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Abstract: Linear complexity is an important property to measure the unpredictability of pseudo-
random sequences. Trace representation is helpful for analyzing cryptography properties of pseudo-
random sequences. In this paper, a class of new Ding generalized cyclotomic binary sequences
of order two with period pq is constructed based on the new segmentation of Ding Helleseth
generalized cyclotomy. Firstly, the linear complexity and minimal polynomial of the sequences
are investigated. Then, their trace representation is given. It is proved that the sequences have
larger linear complexity and can resist the attack of the Berlekamp–Massey algorithm. This paper
also confirms that generalized cyclotomic sequences with good randomness may be obtained by
modifying the characteristic set of generalized cyclotomy.

Keywords: pseudo-random sequences; stream cipher; Linear complexity; trace representation;
generalized cyclotomic sequence

1. Introduction

Pseudo-random sequences are widely used in spread spectrum communication, multi-
ple access communication, radar navigation, software testing, cryptography, and so on. The
study keystones of pseudo-random sequence are its construction methods and randomness
analysis. As the property of pseudo-random sequences, the linear complexity is defined as
the length of the shortest linear shift register, which can generate the sequences [1]. By the
Berlekamp–Massey algorithm [2], the linear complexity of a pseudo-random sequence must
be greater than the half of its period. Trace representation is an important tool for designing
and analyzing pseudo-random sequences [3]. In 1962, Whiteman proposed the Whiteman
generalized cyclotomy in search of residual difference sets [4]. Subsequently, Ding et al. [5]
presented the Ding–Helleseth generalized cyclotomy. Generalized cyclotomy became a
popular method to construct pseudo-random sequences. Based on the Ding–Helleseth
generalized cyclotomy of order two, Ding [6] constructed new generalized cyclotomic
classes (V0, V1). By use of these cyclotomic classes, Liu et al. [7] constructed the generalized
cyclotomic sequences, and calculated the linear complexity and autocorrelation values of
the sequences. Chen et al. [8] described the trace representations of the sequences by the
Mattson–Solomon polynomial. However, these new generalized cyclotomic sequences are
almost balanced, and their imbalance is q− p− 1.

Li et al. [9] constructed a group of balanced sequences based on Whiteman’s general-
ized cyclotomy, but only gave the lower bound of linear complexity. Bai et al. [10] defined a
class of balanced binary sequence based on the Ding–Helleseth generalized cyclotomy and
calculated the linear complexity. By the defining pairs of the Legendre sequence, Du et al.
determined the trace representation and linear complexity of the generalized cyclotomic
sequence of length pq with arbitrary order. It can be seen that Bai et al.’s conclusion is a
special case when the order is two [11].
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Kim et al. [12] found a general trace representation of Lengendre sequences with any
prime period. Qi et al. [13] pointed out that a simpler trace representation of Legendre
sequences. In 2015, Lv et al. [14] proofed that generalized cyclotomic sequences of order
d can be represented as a sum of d-residue sequences. Especially if d = 2, generalized
cyclotomic sequences can be represented as a sum of Legendre sequences. Inspired by
these conclusions, we consider that trace representation of generalized cyclotomic binary
sequences with period pq can be expressed by trace representation of Legendre sequences
with period p and q.

In this paper, we constructed a class of new balanced generalized cyclotomic sequences
with an imbalance degree of 1 based on the Ding’s new generalized cyclotomic classes
(V0, V1), and discuss the linear complexity and trace representation of the sequences.
According to the definition of the new sequences, their characteristic sets are different from
those in [9,11,15], and they belong to different sequences.

2. Preliminaries

Let S = {Si} be a sequence of period N over a finite field GF(2), then the generating
polynomial of S can be expressed as

S(x) =
SN(x)/gcd(SN(x), xN − 1)

(xN − 1)/gcd(SN(x), xN − 1)
(1)

where SN(x) = s0 + s1x + · · · + sN−1xN−1. The minimal polynomial of S is given by
MS(x) = (xN − 1)/gcd(SN(x), xN − 1), and the linear complexity of S is given by

LC(S) = deg(MS(x)) = N − deg(gcd(SN(x), xN − 1)) (2)

Let m be the order of 2 modulo N. α is a primitive Nth root of unity over the field
GF(2m) of xN − 1. The linear complexity of the sequence {Si} is further derived as

LC(S) = N −
∣∣∣{k : S(αk) = 0, 0 ≤ k ≤ N − 1

}∣∣∣ (3)

Let p be an odd prime, gcd(t, p) = 1. Define(
t
p

)
=

{
1, i f x2 ≡ t(mod p) f or some x,
−1, otherwise.

, (4)

where
(

t
p

)
is the Lengendre symbol.

The trace function of x from finite field GF(2n) to GF(2) is defined as

trn
1 (x) = x + x2 + x22

+ · · · x2n−1
(5)

For ∀a, b ∈ GF(2), ∃x, y ∈ GF(2n), trace function trn
1 (x) satisfy the following properties:

(i) trn
1 (x) = trn

1

(
x2j
)

for any positive integer j.

(ii) trn
1 (x)(ax + by) = atrn

1 (x) + btrn
1 (y)

These properties show that trace functions are linear functions. See, e.g., [1,3]
for details.

3. The Construction of the New Ding Generalized Cyclotomic Binary Sequences

Let p and q be two distinct odd primes with p < q. Define N = pq, gcd(p− 1, q− 1) = 2,
and d = (p− 1)(q− 1)/2. By the Chinese Remainder Theorem, there exists a common
primitive root g of both p and q [10,11,16].

Clearly, ordN(g) = lcm
(
ordp(g), ordq(g)

)
= d, where ordN(g) denotes the multiplica-

tive order of g modulo N. Let x be an integer satisfying the simultaneous congruencies:
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x ≡ g(mod p), x ≡ 1(mod q). The existence of x mod pq is guaranteed by the Chinese
Remainder Theorem [10,13].

Define the new segmentation of the Ding–Helleseth generalized cyclotomy as follows:

V0 =
{

gsxh : 0 ≤ s ≤ d− 1, 0 ≤ h ≤ 1, 2
∣∣∣s + h

}
, V1 =

{
gsxh : 0 ≤ s ≤ d− 1, 0 ≤ h ≤ 1, 2 - s + h

}
.

Clearly, V0 = gV1 according to the definitions of V0 and V1.
Therefore, the Ding’s new generalized cyclotomic classes (V0, V1) constitute a segmen-

tation of all invertible elements in ZN [4], the residue ring module N. It is easy to see that
Z∗N = V0 ∪V1, V0 ∩V1 = ∅, where Z∗N denotes multiplicative group of the ring ZN and ∅
the empty set.

Define
P = {p, 2p, · · · (q− 1)p}, Q = {q, 2q, · · · (p− 1)q}.

In order to obtain the average segmentation of P and Q by quadratic residues theory, define

D(p)
0 =

{
g2 f mod p : f = 0, 1, · · · , (p− 3)/2

}
, D(q)

0 =
{

g2 f mod q : f = 0, 1, · · · , (q− 3)/2
}

, D(p)
1 = gD(p)

0 ,

D(q)
1 = gD(q)

0 , R = {0}, P0 = pD(q)
0 , P1 = pD(q)

1 , Q0 = qD(p)
0 , Q1 = qD(p)

1 , C0 = P0 ∪Q0 ∪V0 ∪ R,

C1 = P1 ∪Q1 ∪V1. Then, ZN = C0 ∪ C1, C0 ∩ C1 = ∅.

Definition 1. The new generalized cyclotomic sequences {Si} of order two of length pq is defined by

Si =

{
0, i f (i mod N) ∈ C0,
1, i f (i mod N) ∈ C1.

(6)

Clearly, the sequence {Si} has least period N. In one period of this sequence, the integer
0 appears (pq + 1)/2 times and the integer 1 appears (pq− 1)/2 times. It is a balance sequence
with imbalance degree 1.

4. Linear Complexity and Minimal Polynomial of the New Sequences

According to the definition of {Si}, the generating polynomial S(x) can be expressed as

S(x) = ∑
i∈C1

xi = ∑
i∈P1∪Q1∪V1

xi ∈ GF(2)[x] (7)

According to the expression of S(x), S(1) can be reckoned as

S(1) = ((p− 1)/2 + (q− 1)/2 + (p− 1)(q− 1)/2)(mod 2)
= ((p− 1)/2 + (q− 1)/2)(mod 2)

(8)

Lemma 1.

∑
i∈P0∪P1

αi = 1, ∑
i∈Q0∪Q1

αi = 1,
N−1

∑
i=0

αi = ∑
i∈P∪Q∪V0∪V1

αi + 1 = 0.

Refer to the Equations (4) and (5) in [10] for details.

Lemma 2 ([8]). Let α ∈ Vj and i, j ∈ {0, 1}, then αVi ∈ Vi+j(mod2).

Lemma 3.

∑
i∈V1

αki =

{
p−1

2 (mod 2), k ∈ P,
0, k ∈ Q.

(9)

Proof. Suppose that k ∈ P, by the definition of x, we have
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V1(mod q) =
{

g2 f+1x(mod q) : f = 0, 1, · · · ,
(d− 2)

2

}
∪
{

g2 f (mod q) : f = 0, 1, · · · ,
(d− 2)

2

}
=
{

g f mod q : f = 0, 1, · · · , d− 1
}
= {1, 2, · · · , q− 1}.

(10)

When f ranges over {0, 1, · · · , d− 1}, g f mod q takes on each element of {0, 1, · · · , q− 1}
(p− 1)/2 times. It follows from Lemma 2 that

∑
i∈V1

αki =
p− 1

2 ∑
i∈P

αi =
p− 1

2
(mod2) (11)

Suppose that k ∈ Q. By symmetry, we get

V1(mod p) =
{

g f (mod p) : f = 0, 1, · · · ,
(d− 2)

2

}
=
{

g, g3, · · · , gp−2
}

(12)

When f ranges over {0, 1, · · · , d− 1}, V1(mod p) takes on each element of D(p)
1 q− 1

times. It follows from Lemma 1 that

∑
i∈V1

αki = (q− 1)∑
i∈P

αi = 0 (13)

�

Lemma 4. Let the symbols be the same as before. Then,

S(αk) =



S(α), k ∈ Z∗N and k mod p ∈ D(q)
0 ,

S(α) + 1, k ∈ Z∗N and k mod p ∈ D(q)
1 ,

∑
i∈P1

αki, k ∈ P,

∑
i∈Q1

αki + q−1
2 , k ∈ Q.

(14)

Proof. By the proof of Lemma 3, we obtain V0(mod p) = D(p)
0 , V1(mod p) = D(p)

1 ,

V0(mod q) = V1(mod q) = D(q)
0 ∪ D(q)

1 = {1, 2, · · · , q− 1}.
If k ∈ V0, kmod p ∈ D(q)

0 , there must exist an integer m such that k ≡ gmmod pq, where
m ∈ {0, 1, · · · , d− 1}. According to the Chinese Remainder Theorem, we can get that
k ≡ gmmod p and m must be even. Hence, kQ1 = Q1, and kP1 = P1. By Lemma 2, kV1 = V1.
By Lemma 1

S(αk) = ∑
i∈P1∪Q1∪V1

αki = S(α) (15)

If k ∈ V0 and kmod p ∈ D(q)
1 then kP1 = P0, kQ1 = Q1, kV1 = V1. By Lemma 1

S(αk) = ∑
i∈P1∪Q1∪V1

αki = ∑
i∈P0∪Q0∪V1

αi = S(α) + 1 (16)

If k ∈ V1 and kmod p ∈ D(q)
0 then kP1 = P1, kQ1 = Q0, kV1 = V0. By Lemma 1

S(αk) = ∑
i∈P1∪Q1∪V1

αki = ∑
i∈P1∪Q1∪V0

αi = S(α) (17)

If k ∈ V1 and kmod p ∈ D(q)
1 then kP1 = P0, kQ1 = Q0, kV1 = V0. By Lemma 1

S(αk) = ∑
i∈P1∪Q1∪V1

αki = ∑
i∈P0∪Q0∪V0

αi = S(α) + 1 (18)
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To sum up, if k ∈ Z∗N , and kmod p ∈ D(q)
0 then S(αk) = S(α); if k ∈ Z∗N , and

kmod p ∈ D(q)
1 , then S(αk) = S(α) + 1.

If k ∈ P, then by Lemma 3

S(αk) = ∑
i∈P1∪Q1∪V1

αki = ∑
i∈P1

αki + ∑
i∈D(p)

1

αqki + ∑
i∈V1

αki = ∑
i∈P1

αki + p−1
2 + p−1

2

= ∑
i∈P1

αki.
(19)

If k ∈ Q, then by Lemma 3

S(αk) = ∑
i∈P1∪Q1∪V1

αki = ∑
i∈Q1

αki + ∑
i∈D(q)

1

αpki + ∑
i∈V1

αki = ∑
i∈Q1

αki +
q− 1

2
(20)

�

Lemma 5. S(α) ∈ {0, 1} if and only if q ≡ ±1(mod8).

Proof. The proof can be referred to Lemma 4 in [10]. �

Lemma 6.

(i) If k ∈ P, ∑i∈P1
αki ∈ {0, 1} if and only if q ≡ ±1(mod8).

(ii) If k ∈ Q, ∑i∈Q1
αki ∈ {0, 1} if and only if p ≡ ±1(mod8).

Proof. The proof can be referred to [1,17,18]. �

Note that

if k ∈ P0, ∑i∈P1
αki = 0, then k ∈ P1, ∑i∈P1

αki = 1;
if k ∈ P0, ∑i∈P1

αki = 1, then k ∈ P1, ∑i∈P1
αki = 0.

if k ∈ Q0, ∑i∈Q1
αki = 0, then k ∈ Q1, ∑i∈Q1

αki = 1;
if k ∈ Q0, ∑i∈Q1

αki = 1, then k ∈ Q1, ∑i∈Q1
αki = 0.

Considering the symmetry, in this paper, we set that

if k ∈ P0, then ∑i∈P1
αki = 0, and if k ∈ P1, then ∑i∈P1

αki = 1;

if k ∈ Q0, then ∑i∈Q1
αki + q−1

2 = 0, and if k ∈ Q1, then ∑i∈Q1
αki + q−1

2 = 1.

Let α be the same as before, then αp is a primitive qth root of unity, αq is a primitive
pth root of unity. Hence,

xp − 1 = ∏
i∈R∪Q

(
x− αi

)
, xq − 1 = ∏

i∈R∪P

(
x− αi

)
. (21)

In case q ≡ ±1(mod8), define Pj(x) = ∏
i∈pj

(x− αi), where j = {0, 1}. It follows that

xq − 1 = P0(x)P1(x)(x− 1) (22)

In case p ≡ ±1(mod8), define Qj(x) = ∏
i∈Qj

(x− αi), where j = {0, 1}. It follows that

xp − 1 = Q0(x)Q1(x)(x− 1) (23)
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Let D(x) = ∏
i∈Z∗N

(
x− αi), Dj(x) = ∏

i∈Z∗N
i(mod p)∈D(q)

j

(
x− αi), where j ∈ {0, 1}. It follows

that
D(x) = D0(x)D1(x) (24)

Theorem 1. Let notations be the same as before, then the linear complexity of the new generalized
cyclotomic sequences S = {Si} satisfies

(i) If p ≡ −3(mod8), q ≡ 3(mod8) or p ≡ 3(mod8), q ≡ −3(mod8), then

LC(S) = N, MS(x) = xN − 1.

(ii) If p ≡ 3(mod8),q ≡ 3(mod8), then

LC(S) = N − 1, MS(x) =
xN − 1
x− 1

.

(iii) If p ≡ −3(mod8), q ≡ −1(mod8) orp ≡ 3(mod8), q ≡ 1(mod8), then

LC(S) = N − q− 1
2

, MS(x) =
xN − 1
P0(x)

.

(iv) If p ≡ 3(mod8), q ≡ −1(mod8), then

LC(S) = N − q− 1
2
− 1, MS(x) =

xN − 1
P0(x)(x− 1)

.

(v) If p ≡ 1(mod8), q ≡ 3(mod8) or p ≡ −1(mod8), q ≡ −3(mod8), then

LC(S) =
N + q

2
, MS(x) =

xN − 1
Q0(x)D0(x)

.

(vi) If p ≡ −1(mod 8), q ≡ 3(mod 8), then

LC(S) =
N + q

2
− 1, MS(x) =

xN − 1
Q0(x)D0(x)(x− 1)

.

(vii) If p ≡ −1(mod8), q ≡ 1(mod8) or p ≡ 1(mod8), q ≡ −1(mod8), then

LC(S) =
N + 1

2
, MS(x) =

xN − 1
P0(x)Q0(x)D0(x)

.

(viii) If p ≡ −1(mod8), q ≡ −1(mod8), then

LC(S) =
N − 1

2
, MS(x) =

xN − 1
P0(x)Q0(x)D0(x)(x− 1)

.

Proof. In the two cases of (i), by Lemmas 4–6 and the Equation (8)

S(αk) =


1, k = 0,

6= 0, k ∈ ZN∗ ,
6= 0, k ∈ P,
6= 0, k ∈ Q.

(25)
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Hence, gcd
(

xN − 1, S(x)
)
= 1. It follows that

MS(x) = xN − 1, LC(S) = deg(MS(x)) = N. (26)

In the case of (ii), by Lemmas 4–6 and the Equation (8),

S(αk) =


0, k = 0,

6= 0, k ∈ ZN∗ ,
6= 0, k ∈ P,
6= 0, k ∈ Q.

(27)

Hence, gcd
(

xN − 1, S(x)
)
= x− 1. It follows that

MS(x) =
xN − 1
x− 1

, LC(S) = deg(MS(x)) = N − 1. (28)

In the two cases of (iii), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =


1, k = 0,

6= 0, k ∈ ZN∗ ,
0, k ∈ P0,
1, k ∈ P1,
6= 0, k ∈ Q.

(29)

Hence, gcd
(

xN − 1, S(x)
)
= P0(x). It follows that

MS(x) =
xN − 1
P0(x)

, LC(S) = deg(MS(x)) = N − q− 1
2

. (30)

In the case of (iv), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =


0, k = 0,

6= 0, k ∈ ZN∗ ,
0, k ∈ P0,
1, k ∈ P1,
6= 0, k ∈ Q.

(31)

Hence, gcd
(

xN − 1, S(x)
)
= P0(x)(x− 1). It follows that

MS(x) =
xN − 1

P0(x)(x− 1)
, LC(S) = deg(MS(x)) = N − q− 1

2
− 1. (32)

In the case of (v), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =



1,k = 0,

0,k ∈ ZN∗ and k mod q ∈ D(q)
0 ,

1,k ∈ ZN∗ and k mod q ∈ D(q)
1 ,

6= 0,k ∈ P ∪Q1,

0,k ∈ Q0.

(33)

Hence, gcd
(

xN − 1, S(x)
)
= Q0(x)D0(x). It follows that

MS(x) =
xN − 1

Q0(x)D0(x)
, LC(S) = deg(MS(x)) =

N + q
2

. (34)
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In the case of (vi), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =



0, k = 0,
0, k ∈ ZN∗ and k mod q ∈ D(q)

0 ,
1, k ∈ ZN∗ and k mod q ∈ D(q)

1 ,
6= 0, k ∈ P ∪Q1,

0, k ∈ Q0.

(35)

Hence, gcd
(

xN − 1, S(x)
)
= Q0(x)D0(x)(x− 1). It follows that

MS(x) =
xN − 1

Q0(x)D0(x)(x− 1)
, LC(S) = deg(MS(x)) =

N + q
2
− 1. (36)

In the two cases of (vii), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =



1, k = 0,
0, k ∈ ZN∗ and k mod q ∈ D(q)

0 ,
1, k ∈ ZN∗ and k mod q ∈ D(q)

1 ,
1, k ∈ P0 ∪Q0,
0, k ∈ P1 ∪Q1.

(37)

Hence, gcd
(

xN − 1, S(x)
)
= P0(x)Q0(x)D0(x). It follows that

MS(x) =
xN − 1

P0(x)Q0(x)D0(x)
, LC(S) = deg(MS(x)) =

N + 1
2

. (38)

In the case of (viii), by Lemmas 4–6, the Equation (8) and the choice of α

S(αk) =



0, k = 0,
0, k ∈ ZN∗ and k mod q ∈ D(q)

0 ,
1, k ∈ ZN∗ and k mod q ∈ D(q)

1 ,
1, k ∈ P0 ∪Q0,
0, k ∈ P1 ∪Q1.

(39)

Hence, gcd
(

xN − 1, S(x)
)
= P0(x)Q0(x)D0(x)(x− 1). It follows that

MS(x) =
xN − 1

P0(x)Q0(x)D0(x)
, LC(S) = deg(MS(x)) =

N − 1
2

(40)

�

5. Trace Representation of the New Sequences

Lemma 7. Let p and q be two odd primes, p ≡ ±1(mod8) and q ≡ ±1(mod8), n be the order of
2 mod p, and m be the order of 2 mod q. Suppose g is a fixed common primitive root both p and q

such that g
p−1

n ≡ 2(mod p) and g
q−1

m ≡ 2(mod q). Then, there exists a primitive pth root of unity
β ∈ GF(2n) and a primitive qth root of unity γ ∈ GF(2m) for any positive integer f such that

p−1
2n −1

∑
i=0

trn
1

(
βq f g2i

)
= 0,

q−1
2m −1

∑
j=0

trm
1

(
γp f g2j

)
= 0. (41)
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p−1
2n −1

∑
i=0

trn
1

(
βq f g2it

)
=


p−1

2 , i f t = 0 mod p
1−
(

t
p

)
2 , i f t 6= 0 mod p

,

q−1
2m −1

∑
j=0

trm
1

(
γp f g2jt

)
=


q−1

2 , i f t = 0 mod q
1−
(

t
q

)
2 , i f t 6= 0 mod q

(42)

Proof. The proof can be referred to Theorem 2 in [12]. �

Lemma 8. Let p > 3 and q > 3 be primes, p ≡ ±3(mod8) and q ≡ ±3(mod8), n be the order
of 2 mod p, m be the order of 2 mod q. Suppose g is a fixed common primitive root both p and q

such that g
p−1

n ≡ 2(mod p) and g
q−1

m ≡ 2(mod q). Let 2n − 1 = 3px and 2m − 1 = 3qy for some
positive integer x and y. Let α1 be a primitive element in GF(2n), α2 be a primitive element in
GF(2m). Then, there exists a primitive pth root of unity β ∈ GF(2n) and a primitive qth root of
unity γ ∈ GF(2m) for any positive integer f such that

p−1
n −1

∑
i=0

trn
1

((
α

px
1

)2i

βq f gi
)
= 0,

q−1
m −1
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1

((
α

qy
2
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βp f gj
)
= 0. (43)
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)
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 trn
1

(
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1

)
, i f t = 0 mod p

1−
(

t
p

)
2 , i f t 6= 0 mod p

(44)

q−1
m −1

∑
j=0

trm
1

((
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2

)2j

γp f gjt
)
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 trm
1
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α
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2

)
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1−
(

t
q

)
2 , i f t 6= 0 mod q

(45)

Proof. The proof can be referred to Theorem 4 in [12]. �

Theorem 2. Let p ≡ ±1(mod8), q ≡ ±1(mod8), N = pq, 0 ≤ t ≤ N − 1, then the sequences
{Si} can be expressed as

S(t) =

p−1
2n −1

∑
i=0

trn
1

(
βqg2it

)
+

q−1
2m −1

∑
j=0

trm
1

(
γpg2jt

)
+ δ(t) (46)

(i) If p ≡ 1(mod8), q ≡ −1(mod8), then

δ(t) =



q−1
2m −1

∑
j=0

trm
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)
, t ∈ Z∗N ∪ {0}

p−1
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∑
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1

(
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)
, t ∈ P ∪Q

(47)

(ii) If p ≡ −1(mod8), q ≡ 1(mod8), then
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)
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(48)
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(iii) If p ≡ −1(mod8), q ≡ −1(mod8), then

δ(t) =


q−1
2m −1

∑
j=0

trm
1

(
γg2jt

)
, t ∈ Z∗N

1, t ∈ P ∪Q
0, t = 0

(49)

Proof. (i) Let a(t) =
p−1
2n −1
∑

i=0
trn

1

(
βqg2it

)
, b(t) =

q−1
2m −1

∑
j=0

trm
1

(
γpg2jt

)
.

If t ∈ V0, then a(t) = 0, b(t) =
1−
(

t
q

)
2 , δ(t) =

1−
(

t
q

)
2 . Hence, S(t) = 0.

If t ∈ V1, then a(t) = 1, b(t) =
1−
(

t
q

)
2 , δ(t) =

1−
(

t
q

)
2 . Hence, S(t) = 1.

If t ∈ P, let t = pk1, where 1 ≤ k1 ≤ q− 1. So, there exists positive integer u such that

t = pgu. Then, a(t) = ∑
p−1
2n −1

i=0 trn
1 (1) = 0, δ(t) = ∑

p−1
n −1

i=0 trn
1 (1) = 0, b(t) is discussed in

the following two cases:
If t ∈ P0, b(t) = 0; If t ∈ P1, b(t) = 1.
Hence, if t ∈ P0, S(t) = 0 and if t ∈ P1, b(t) = 1.
If t ∈ Q, let t = qk2, where 1 ≤ k2 ≤ p− 1. Thus, there exists a positive integer v such

that t = qgv. Then, b(t) = ∑
q−1
2m −1

j=0 trm
1 (1) = 1, δ(t) = ∑

p−1
2n −1

i=0 trn
1

(
βq2g2i

+ βq2g2i+1
)
= 1,

a(t) is discussed in the following two cases:
If t ∈ Q0, a(t) = 0; If t ∈ Q1, a(t) = 1.
Hence, if t ∈ Q0, S(t) = 0 and if t ∈ Q1, S(t) = 1.

If t = 0, then S(t) = ∑
p−1
2n −1

i=0 trn
1 (1) + ∑

q−1
2m −1

j=0 trm
1 (1) + ∑

q−1
2m −1

j=0 trm
1 (1) = 0.

(ii) and (iii) can be proved similarly.
The theorem is proved. �

Theorem 3. Let p ≡ ±3(mod8), q ≡ ±3(mod8), N = pq, 0 ≤ t ≤ N − 1, then the sequences
{Si} can be expressed as

S(t) =

p−1
n −1

∑
i=0

trn
1

((
α

px
1

)2i

βqgit
)
+

q−1
m −1

∑
j=0

trm
1

((
α

qy
2

)2j

γpgjt
)
+ δ(t) (50)

(i) If p ≡ 3(mod8), q ≡ −3(mod8), then

δ(t) =



q−1
m −1
∑

j=0
trm

1

((
α

qy
2

)2j

γgjt
)

, t ∈ Z∗N ∪ {0}
q−1

m −1
∑

j=0
trm

1

(
γpgjt

)
, t ∈ P ∪Q

(51)

(ii) If p ≡ −3(mod8), q ≡ 3(mod8), then

δ(t) =


1 +

q−1
m −1
∑

j=0
trm

1

((
α

2qy
2

)2j

γgjt
)

, t ∈ Z∗N ∪ {0}
p−1

n −1
∑

i=0
trn

1

(
βqgit

)
, t ∈ P ∪Q

(52)
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(iii) If p ≡ 3(mod8), q ≡ 3(mod8), then

δ(t) =


q−1

m −1
∑

j=0
trm

1

((
α

qy
2

)2j

γgjt
)

, t ∈ Z∗N

1, t ∈ P ∪Q
0, t = 0

(53)

Proof. (i) Let a(t) =
p−1

n −1
∑

i=0
trn

1

((
α

px
1

)2i

βqgit
)

, b(t) =
q−1

m −1
∑

j=0
trm

1

((
α

qy
2

)2j

γpgjt
)

.

If t ∈ V0, then a(t) = 0, b(t) =
1−
(

t
q

)
2 , δ(t) =

1−
(

t
q

)
2 . Hence S(t) = 0.

If t ∈ V1, then a(t) = 1, b(t) =
1−
(

t
q

)
2 , δ(t) =

1−
(

t
q

)
2 . Hence S(t) = 1.

If t ∈ P, let t = pk1, where 1 ≤ k1 ≤ q− 1. Thus, there exists a positive integer u such

that t = pgu. Then, a(t) = ∑
p−1

n −1
i=0 trn

1

(
α

px
1

)
= 1, δ(t) =

q−1
m −1
∑

j=0
trm

1

(
γp2gj+u

)
= 1, b(t) is

discussed in the following two cases:
If t ∈ P0, b(t) = 0; If t ∈ P1, b(t) = 1.
Hence, if t ∈ P0, S(t) = 0 and if t ∈ P1, b(t) = 1.
If t ∈ Q, let t = qk2, where k ≤ k2 ≤ p − 1. Thus, there exists positive integer v

such that t = qgv. Then, b(t) = ∑
q−1

m −1
j=0 trm

1

(
α

qy
2

)
=0, δ(t) = ∑

q−1
m −1

j=0 trm
1 (1) = 0, a(t) is

discussed in the following two cases:
If t ∈ Q0, a(t) = 0; If t ∈ Q1, a(t) = 1.
Hence, if t ∈ Q0, S(t) = 0 and if t ∈ Q1, S(t) = 1.

If t = 0, then S(t) = ∑
p−1
2n −1

i=0 trn
1

(
α

px
1

)
+ ∑

q−1
m −1

j=0 trm
1

(
α

qy
2

)
+ ∑

q−1
m −1

j=0 trm
1

(
α

qy
2

)
= 0

(ii) and (iii) can be proved similarly.
The theorem is proved. �

Theorem 4. Let p ≡ ±1(mod8), q ≡ ±3(mod8), N = pq, 0 ≤ t ≤ N − 1, then the sequences
{Si} can be expressed as

S(t) =

p−1
2n −1

∑
i=0

trn
1

(
βqg2it

)
+

q−1
m −1

∑
j=0

trm
1

((
α

qy
2

)2j

γpgjt
)
+ δ(t) (54)

(i) If p ≡ 1(mod8), q ≡ 3(mod8), then

δ(t) =



q−1
2m −1

∑
j=0

trm
1

(
γg2jt

)
, t ∈ Z∗N ∪ {0}

p−1
n −1
∑

i=0
trn

1

(
βqgit

)
, t ∈ P ∪Q

(55)

(ii) If p ≡ −1(mod8), q ≡ −3(mod8), then

δ(t) =


1 +

q−1
2m −1

∑
j=0

trm
1

(
γg2j+1t

)
, t ∈ Z∗N ∪ {0}

q−1
m −1
∑

j=0
trm

1

(
γpgjt

)
, t ∈ P ∪Q

(56)
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(iii) If p ≡ −1(mod8), q ≡ 3(mod8), then

δ(t) =


q−1
2m −1

∑
j=0

trm
1

(
γg2jt

)
, t ∈ Z∗N

1, t ∈ P ∪Q
0, t = 0

(57)

Proof. The proof can be referred to Theorem 2 and Theorem 3. �

Theorem 5. Let p ≡ ±3(mod8), q ≡ ±1(mod8), N = pq, 0 ≤ t ≤ N − 1, then the sequences
{Si} can be expressed as

S(t) =

p−1
n −1

∑
i=0

trn
1

((
α

px
1

)2i

βqgit
)
+

q−1
2m −1

∑
j=0

trm
1

(
γpg2jt

)
+ δ(t) (58)

(i) If p ≡ 3(mod8), q ≡ 1(mod8), then

δ(t) =



q−1
m −1
∑

j=0
trm

1

((
α

qy
2

)2j

γgjt
)

, t ∈ Z∗N ∪ {0}
q−1

m −1
∑

j=0
trm

1

(
γpgjt

)
, t ∈ P ∪Q

(59)

(ii) If p ≡ 3(mod8), q ≡ −1(mod8), then

δ(t) =


q−1

m −1
∑

j=0
trm

1

( (
α

qy
2

)2j

γgjt
)

, t ∈ Z∗N

1, t ∈ P ∪Q
0, t = 0

(60)

(iii) If p ≡ −3(mod8), p ≡ −1(mod8), then

δ(t) =


1 +

q−1
m −1
∑

j=0
trm

1

((
α

2qy
2

)2j

γgjt
)

, t ∈ Z∗N ∪ {0}
p−1

n −1
∑

i=0
trn

1

(
βqgit

)
, t ∈ P ∪Q

(61)

Proof. The proof can be referred to Theorem 2 and Theorem 3. �

6. Conclusions

In this paper, we presented the construction of a class of new balanced generalized
cyclotomic binary sequences of order two with period pq based on the Ding’s new general-
ized cyclotomic classes (V0, V1). The imbalance degree of the new sequences is 1, which
conforms to the Golomb’s random principles [3]. We determined the linear complexity and
the minimal polynomial of the sequences. The results show that the sequences have good
linear complexity to resist the attack of the Berlekamp–Massey algorithm. It is feasible that
it serves as key stream in stream ciphers or as pseudo-random sequences in random num-
ber generators. By comparison, we can see that the linear complexity of the new sequences
approximate to the result in [8], but the similar values are under different conditions with
the choices of α. Moreover, the linear complexity of the new sequences in this paper is
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better than those in [6,19]. We also give the trace representation of the sequences. The next
step is to study the autocorrelation of the sequences [20].
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