
reconstruction. For 3D reconstruction from a single 2D image, it is difficult to extract
geometrical information, making it difficult to formulate a 3D model. Moreover, we need
to preserve the depth information of the scene or object to reconstruct the model in 3D [28].

2.3. Learning-Based Reconstruction

Learning-based reconstruction approaches utilize data-driven volumetric 3D model
synthesis. The research community has leveraged improvements in deep learning to enable
efficient modeling of a 2D image into a 3D model. With the availability of large-scale
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data sets such as ShapeNet [5], most researchers focus on developing a 3D voxelized
model from a single 2D image. Recently, various approaches have been proposed for
achieving this task. One study shows that a 3D morphable shape can be generated from
an image of a human face, but it requires many manual interactions and high-quality 3D
scanning of the face. Some methods suggest learning a 3D shape model from key points
or silhouettes [29]. In some studies, the single image’s depth map is first calculated using
machine-learning-based techniques, and then a 3D model is constructed using RGB-D
images [30].

A convolutional neural network (CNN) has recently become popular to predict the
geometry directly from a single image by using an encoder–decoder-based architecture.
The encoder extracts the features from the single image, while the decoder generates the
model based on features extracted by the encoder [31]. In another study, deep-CNN-based
models were learned, in which a single input image is directly mapped to output 3D
representation for the 3D model generation in a single step. The authors of another study
proposed a 3D recurrent-reconstruction-neural-network (RRNN)-based technique, in which
the generation of the 3D model is performed in steps using a 2D image as input [13]. Some
studies, such as [32], used a 2D image along with depth information as input to the
3D-based U-Net architecture. For 3D appearance rendering, Groueix et al. [33] used a
convolutional encoder–decoder-based architecture to generate the 3D scene from a single
image as an input. Then, Haoqiang et al. [34], by incorporating a differentiable appearance
sampling mechanism, further improved the quality of the generated 3D scene.

The literature suggests that generating a 3D model from a single 2D image using
learning-based methods is comparatively less explored [35]. In this direction, we propose a
simple yet effective deep-learning-based framework that can estimate the 3D shape from a
single 2D image in an end-to-end manner.

3. Methodology

The proposed V3DOR approach consists of two different architectures, i.e., autoen-
coder (AE) and variational autoencoder (VAE). The AE consists of two modules in which
the encoder extract features, and the decoder is responsible for generating output. Our
shape learning architectures generate the 3D model in the 1-channel volume of voxels.
The reason for 1-channeled volume reconstruction is to reduce the computational cost.
The complete methodology is presented in subsequent sections.

3.1. Autoencoder-Based Technique

Autoencoders (AE) basically helps in approximation of identity mapping using en-
coding and decoding blocks. The latent representation of input in compact form is learned
in encoding stage and tries to rebuild the input using the encoded features in decoding
stage. Previously autoecoders have been popular in dimentionality reduction and image
compression tasks, but It has gained much attention recently in the 3D reconstruction
related tasks as well. It is observed that most promising results are obtained in 3D recon-
struction from single 2D image using autoencoder-based architecture. In this research The
conversion of 2D images to 3D models has been studied widely and the proposed approach
stands out from existing techniques as we used more deeper networks that can extract best
features from the input. The proposed automatic conversion of 2D to 3D models is shown
in Figure 2 and explained as follows.

3.1.1. Preprocessing

Given an input, a 2D image, say I. Convert 2D image into gray-scale and normalize
is to make every kind of image acceptable for the model. Image normalizing includes
(1) resize the image into 128 × 128 pixels so that the complexity and memory limitations
can be overcome. (2) pixel normalizing to make pixel values in specified range i.e., 0–255.
(3) object centring, it is observed that if the object is in center of the image it can learn the
good geometrical representation so pixel centering techniques have been applied.
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Figure 2. Detailed Architecture of the Proposed Autoencoder Approach.

3.1.2. Encoder

We proposed a deep encoder with two extra number of convolution layers as compared
to decoder block which helps us to learn the complex geometrical features. The encoder
network h(.) learns a latent representation concerning I. The latent representation is
invariant to size and angle. This helps us to make the 3D model, which is rotate-able
at every angle. The encoder architecture consists of seven 2D convolution layers can be
expressed as (64, 3 × 3, 2), (64, 5 × 5, 2), (128, 7 × 7, 2), (128, 5 × 5, 2), (256, 3 × 3, 2),
(256, 4 × 4, 2), (512, 2 × 2, 2) the format is (filter channels, spatial filter dimensions, stride).
The learned representation has the final shape of 1D vector of size 512. After encoding
process a fully-connected layer is being added to increase the dimension of the latent
variable from 512 to 8192 which helps to extract even fine details from the encoded vector.

3.1.3. Decoder

The learned representation is then given to the decoder model g to do the generation of
shape into the volume V such that V′ = g(h(I)). The decoder decodes the latent space vector
into one channel occupancy volume of the object having fine details. The decoder consists
of 5 layers of 3D transpose with following format (filter channels, filter dimensions, stride)
can be expressed as (64, 5 × 5 × 5, 2), (32, 3 × 3 × 3, 2), (32, 5 × 5 × 5, 2), (21, 3 × 3 × 3, 2),
(1, 3 × 3 × 3, 1). The output of the 3D structure is in shape 323.
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3.1.4. Loss Estimation

The ground truth in volumetric shape V is available; the loss function uses the gen-
erated volumetric shape and ground truth to calculate the loss function. The volumetric
shape obtained has some sparseness to handle its variation of cross-entropy loss named
as Mean Squared False Cross-Entropy Loss (MSFEL) is used. The MSFEL was proposed
in [36]. The MSFEL is expressed as:

MSFEL = FPCE + FNCE (1)

where FPCE is known as false positive cross-entropy loss of vacant voxel of the ground
truth shape volume, and FNCE is the false negative cross-entropy loss of occupied voxels.
Which can be represented as:

FPCE = − 1
N

N

∑
n=1

[VnlogV′n + (1−Vn)log(1−V′n)] (2)

FNCE = − 1
P

P

∑
p=1

[VplogV′p + (1−Vp)log(1−V′p)] (3)

where P is the number of occupied voxels; Vn is the nth unoccupied voxel and N is the
total number of unoccupied voxels of V, and Vp is the pth occupied voxel; V′n and V′p are
the prediction of Vn and Vp, respectively.

3.2. Variational-Autoencoder-Based Technique

Recently, generative networks like GANs [37] and Variational Autoencoders (VAE) [38]
has gained too much attention in computer vision. Some work has been conducted in 3D
modeling using VAE’s, but to the best of our knowledge, no literature has been found to
convert the 3D model directly from a simple 2D image [31]. In this approach, encoding
and decoding are performed, but VAE is used to generate the 3D model. The VAE is
a stochastic model; it uses as a generative model. The main advantage of using VAE
over simple autoencoders is that synthetic data can be generated. The parameters of
enocoder and decoder are trained joinlty to improve the laerning capability and decrease
the training loss. The overall network setting of the encoder and decoder is the same as
in our proposed autoencoder approach. However, in simple autoencoders, the encoder
outputs a latent variable of size n where n is the number of pixels. But, the proposed
variational autoencoder outputs two computed vectors of size n: a vector of means values
µ and a vector of standard deviation values as a latent vector fed to the decoder, as shown
in Figure 3. The decoder then decodes the latent representation into a 3D model. The loss
function used here is the same as it was used in our proposed autoencoder approach. Using
this approach, new 3D models can be generated with similar characteristics to the input
data but not real.
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Figure 3. Detailed Architecture of the Proposed Variational Autoencoder Approach.

4. Experimentations and Results
4.1. Data Set

Several public benchmark data sets are available for evaluation algorithms for 3D
modeling, including IKEA 3D [39], PASCAL 3D [40], ModelNet [12], and ShapeNet [5].
ShapeNet [5] is a well-known data set consisting of fifty object categories and used by many
researchers to evaluate their techniques. This study has used a subset of the ShapeNet [5]
data set, including cars, chairs, guitar, and table categories as used by [41]. Each category
has images taken from all the angle which covers the 360◦ of an object and its corresponding
3D model. There are 3389 objects of cars, 2199 objects of a chair, 631 objects of guitar, and
2539 objects of table category. Each object has its corresponding 3D model as a ground truth.

4.2. Comparison with State-of-the-Art Methods

To analyze and investigate the proposed methodology, the experiments were con-
ducted using the subset of the ShapeNet data set. The data were divided into 70% for
training, 10% for validation, and 20% for testing. Each object has its corresponding 3D
model available, which acts as a ground truth. The steps involved in testing are: (1) Input
the image. (2) Use a trained model to compute its latent representation. (3) The computed
latent representation is then given to the trained decoder to compute the 3D model.



Mathematics 2021, 9, 2288 8 of 11

The evaluation metric used for a generated 3D object is intersection over union (IOU).
IOU computes the ratio between the area of the overlap part and the area of the union part.
The formula of IOU is given by:

IOU =
(Area o f overlap)
(Area o f union)

(4)

It is currently a standard evaluation metric for comparing the 3D shape and prediction.
It compares all the pixels or voxels and compares them with the corresponding ground
truth. To check the quality of the computed 3D model by using our proposed approach,
the evaluation as mentioned above metric is used.

The popular 3D volumetric reconstruction model named 3D-Recons [42] and OCC-
Net [14] have been adapted as a baseline for performance and quality evaluation. Both types
of research generate a 3D model in volumetric shapes. OCCNet [14] uses an occupancy-
based network module that refines the reconstructed model. In contrast, 3D-Recons [42]
used an autoencoder-based technique for 3D model construction.

Table 1 is showing the comparison between the state-of-the-art approaches for 3D
surface reconstruction from single 2D image on the basis of IOU. The experiments also
confirms that the proposed approach achieves better results than the state-of-the-art. These
results were obtained even with fewer epochs than the 3D-Recons approach [43]. This
happens due to the use of a modern approach for 3D modeling using neural networks.

Table 1. Comparison with state-of-the-art methods in terms of IOU.

Year Approach Car Table Lamp Chair Mean IOU

2016 3D-R2N2 (LSTM) [13] 0.661 0.420 0.281 0.439 1.472
2019 OccNet (CNN)[14] 0.731 0.506 0.370 0.502 1.734
2019 SoftRas (CNN) [44] 0.672 0.453 0.444 0.481 1.662
2018 NMR (CNN) [9] 0.709 0.483 0.413 0.499 1.73
2020 3D-Recons (CNN) [42] 0.675 0.470 0.459 0.493 1.727

- V3DOR-AE (proposed) 0.713 0.508 0.465 0.511 1.814
- V3DOR-VAE (proposed) 0.708 0.509 0.454 0.509 1.798

The visual results of generated 3D model using our approach and other baselines
are shown in Table 2. It is observed that most of the methods based on CNN [9,14,42,44]
can learn the 3D geometry correctly. However, a rough 3D model is generated by an
LSTM-based method [13]. In contrast, surface reconstructed by the proposed approach and
OccNet [14] can capture a complex geometrical structure.

Table 2. Visual comparison with competitive approaches.

Input 3D-R2N2 [13] OccNet [14] SoftRas [44] Proposed Approach
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Table 2. Cont.

Input 3D-R2N2 [13] OccNet [14] SoftRas [44] Proposed Approach

– –

5. Conclusions

Two different approaches of voxel-based 3D object reconstruction (V3DOR) have
been proposed, one using an autoencoder (V3DOR-AE) and another using a variational
autoencoder (V3DOR-VAE). The proposed methodology has three main steps. First, the
encoder part is used to learn the geometrical constraints in compressed representation
from the input 2D image. Second, in the simple AE approach, the latent representation
of the input image is obtained during the encoding process. However, in the proposed
3D-VAEN approach, two encoded vectors of mean and standard deviation are computed
from input in encoding phase. Third, the decoding process is performed to generate the
learned encoded representation into a 3D model. The decoding process is the same for
both of the proposed approaches. To show the quality of the proposed method, IOU is
being used as an evaluation metric. Both of the proposed methodologies are validated by
performing rigorous experimentation and comparison with existing methods. Results show
that both approaches have a better mean IOU than the state-of-the-art approaches. It is
also seen that the model reconstructed using our proposed approach is of good quality and
has fine details. However, at the moment, we are not expecting reasonable performance
on cross-data-set validation. This is a special validation where the model is trained and
tested on a data set and is then retested on a different data set. So far, we could not find
state-of-the-art following this ideal approach of validation. This could be part of our future
research work. In addition to this, reconstruction of the complex 3D object with colorful
effects from a single 2D image can also be considered as a future research direction.
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