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Abstract: The value and importance of leadership is evident by its prevalence throughout human
societies and organizations. Based on an evolutionary argument, models are presented here that
provide a mathematical justification as to how and why leadership arose in the first place and then
persisted. In this setting, by a leader is meant a person whose overall actions are ultimately responsible
for the well-being and survival of the group. The proposed models contain parameters whose values
reflect group size, harshness of the environment, diversity of actions taken by individuals, and the
amount of group cohesion. Mathematical analysis and computer simulations are used to identify
conditions on these parameters under which leadership results in an increased survival probability
for the community.

Keywords: emergence; evolution of leadership; leadership; origin of leadership

1. Introduction

Leadership—both beneficial and harmful—is known to be critical to the functioning
and survival of an organization, a community, and even a society, whether the unit is
large or small (see [1,2]). On the beneficial side, leadership bestows power to, and exerts
influence over, individuals (see [3]), resulting in better performance of the group as a whole.
On the harmful side, leadership involves challenges, costs, and the potential for abuse
of power and influence. A leader who effectively uses his or her influence helps a group
of followers to succeed (or survive), whereas a leader who ineffectively uses his or her
influence hinders the survival of a group. In essence, group survival, from an evolutionary
standpoint, is the ultimate outcome of leadership and is probably the ultimate measure
of leader effectiveness. The term “survival” is used here in the broadest sense and can be
affected by such factors as availability of resources, intergroup competition, overall group
performance, and so on.

In studying the emergence of leadership, we choose selection at the group level rather
than at the individual level. There are several reasons for this. First, in a general evolution-
ary sense, previous research has shown that there have been increases in complexity such
as from the development of multicellular organisms to the development and transforma-
tion of complex cognitive skills such as language and coordination (see [4]). Complexity
does not necessarily exist for the sake of complexity, but because there are advantages to
selection, such as coordination payoffs and complex institutional memory that can assist
group members (see [5]). As such, selection here is deemed to be at the group level.

The evolution and existence of leadership at multiple levels—work team, organization,
community, country—is a topic of great interest to both practitioners and scholars. For
example, at various times, the world has witnessed the evolution of freedom movements
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together with leaders that were able to lead these movements to fruition (e.g., Nelson
Mandela in South Africa, Mahatma Gandhi in India, Martin Luther King in the US). Many
of those groups originated without a leader. A key turning point, then, is the transition
from a leaderless group to a group with a leader. A network approach to identifying a
group leader is the H index, defined as the largest value of the integer h such that the
network contains at least h nodes, each having at least h neighbors. A node is characterized
as a leader if its H index is not less than the average of the H indices of its neighbors
(see [6]). Using this approach in the context of academic publications and citations leads to
the conclusion that approximately half of the researchers can be considered leaders. While
this is an important contribution to the field of academic leadership, our results take a more
general and nuanced approach to studying the evolution of leadership by studying group
survival rates that include such factors as group size and the harshness of the environment.
While the H index shows the influence (or the potential for influence) of a highly central
node (or a highly cited researcher), it does not address leadership emergence from an
evolutionary standpoint, such as survival.

With regard to the emergence of leadership, [7] provide an overview of the origin
of leadership from an evolutionary point of view and [8] develop a computer model to
identify conditions under which some individuals emerge as effective leaders. The work
proposed here addresses the emergence and persistence of leadership and is based on an
evolutionary argument that leadership is a trait that was tried and selected for because,
on balance, leadership has desirable properties that are beneficial to the survival of the
community. Our contribution is a model that provides a mathematical justification of the
foregoing argument by showing that, under certain conditions, groups with the presence
of a leader will have a statistically greater probability for survival compared to groups
without a leader (similar to the argument used by [9] in the evolution of organizations).
Therefore, as with many other traits, leadership has been tried and selected for over the
history of evolution and has therefore become prevalent and necessary today.

The remainder of the paper is organized as follows. In Section 2, a mathematical
and computational model is developed that accounts for such contingencies as group
size, external environment, diversity of actions, and group cohesion, all of which may
have affected the emergence and persistence of the leadership roles observed today. The
use of such analytical modeling—which is a less common technique used in the study
of leadership—allows for the rigorous and robust study of multiple effects and tradeoffs
between the contingencies presented and their effects on leadership emergence and effec-
tiveness. In Section 3, factors affecting the emergence of leadership in large groups are
investigated analytically. In Section 4, factors affecting the emergence of leadership in small
groups are studied using computer simulation. In Section 5, the effect of group members’
dependent actions on the emergence of leadership is examined. Conclusions that include
managerial and social implications, as well as future research, are discussed in Section 6.

2. A Mathematical Model of Leadership

In developing the model, consider a community in the early development of the
human race, consisting of a group of individuals living together whose actions collectively
determined the likelihood of the community surviving. The action of individual i over the
long term is represented here by a real number xi and so x = (x1, . . . , xn) is the collection of
actions of the n individuals in the group. These long-term actions x result in a probability
of survival denoted by the survival function p(x). A specific form for p(x) is proposed
subsequently; however, regardless of the form, a primary question is the role of the leader
in this setting.

While a leader in today’s world plays many roles—whether the unit is large or
small—the primary role of a leader for early humans was to coordinate the actions of
the individuals in the group (see [2]). By “coordinate” is meant any of the direct and
indirect means by which a leader seeks to improve the survival probability of the group by
changing the behavior of the individuals. In animals, this change-in-behavior was achieved
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through dominance, based exclusively on strength and fighting ability, with the other
animals in the group becoming subordinate. In humans, however, this change-in-behavior
can be accomplished, for example, by issuing rules, orders, and regulations; by providing
incentives; or by achieving cooperation among the individuals. The specifics of how a
leader achieves this change-in-behavior—whether by control or cooperation—is a topic of
interest in its own right (see, for example [10]) but is not addressed here because the key
issue is the resulting change-in-behavior of the individuals under the leader and not how
this change is achieved.

Thus, consider a leaderless group in which each individual i has the potential to
become a leader. Previous studies in psychology and management show that individuals
who have become effective leaders originally possessed certain characteristics. For example,
transformational leadership theory suggests that effective leaders will use their charisma
and inspirational motivation (see [11]). These characteristics relate to having a vision,
setting a goal and strategy to achieve that vision, and inspiring followers to achieve that
vision. Recent research shows that having a vision has a powerful effect on followers,
even more than being a part of the group membership (see [12]). As in previous studies of
visionary leadership, it is assumed that each individual has a personal vision of the ideal
actions that all individuals should perform. For some leaders, such actions might be what
is in the leader’s best interest; in other cases where the leader is more collectively oriented,
these actions might be what the leader believes is best for some people, or even everyone
in the group. Note that there is no assumption that the actions envisioned by the leader
will actually result in what is best—or even good—for the group as a whole. Hence, for
each individual i, let yi

j be the action that individual i believes individual j should take and

so yi = (yi
1, . . . , yi

n) are the actions of all individuals that potential leader i believes are best
for survival. However, even if individual i becomes the leader, that individual may not be
able to induce the others to perform these desired actions. This is because the leader may
not possess other requisite leadership skills (e.g., social and/or cognitive intelligence) or
because the others in the group are unable or unwilling to do exactly what is required of
them (see [13,14]). Thus, while yi = (yi

1, . . . , yi
n) are the actions that potential leader i would

like the individuals to take—that is, the actions that the potential leader believes would
be best for the group—suppose that zi = (zi

1, . . . , zi
n) are the actions that the individuals

actually take under leader i. These latter actions are the important ones because, under
leader i, the probability of the group surviving is based on what the individuals actually do
and not on what the leader hoped or wanted them to do. Therefore, as in previous studies,
we suggest that leadership emergence does not guarantee leader effectiveness.

It is now possible to compare the chances of a group’s survival under each leader
i = 1, . . . , n as well as under no leader. For example, when there is no leader, each
individual i chooses some action xi and so, given the collective actions x = (x1, . . . , xn)
under no leader, the probability of survival is p(x). In contrast, the probability of survival
when individual i is the leader and the individuals take actions zi = (zi

1, . . . , zi
n) is p(zi),

for i = 1, . . . , n. One can now ask the following interesting questions pertaining to a large
number of different groups:

• For those groups that have some positive probability of surviving without a leader:
What fraction of leaders would result in an increased likelihood of survival and by
how much? What fraction of leaders would reduce the chances of survival, but still
have some positive probability of survival, and by how much? What fraction of
leaders would reduce the chances of survival to 0?

• For those groups that would have no chance of surviving without a leader: What
fraction of leaders would result in a positive probability of survival and, on average,
what would their chances of survival be under such a leader? What fraction of leaders
would result in no chance of survival?

• How important is it to choose a good leader—that is, how does the best leader affect
the probability of survival, compared to the second-best leader, and so on?



Mathematics 2021, 9, 2271 4 of 23

To answer the foregoing questions, it is necessary to have a specific form for the
survival function p(x). Whatever the form, this function will have some optimal actions,
say x∗, that achieve the maximum chance of survival, say p(x∗) = 1. Without loss of
generality, suppose that these actions are x∗ = 0. For the work here, it is assumed that
the probability of survival decreases monotonically as the agents’ actions x vary more
and more from 0. A key issue in this regard is not only how but also how fast survival
probability drops off. To model this aspect, consider the following survival function, whose
maximum value of 1 is achieved when x = 0 and for which β > 0 is a parameter:

p(x) = max{1− β(x · x), 0} = max{1− β
n

∑
i=1

x2
i , 0}. (1)

For fixed individual actions x, the larger the value of β, the more quickly the survival
probability declines. Thus, the value of the parameter β reflects the harshness of the
environment in which the group is living: the larger the value of β, the more challenging
the environment and hence the more important it is for the actions of the agents to be close
to zero in order to have a better chance of survival.

For mathematical convenience, the form of p(x) in (1) is replaced with the following,
in which the chance of survival is now a percentage on a scale up to 100:

p(x) = 100− β(x · x) = 100− β
n

∑
i=1

x2
i . (2)

Note in (2) that it is possible for some actions x to result in p(x) < 0, which is interpreted
to mean that the group has no chance of survival. A plot of (2) with various values of β
appears in Figure 1.

Figure 1. The survival function.

To perform analysis on the model in (2), the actions of the individuals should be thought
of as random variables, each of which can be any real number. Furthermore, as a first
approximation, consider the case where the individuals choose their actions—and those
which they, as leaders, believe are best for survival—independently and randomly from an
arbitrary probability distribution with mean µ and standard deviation σ. This is surely not
what happened in early human groups, although this may be what happened in early groups
of cellular organisms. Nevertheless, analysis in this case will still provide some interesting
insights. The consequences of relaxing this assumption are examined in Section 5.
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In the context of this setting, the value of µ can be interpreted as the degree to which
the individuals tend to choose actions on their own that are aligned with the well-being
of the community: the closer µ is to 0—the actions that maximize p(x)—the more the
individuals tend to choose actions that result in a high probability of group survival. The
value of σ reflects the degree to which individuals choose actions that are different from
the mean: the larger the value of σ, the more individual actions vary from the mean and
hence the more diversity there is in their choice of actions.

3. Analytical Results for Large Groups

The next step to answering the questions posed in Section 2 is to use the actions
represented by the random variables x = (x1, . . . , xn) to compute, from (2), the following
random variable that represents the likelihood of survival:

p(x) = 100− β(x · x). (3)

Even without knowing the distribution function of p(x), it follows that

E[p(x)] = 100− β
n

∑
i=1

E[x2
i ] = 100− βnE[x2

i ]. (4)

From (4), one sees that, for a fixed value of β, the expected probability of survival becomes
smaller as the group size increases. This observation is consistent with some prior research
in which increased team size leads to reduced communication between group members
and therefore reduces overall performance (see [15] and also [16]). Other literature points
to larger groups having better performance, for example, due to more diversity. From a
leadership point of view, it might actually be the case that increasing group size, up to
a point, is better but that eventually the group is too large for a single leader to manage
optimally. In any event, this model shows that large groups whose individuals randomly
choose their actions independently—that is, large groups with no leadership—have little
chance of survival. This also means that, as the group size increases, so does the need for
leadership so as to improve the chances of survival.

To answer the questions posed in Section 2, it is necessary to know the probability
distribution of p(x), which is not readily available. However, it is possible to rewrite p(x)
as follows:

p(x) = 100− nβ(x · x)/n.

In this form, when n is large, the central limit theorem allows the use of a normal distribu-
tion as an approximation to the distribution function of p(x) because x · x/n is the average
of the iid random variables x2

i . Specifically, if E[x2
i ] = µ̂ and VAR[x2

i ] = σ̂2, then x · x/n is
approximately normal, with a mean of µ̂ and a standard deviation of σ̂/

√
n. Then, p(x),

being a linear transformation of x · x/n, also follows a normal distribution, specifically:

p(x) ∼ N(100− nβµ̂,
√

nβσ̂) (for large n). (5)

It is now possible to use (5), with the corresponding cumulative distribution function
F(s) and density function f (s), to answer the questions posed in Section 2. This is done
first for groups that, without leadership, have a positive probability of survival. The
corresponding questions for groups that have no chance of surviving without a leader
are addressed subsequently in Section 3.2. To this end, let x = (x1, . . . , xn) be the actions
chosen by the n individuals in a group without a leader with the survival function p(x)
given in (3). Proofs for all results are provided in Appendix A.

3.1. Analysis for Leaderless Groups with Positive Survival Probability

Throughout this section, it is assumed that the group has a positive probability of
survival without a leader—that is, p(x) ≥ 0, where x are the actions that the individuals
take without a leader. The first quantity of interest is the fraction of individuals whose
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leadership would result in an increased likelihood of survival. This fraction is the same as
the probability that a leader chosen at random from the group improves the probability of
survival. Thus, suppose that this random leader induces the individuals to take actions
z = (z1, . . . , zn), which are also iid random variables following the same distribution as
the actions x. The desired fraction is then

P(p(z) ≥ p(x) | p(x) ≥ 0) = 1
2 −

1
2 F(0). (6)

In the foregoing case, it is also interesting to know the chances of survival with such a
leader, on average. This value is given by

E[p(z) | p(z) ≥ p(x) ≥ 0] = 100− βnµ̂ +
√

nβσ̂(1−F((1−
√

2)(100−βnµ̂)))√
π(1−F(0))2 . (7)

The next quantity of interest is the fraction of leaders who would reduce the chances
of survival, but still have some positive probability of survival—that is,

P(0 ≤ p(z) ≤ p(x) | p(x) ≥ 0) = 1
2 −

1
2 F(0). (8)

In the foregoing case, the expected (positive) survival probability when the leader decreases
the chances of survival is given by

E[p(z) | 0 ≤ p(z) ≤ p(x)] = 100− βnµ̂ +
√

nβσ̂
(

2
√

nβσ̂ f (0)
1−F(0) −

1−F((1−
√

2)(100−βnµ̂))√
π(1−F(0))2

)
. (9)

The final quantity of interest for a leaderless group that has a positive probability of
survival is the fraction of individuals who, as leaders, would reduce the chances of survival
to 0—that is,

P(p(z) ≤ 0 | p(x) ≥ 0) = F(0). (10)

3.2. Analysis for Leaderless Groups with No Chance of Survival

Throughout this section, it is assumed that the group has no chance of survival without
a leader—that is, p(x) ≤ 0. The first quantity of interest is the fraction of individuals whose
leadership would result in a positive probability of survival. This fraction is the same as
the probability that a leader chosen at random from the group improves the probability of
survival to a positive value. Thus, suppose that this random leader induces the individuals
to take actions z = (z1, . . . , zn). The desired fraction is then

P(p(z) ≥ 0 | p(x) ≤ 0) = 1− F(0). (11)

In the foregoing case, it is also interesting to know what the group’s survival probability is
with such a leader, on average. This value is given by

E[p(z) | p(z) ≥ 0 ≥ p(x)] = 100− βnµ̂ + nβ2σ̂2 f (0)
1−F(0) . (12)

The final quantity of interest is the fraction of leaders under whom the group has no
chance of survival—that is,

P(p(z) ≤ 0 | p(x) ≤ 0) = F(0). (13)

The final question posed in Section 2 is about the importance of choosing a good
leader. To this end, it would be desirable to know the expected probability of survival
under the best leader, under the second-best leader, and so on. However, these results are
challenging to compute analytically and so are estimated using simulation. This, together
with estimates of the probabilities in Equations (6)–(13) for small groups, is reported in the
next section.
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4. Simulation Results for Small Groups

The results obtained in Section 3 are approximations that pertain to large groups. In this
section, simulations are used to see how accurate the approximations are for small groups.

To implement the simulation, it is necessary to choose a specific distribution for the
actions of the individuals. As a starting point, suppose that, in the absence of a leader, these
actions follow a uniform distribution with mean 0, indicating that individuals on average
choose actions that are good for survival. While, in theory, an individual’s action can be any
real number, from a practical perspective, their actions are restricted to the interval [−a, a],
where a is a controllable measure of the diversity (variance) of the individuals’ actions
without a leader. In summary, the actions xi are iid random variables with xi ∼ U[−a, a].

With this assumption, it is possible to compare the theoretical results in Section 3
pertaining to large groups with the simulation results described in this section for small
groups. To this end, because each xi ∼ U[−a, a], it follows that µ̂ = E[x2

i ] = a2/3 and
σ̂2 = VAR[x2

i ] = 4a4/45. Thus, for large n, from (5),

p(x) ∼ N
(

100− nβ
a2

3
,

2a2√nβ√
45

)
.

While there are several research studies that have looked at the effect of heterogeneity
or diversity in teams, there seem to be fewer studies that actually look at the impact of
diversity on a leader’s actions. Previous research has shown that while some diversity
can be positive, in that it brings different external perspectives to the performance of a
team, diversity will also have negative effects. In [17] it is shown that functional and tenure
diversity are negatively correlated to team performance. A higher level of diversity of
actions in such a situation means that achieving coordination of those diverse actions is also
important. Prior research shows that increased diversity within a team also introduces other
factors that may affect the functioning of the team. One of the immediate consequences of
diversity is conflict, which in turn affects team performance (see [18] and also [19]). Thus,
higher diversity of actions within teams necessitates a focal person—that is, a leader—to
coordinate actions so that the team is effective (see [20]).

4.1. General Comments about the Simulations

Simulation results are collected for various combinations of the size of the groups (n),
the harshness of the environment (β), and the diversity of the individuals’ actions (a). In
so doing, it is important to note that for fixed values of n and β, the value of a must be
chosen carefully for the effect of a to be interesting. This is because the effects of n and
β result in different ranges of a over which statistics of interest vary enough so that the
effect of a can be easily observed. For example, when n = 10 and β = 1, for any value of a
above 8, almost every leader will result in the group having no chance of survival, making
it difficult to observe the effect of changing a across values greater than 8 on the fraction of
leaders who result in no chance of survival.

In general, two extreme scenarios are possible. One is when the environment is so
unfavorable that the group will not survive, no matter which leader, if any, is chosen.
This scenario corresponds to all groups having a 0% chance of survival without a leader
and each leader providing a 0% chance of survival. Another such scenario is when the
environment is so favorable that the group will survive, no matter which leader, if any,
is chosen. This scenario corresponds to all groups having a 100% chance of surviving
without a leader and each leader providing a 100% chance of survival. In both of these
extreme cases, leadership has no impact on the survival of the group and so one would not
expect leadership to emerge. Hence, we choose parameter values to explore the range of
scenarios between these two extremes to demonstrate when leadership can have an impact
on survival and will be likely to emerge.

To determine the values of n, β, and a used in the simulations, we focused on small
values of n, as this is the purpose of the simulation experiments. This being the case, we
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chose n = 5, 10, and 20. Here, n = 5 represents the smallest sort of group that is likely to
require the coordination of a leader and n = 20 represents the largest group for which the
simulation results may vary significantly from the analytical results. As the effects of β and
a are dependent on each other, after selecting n, we can then set either β or a to arbitrary
baseline values and vary the other parameter to obtain meaningful results. In this case, we
chose to set β = 1, 2, and 4. Finally, for fixed values of n and β, values of a were chosen so
that the following statistics could be computed using a reasonable number of “survival
groups” (i.e., groups that have a positive probability of surviving without a leader):

• The fraction of leaders who are “beneficial leaders” (i.e., leaders who increase the
survival probability of the group when compared to having no leader) and the corre-
sponding average improvement in survival probability under such beneficial leaders.

• The fraction of leaders who are “harmful leaders” (i.e., leaders who decrease the
survival probability of the group but still maintain a positive probability of survival)
and the corresponding average decrease in survival probability under such harm-
ful leaders.

• The fraction of leaders who are “deadly leaders” (i.e., leaders who result in the group
dying off because the survival probability under their leadership is 0).

For “non-survival groups” (i.e., groups that would not survive without a leader),
the fraction of leaders that are “survival leaders” (i.e., leaders that result in a positive
probability of survival) and the average survival probability over all such leaders are
calculated. Finally, over all groups, the average survival probability of the best leader, the
second-best leader, and so on are also computed.

In performing these simulations, a sufficient number of groups are generated so that
for each desired statistic, there are exactly 1000 cases of that type over which averages are
computed. Thus, for example, for groups that have a positive probability of survival with
no leader, when n = 10, β = 1, and a = 4, it was necessary to generate 580,974 groups to
ensure that there were 1000 groups having at least one deadly leader.

4.2. Simulation Results on the Leaders

Figures 2–5 contain results for beneficial leaders of survival groups, harmful leaders
of survival groups, deadly leaders of survival groups, and survival leaders of non-survival
groups, respectively. The x axis in these graphs represents the various values of n, β, and
a over which the simulations were performed, and the y axis represents the fraction of
leaders with the corresponding survival property for the figure. Tick marks associated
with each bar indicate the fractions obtained from the analytical formulas in Section 3 for
the corresponding values of the parameters n, β, and a associated with that bar. When
interpreting the charts, it is important to observe that although the β values are the same
for each value of n, the a values are different with different values of n. Although this
makes the effect of a on the various fractions obvious, determining the effect of n requires
simultaneously considering the effect of a. This can be done by considering the different
values of a that provide similar results for different values of n. The following are some
key observations from Figures 2–5:

• For survival groups: Across all values of the parameters, the fraction of beneficial and
harmful leaders is approximately the same—which agrees with the analytical results
from (6) and (8) for large groups—as can be seen by observing that Figures 2 and 3 are
nearly identical. This is not surprising because when leaders randomly choose ideal
actions for individuals that do not end up killing the group, one would expect an
equal number of better and worse leaders. Moreover, as can be seen from Figure 4, for
fixed values of n and β, as the actions of the individuals become more variable—that
is, as a increases—the fraction of deadly leaders increases. This same result holds for
fixed values of n and a as the environment becomes more challenging—that is, as β
increases. This is because, in either case, the ideal actions chosen by leaders are more
likely to result in the group dying off.
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• For non-survival groups: As can be seen from Figure 5, for fixed values of n and
β, as the individuals become more diverse—that is, as a increases—the fraction of
survival leaders decreases. This same result holds for fixed values of n and a as the
environment becomes more challenging—that is, as β increases. This is because, in
either case, fewer leaders are able to identify actions that lead to group survival.

• For all groups The range of values of a over which groups have some chance of
survival shrinks as n increases. This can be seen in Figure 4, which shows that when
β = 1, groups of size n = 5 have some non-deadly leaders in a range of a = 5 to 10,
while a corresponding range for groups of size n = 20 when β = 1 is a = 3.5 to 4.5.
Similarly, for non-survival groups, as seen in Figure 5, when β = 1, groups of size
n = 5 have some chance of survival in a range of a = 5 to 10, while a corresponding
range for groups of size n = 20 when β = 1 is a = 3.5 to 4.5. Larger values of β
also have a shrinking effect on valid ranges of a for both survival and non-survival
groups, but to a much lesser degree. This means that the larger the groups, and the
harsher the environment, the more important it is to survival for individual actions to
be coordinated, and hence the more important it should be to have a good leader, as
confirmed by the foregoing results.

Figure 2. Results for beneficial leaders of survival groups.

Figure 3. Results for harmful leaders of survival groups.
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Figure 4. Results for deadly leaders of survival groups.

Figure 5. Results for survival leaders of non-survival groups.

Taken together, the above-mentioned results provide evidence for the tradeoff between
group size, harshness of the environment, and diversity of actions. Specifically, harsher
environments, more diverse actions, and larger group size hinder group survival on
average, and also point to the importance of having good leaders. These results contribute
to previous findings that harsher environments facilitate the emergence of leaders (see [21])
and that increased heterogeneity—and thereby diversity—in teams could help or hinder
performance in harsher environments depending on how well the group adapts (see [22]).

Moreover, in all of these cases, the analytical results associated with large groups
derived in Section 2 are relatively close to the simulation results for small groups (see the
tick marks in Figures 2–5). In fact, the smaller the values of a and β and the larger the value
of n, the closer the analytical and simulation results are.

4.3. Simulation Results on the Survival Probabilities

The graphs in Figures 6–8 are similar to those in Figures 2–5 except that the y axis
represents survival probabilities of interest. Figures 6 and 7 correspond to survival groups
and Figure 8 corresponds to non-survival groups. The vertical bars in Figure 6 show the
average probability of survival for a survival group with a beneficial leader, and the tick
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marks in Figure 6 show the average probability of survival for a survival group without
a leader. Similarly, Figure 7 depicts results for harmful leaders of survival groups. The
vertical bars in Figure 8 show the average probability of survival for a non-survival group
with a beneficial leader. Recall that, for a non-survival group, the probability of survival
without a leader is 0 and so Figure 8 does not include tick marks. The following are key
observations from these graphs:

• For groups that have a positive probability of survival with no leader: For fixed
values of n and β, as the individuals become more diverse—that is, as a increases—the
average survival probability over all better leaders and all worse leaders decreases.
Over better leaders, this decrease is more pronounced the larger the value of n. This
means that the more diverse the individuals are in choosing their actions, the less a
leader can improve the survival probability (or the more a leader can harm the survival
probability). In contrast, for fixed values of n and a, the average survival probabilities
over better and worse leaders remain relatively constant as the environment becomes
more challenging—that is, as β increases.

• For groups that would not survive without a leader: For fixed values of n and β, as
the individuals become more diverse—that is, as a increases—the average survival
probability over all survival leaders decreases. The same is true for fixed values
of n and a, as the environment becomes more challenging—that is, as β increases—
although less data points are available in this case as the range of values of a over
which the simulations are performed changes as β increases. This means that the more
diverse the individuals are, or the more challenging the environment, the less effective
survival leaders become.

In all of these cases, the analytical results associated with large groups are relatively
close to the simulation results (except for n = 5 and the large value of a = 10). Furthermore,
the smaller the values of a and β and the larger the value of n, the closer are the analytical
and simulation results.

Figure 6. Results for survival probabilities with a beneficial leader of a survival group.



Mathematics 2021, 9, 2271 12 of 23

Figure 7. Results for survival probabilities with a harmful leader of a survival group.

Figure 8. Results for survival probabilities with a beneficial leader of a non-survival group.

4.4. Simulation Results on the Importance of Having a Good Leader

It has been shown that as certain conditions within groups change, the importance of
leadership to a group’s survival increases. The next step to understanding the evolutionary
significance of leader emergence is to ask the question: Does the quality of the leader
matter and, if so, in what ways? Although leadership itself is important, it is also useful
to understand the quality of the different potential leaders that would emerge in a group
or a community. This is because individuals who successfully emerge as leaders may or
may not be equally effective in carrying out their leadership duties (see [23]). Previous
research indicates that certain kinds of leadership qualities or traits do make a difference in
a leader’s effectiveness (see, for example [24]). However, from an evolutionary survival
perspective, and in keeping with this paper’s purview, it is especially important to compare
the effectiveness of all potential leaders and hence rank them from most effective to least
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effective. The most effective leader is defined in our model as one who achieves the best
coordination and hence survival probability. The least effective leader is one who achieves
the lowest survival probability. The results discussed below show that, in more diverse
groups and harsher environments, the differences in survival rates between better and
worse leaders are more pronounced and so the importance of selecting a better leader is
more crucial.

Figure 9 shows the effects of the quality of the leader—that is, the best leader, the
second-best leader, and so on—on the survival probability of the group for different levels
of diversity. Specifically, the three curves in Figure 9 show the effect of the quality of
the leader on the average survival probability for 1000 groups of size n = 10 for β = 1
and a = 4, 5, and 6, respectively. The x axis represents the rank order of the leaders (1 is
the best leader, 2 is the next best leader, and so on) and the y axis represents average
survival probability. The dotted line in each curve is the average survival probability
of the 1000 groups under no leader. As one would expect, for a fixed quality of leader,
the average survival probability decreases as diversity increases—that is, as a increases.
What is interesting, however, is that for a = 4, the survival probability decreases almost
linearly in the quality of the leader. However, as a increases, the curves become increasingly
more nonlinear, with a steeper drop-off in survival probability from the best leader to the
second-best leader and to the third-best leader. Similar patterns hold for β = 2 and 4 and
over all values of n tested (however, the larger the value of n, the lower the curve). This
means that, as diversity increases, having a good leader is ever more important to survival
when the size of the group and the harshness of the environment are fixed.
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Figure 9. Results for importance of having a good leader when β = 1 and n = 10.

Figure 10 shows the effects of the quality of the leader on the survival probability of
the group for different values of the harshness of the environment. Specifically, the three
curves in Figure 10 show the effect of the quality of the leader on the average survival
probability for 1000 groups of size n = 5 for a = 5 and β = 1, 2, and 4, respectively. The
x and y axes are the same as in Figure 9 and the dotted line in each curve is the average
survival probability of the 1000 groups under no leader. The pattern seen in Figure 10 is
similar to that seen in Figure 9 in that, as one would expect, for a fixed quality of leader, the
average survival probability decreases as the environment becomes more harsh—that is, as
β increases. Furthermore, as β increases, the curves become increasingly more nonlinear,
with a steeper drop-off in survival probability from the best leader to the second-best leader
and to the third-best leader. This means that, as the environment becomes more harsh,
having a good leader is ever more important to survival when the size of the group and
the variability in agent actions are fixed.
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Figure 10. Results for importance of having a good leader when a = 5 and n = 5.

In summary, it is most important to survival to identify a good leader when either
there is a lot of diversity or the environment is harsh, all else being the same.

5. A Model with Dependent Actions

One of the key assumptions in the model in Section 2 is that the actions taken by the
individuals are independent of each other. While this assumption leads to the ability to
obtain analytical results, this may not always be the case. Even without the presence of a
leader, individuals within a group may be motivated to work together or in unison due
to several reasons. First, the nature of a task may encourage them to act in a similar and
coordinated manner. This is sometimes called pooled interaction. Here, the effectiveness of
the team depends on the amount of information and resources pooled or aggregated by
the team members. Second, team members may be affectively or emotionally bound by
their desire for belonging to a particular group (social or group identity). In both cases, the
actions taken by group members are not independent of each other, but are guided by a
common goal or the nature of the task. In this section, a new model is proposed in which it
is possible to control the degree to which the actions of individuals depend on each other.
Simulation results with the new model are also presented.

5.1. Model Development for Cohesiveness

In the proposed model, a controllable parameter, in the form of a real number c, is
introduced to represent the “cohesiveness” of the group. At one extreme, when the value of
c is 0, the group has no cohesiveness and so the actions of the individuals are independent
of each other. At the other extreme, when c = 1, the group is completely cohesive and the
actions of all individuals are identical. More generally, the closer the value of c is to 1, the
closer the actions of the individuals are to each other.

To create such a model for a group of n individuals, n iid real numbers, x̄i, are
generated from an arbitrary distribution. These values represent the actions that the
individuals take when there is no cohesiveness (c = 0). At the other extreme, when there is
full cohesiveness (c = 1), let the common action taken by all n individuals be the average
of the foregoing actions—that is,

x̄ =
n

∑
i=1

x̄i/n.

Then, for an arbitrary value of the cohesiveness parameter c with 0 ≤ c ≤ 1, each individ-
ual’s action is

xi = (1− c)x̄i + cx̄. (14)
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Higher cohesion therefore results in more coordination and less conflict within the
team and results in better team effectiveness. In an evolutionary sense, this means a
higher chance of surviving. When the cohesion is high, the group members already have
incentives (task type and desire to be part of the group) to take collective action. As
explained previously, a leader’s role is to help facilitate coordination and ultimately to
increase coordination within groups. Therefore, if the group members are already united
and coordinated in their actions, the role of a leader will be less critical.

5.2. Results with Dependent Actions

As in the original model, it is now possible to compare the survival probability of
the group when there is no leader, namely p(x), to the survival probability, p(z), when
individual i becomes the leader and induces the individuals to perform actions z =
(z1, . . . , zn), which the leader deems best for survival. The values for z are generated
randomly and independently of the same distribution as the leaderless actions in (14).
Simulation results obtained from this model are now reported.

To perform the simulations, as in the model in Section 2, individual actions that
are independent come from U[−a, a]. Statistics similar to those described in Section 4
are collected for all combinations of the size of the groups with n = 5 and n = 10; the
cohesiveness of the group with c = 0, 0.25, 0.5, 0.75, 1.0; the harshness of the environment
with β = 1, 2, 4; and the variability in the individuals’ actions with appropriate values
chosen for a. Note that small values of n have been chosen as high levels of cohesiveness are
intuitively unlikely in large groups. The results of the simulations appear in Figures 11–13.
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Figure 11. The effect of cohesiveness on group survival without a leader.

Figure 11 shows the fundamental effect of cohesiveness on the survival of the group
when there is no leader. As one would expect, the more cohesive a group, the greater
that group’s chances of survival without a leader. Further, the rate of increase in survival
probability as a function of cohesiveness—indicated by the slopes of the line segments of
the curves in Figure 11—is increasing with more diverse groups (compare curve 1 and
curve 3), harsher environments (compare curve 1 and curve 2), and larger groups (compare
curve 1 and curve 4). To see why cohesiveness improves group survivability without
a leader, consider Equation (5): p(x) ∼ N(100− nβµ̂,

√
nβσ̂). From (5), it is seen that

E[p(x)] = 100− nβµ̂. Hence, as µ̂ = E[x2
i ] = E[xi]

2 + VAR[xi] decreases, the expected
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survival probability without a leader increases. From (14), note that as cohesiveness c
increases, VAR[xi] decreases from VAR[x̄i] to VAR[x̄] = VAR[x̄i]/n < VAR[x̄i], resulting
in a decrease in µ̂ and a corresponding increase in the expected survival probability E[p(x)].
That this relationship is magnified by a, n, and β is again clear from (5).
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Figure 12. The effect of cohesiveness on the fraction of improving leaders when a = 5 and n = 5.

Figure 12 shows how the increase in survival probability without a leader associated
with increasing cohesiveness results in smaller fractions of leaders being able to improve
group survivability. Though the figure shows results only for n = 5 and a = 5, the same
patterns were observed for other combinations of n and a. For a fixed group size (n) and
level of diversity (a), the fraction of leaders that can improve group performance decreases
as cohesiveness increases and the rate of this decrease is steeper for less harsh environments
(smaller β). Furthermore, for a fixed level of cohesiveness (c), the harsher the environment
(larger β), the smaller the fraction of leaders who will improve survival probabilities, with
the difference between two such fractions for two different levels of harshness decreasing
as cohesiveness increases (compare the curves for β = 1 with β = 2 and the curves for
β = 2 with β = 4, for example). The increase in survival probability associated with
increasing cohesiveness seen in Figure 11 is the cause of the decrease in the fraction of
leaders that can improve group survivability as cohesiveness increases and also explains
the rate of this decrease being steeper for less harsh environments. The negative effect
of harsher environments (larger β) on the fraction of leaders who will improve survival
probabilities and the diminishing nature of this effect as c increases follow from the nβµ̂
term in E[p(x)].

Figure 13 shows what happens to the fraction of leaders who improve group surviv-
ability that continue to improve group survivability as c increases. In the figure, columns in
successive groups are all relative to the fraction of leaders who improve group survivability
when c = 0. For example, suppose that for a fixed value of n, a, and β, 50% of leaders
improve the chance of survival when c = 0, 45% improve the chance of survival when
c = 0.25, 40% improve the chance of survival when c = 0.5, 35% improve the chance of
survival when c = 0.75, and 30% improve the chance of survival when c = 1. The corre-
sponding columns in Figure 11 for c = 0, 0.25, 0.5, 0.75, and 1 would be 0.50/0.50 = 100%,
0.45/0.50 = 90%, 0.40/0.50 = 80%, 0.35/0.50 = 70%, and 0.30/0.50 = 60%, respectively. The
columns in Figure 11 corresponding to n = 10, a = 5 and β = 1 show that, for larger
groups with less diversity in more benign environments, increasing cohesiveness rapidly
eliminates members from the pool of leaders who improve survivability—in other words,
in such an environment, increasing cohesiveness quickly results in few leaders who can
provide survival benefits. The relationship with group size is consistent with previous
results, but the other two relationships—diversity and harshness—are surprising given
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the previous results. The fact that cohesiveness more slowly eliminates improving leaders
when diversity is high (see the columns for n = 5, a = 10 and β = 1) and environments
are harsh (see the columns for n = 5, a = 5 and β = 4) may result from the fact that
such leaders must already be extremely skilled to improve group survivability (see the
discussion in Section 4.2).
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Figure 13. The interaction between cohesiveness and n, a, and β.

In summary, while cohesiveness in general reduces the need for, and ability to find,
improving leaders, there are still many situations—such as high levels of diversity and
harsh environments—in which the evolutionary benefit of such leaders is evident.

6. Summary and Conclusions

In this work, models were created that provide a mathematical justification for the
emergence and persistence of leadership. Specifically, using the theory of social coordina-
tion (see [25] and also [26]) as a foundation, it is shown that with a large number of groups,
there are some leaders who are able to alter the behaviors of individuals to increase the
group’s survival probability. Such leaders, therefore, provide an evolutionary benefit to
these groups: groups with effective leaders are more likely to survive and persist. However,
depending on the circumstances of the group, the probability of leadership improving the
group’s chances of survival could be high or low. Several findings here help to explain
these circumstances better. First, it is seen that diversity in actions or behaviors can hinder
leadership in general, especially in large groups or harsh environments. These two condi-
tions (diversity of actions and harshness of the environment) do not exclude the possibility
that leaders will emerge—alternatively, it shows that leaders who emerge in conducive
contexts (e.g., followers desperately looking for an idealistic leader) characterized by a
smaller number of followers and a less harsh environment will have a better chance to lead
the group to survival than a leader that emerges in a larger group under uncertain and
harsh conditions.

Additionally, when looking at groups or teams with no leaders but which can survive
(e.g., self-managing teams), we have shown that better leaders are more severely affected
by the diversity of the actions of their followers than are worse leaders. We also found that
for teams that absolutely need a leader for survival, both harsher environments and greater
diversity of actions lead to lower survivability.

Other interesting results pertain to the quality of the leader. We ranked leaders from
best (1) to worst (10). Our findings show that as group size increases, the effectiveness of the
best to the second-best leader becomes more prominent (the relationship becomes nonlinear
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or drops off faster). A similar effect is also seen in increasingly harsh environments. These
findings show that for larger groups in harsher environments, leader quality is much more
important than in smaller groups. Additionally, the emergence process itself could be
smoother and fairer for larger groups in harsher environments. Because, in larger groups,
there is a greater difference between the effectiveness of the best and the second-best
leader, the followers are more likely to choose the more effective leader and by a larger
margin. This could perhaps explain the finding that the world’s most revered and admired
leaders—such as Nelson Mandela, Mahatma Gandhi, and Martin Luther King Jr.—often
arise in large communities under troubled and tested times.

To examine the impact of group cohesion on leader effectiveness, simulations were
performed by relaxing the assumption that the actions of individuals are independent
of each other. More action dependence means that team members are closer and more
cohesive, resulting in a lesser need for leaders to engage in social coordination. Our
results show that the effect of cohesiveness is more pronounced in harsher environments.
Therefore, the presence of a leader is most important when environmental conditions
are worse and there is little dependence between the follower actions. However, we also
found that harsher environments and greater diversity result in a slower elimination of
effective leaders as cohesiveness increases. One possible explanation could be that in
harsher environments and when greater diversity is present, the roles of leaders could
have been already less significant when cohesiveness is extremely low. Therefore, the
slower loss of successful leaders with increasing cohesiveness could simply reflect the
lower starting point.

Our models show the importance of contingencies involved in the outcomes relating
to the existence of leadership. Taken together, our findings have important implications
within a social as well as organizational context. While there have been several theories of
leadership development and effectiveness (see [27]), our study and its findings provide
key insights into the potential mechanisms of early group survival based on better and
more effective processes of coordination. Additionally, the finding that the leader’s role is
substantially more critical when the situations are less favorable (less task interdependence,
harsher environments) confirms earlier findings of contingency theories of leadership,
such as Fiedler’s findings on situational favorability and leadership effectiveness (see [28]).
Our findings on leader ability and quality underlines previous findings on the use of
specific styles or behaviors according to the specific contexts (e.g., situational models of
leadership [29]). Teams or groups in the general society can be made up of people who
may or may not take up the role of a leader. Understanding the appropriate conditions
conducive (or not) to leadership is important in both managerial and general contexts.
The knowledge that certain conditions can facilitate the emergence of a good leader can
be important to leaderless groups in deciding whether to select a leader. Over the years,
several groups of people have spontaneously formed movements and have had challenges
related to unique but related criteria, such as the emergence and effectiveness of leadership
both in larger and smaller communities (see [2]). Understanding the importance of the
external environment (e.g., less harsh environment) as well as the internal environment
(e.g., task interdependence) will go a long way in determining and perpetuating effective
leadership in the larger society. This will also facilitate the survival of groups with leaders
as opposed to leaderless groups.

Results from the models presented here are based on several assumptions. For ex-
ample, we assume that, with regard to the emergence of leadership, selection occurs at
the group level rather than at the individual level, which is not standard and may affect
the plausibility of the model. However, this assumption is based on previous research
that demonstrates the creation and evolution of more complex units (single-cellular to
multicellular; individual to groups, etc.) such as that suggested by [4]. Our hypotheses
and the related conceptual foundations and discussions highlight the role of leaders in
facilitating processes such as coordination, communication, and complex learning that are
outlined in [5].
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Another limitation is that the survival function used here is concave and means that
the survival probability monotonically decreases as the individuals’ actions are farther
away from the actions that maximize the chances of survival. Moreover, in the simulations,
it is assumed that each individual’s action is a random variable that follows a uniform
distribution with a mean of 0 (so, on average, individual actions are aligned with the
survival interests of the group). It might be interesting to see how the results obtained here
change if the foregoing assumptions are relaxed. In addition, in the current “static” model,
the actions of the individuals are interpreted as long-term behavior that affects the group’s
long-term survival probability. Another direction for future research might be to develop
a dynamic model in which the individual actions vary from one time period to another
under the influence of a leader.

Another related area of interest is the effect of the visionary skill of the leader—as
measured by how close the leader’s vision of ideal actions of the individuals is to those
actions that maximize the group’s survival probability—and the charismatic skill of the
leader to induce individuals to take the ideal actions envisioned by the leader. It might be
possible to build mathematical models to study these leadership skills.
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Appendix A. Proofs of Analytical Results

Equations (6)–(13) are derived in this appendix.

Appendix A.1. Derivation of (6), (8), (10), (11), and (13)

Equations (6), (8), (10), (11), and (13) follow primarily from the independence of p(z)
and p(x), as follows:

P(p(z) ≥ p(x) | p(x) ≥ 0) = P(p(z) ≥ 0 | p(x) ≥ 0)×

P(p(z) ≥ p(x) | p(z) ≥ 0, p(x) ≥ 0)

= (1− F(0))× 1
2

= 1
2 −

1
2 F(0).

(A1)
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Note that the last equation in (A1) is precisely (6).

P(0 ≤ p(z) ≤ p(x) | p(x) ≥ 0) = P(p(z) ≥ 0 | p(x) ≥ 0)×

P(p(z) ≤ p(x) | p(z) ≥ 0, p(x) ≥ 0)

= (1− F(0))× 1
2

= 1
2 −

1
2 F(0).

(A2)

Note that the last equation in (A2) is precisely (8). Also, in the following, note that (A3)
below is (10), (A4) below is (11), and (A5) below is (13).

P(p(z) ≤ 0 | p(x) ≥ 0) = P(p(z) ≤ 0) = F(0) (A3)

P(p(z) ≥ 0 | p(x) ≤ 0) = P(p(z) ≥ 0) = 1− F(0) (A4)

P(p(z) ≤ 0 | p(x) ≤ 0) = P(p(z) ≤ 0) = F(0) (A5)

Appendix A.2. Derivation of (12)

Results from the truncated normal distribution in [30] are now used to obtain (12).
Specifically, if Y is a normal random variable with mean U, standard deviation S, density
function h(y), and cumulative distribution function H(y), then

E[Y | Y ≥ 0] = U + S2h(0)
1−H(0) . (A6)

Using (A6) and the independence of p(z) and p(x), (12) is derived as follows:

E[p(z) | p(z) ≥ 0 ≥ p(x)] = E[p(z) | p(z) ≥ 0]

= E[p(z)] + Var[p(z)] f (0)
1−F(0)

= 100− βnµ̂ + nβ2σ̂2 f (0)
1−F(0)

(A7)

Appendix A.3. Derivation of (7) and (9)

Now, (7) is derived as follows:

E[p(z) | p(z) ≥ p(x) ≥ 0] = 2
(1−F(0))2

∫ ∞
0 Z f (Z)

( ∫ Z
0 f (X)dX

)
dZ

= 2
(1−F(0))2

∫ ∞
0 Z f (Z)

(
F(Z)− F(0)

)
dZ

= 2
(1−F(0))2

∫ ∞
0 Z f (Z)F(Z)dZ−

2F(0)
(1−F(0))

∫ ∞
0 Z f (Z)/(1− F(0))dZ.

(A8)

Consider the second term of the last expression in (A8) first. Noting that f (Z)/(1− F(0))
is the density of a truncated normal distribution, (A6) is used to obtain

2F(0)
(1−F(0))

∫ ∞
0 Z f (Z)/(1− F(0))dZ = 2F(0)

(1−F(0)) (100− βnµ̂ + nβ2σ̂2 f (0)
1−F(0) ) (A9)
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Now, the integral in the first term of last expression in (A8) is evaluated by substituting
Z = E[p(z)] + SD[p(z)]y to obtain:∫ ∞

0 Z f (Z)F(Z)dZ =
∫ ∞
−E[p(z)]/SD[p(z)](E[p(z)] + SD[p(z)]y)φ(y)Φ(y)dy (A10)

The challenge in evaluating (A10) further is in evaluating
∫

φ(y)Φ(y)dy and
∫

yφ(y)Φ(y)dy.
To that end, the normal error function Er f (·) and Er f c(·) = 1− Er f (·) are used. Recalling

Φ(y) = 1+Er f (y/
√

2)
2 we calculate

∫
φ(y)Φ(y)dy as:∫

φ(y)Φ(y)dy =
∫

φ(y)( 1+Er f (y/
√

2)
2 )dy

=
∫ u

4 du [Substituting 1 + Er f (y/
√

2) = u]

= u2

8

= (1+Er f (y/
√

2)2

8 [Substituting u = 1 + Er f (y/
√

2)]

(A11)

Similarly,
∫

yφ(y)Φ(y)dy can be evaluated as follows:

∫
yφ(y)Φ(y)dy =

∫
yφ(y)( 1+Er f (y/

√
2)

2 )dy

=
∫

f g′ [Substituting 1 + Er f (y/
√

2) = f and yφ(y)
2 = g′]

= f g−
∫

f ′g [Integration by parts]

= Er f (y)
4
√

pi
− φ(y) 1+Er f (y/

√
2)

2

[Substituting f = 1 + Er f (y/
√

2), f ′ = 2φ(y), g = −φ(y)
2 and

g′ = yφ(y)
2 ]

(A12)

Next, substituting (A11) and (A12) into (A10) gives∫ ∞
−E[p(z)]/SD[p(z)](E[p(z)] + SD[p(z)]y)φ(y)Φ(y)dy =

1
8

(
4(E[p(z)] + SD[p(z)]/

√
π)− 2√

π
SD[p(z)]Er f c(E[p(z)]/SD[p(z)])

+ 2e−(E[p(z)]/SD[p(z)])2
√

2
π SD[p(z)]Er f c(E[p(z)]/

√
2SD[p(z)])

− E[p(z)]Er f c(E[p(z)]/
√

2SD[p(z)])2
)

.

(A13)

Finally, substitute

Er f c(E[p(z)]/SD[p(z)]) = 1− F((1 +
√
(2))E[p(z)]) + F(E[p(z)])

Er f c(E[p(z)]/
√

2SD[p(z)]) = 1− F(2E[p(z)]) + F(E[p(z)])

in (A13) and combine the result with (A9) to obtain (7):

E[p(z) | p(z) ≥ p(x) ≥ 0] = 100− βnµ̂ +
√

nβσ̂(1−F((1−
√

2)(100−βnµ̂)))√
π(1−F(0))2 .
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Similarly, we derive (9) by writing

E[p(z) | 0 ≤ p(z) ≤ p(x)] = 2
(1−F(0))2

∫ ∞
0 Z f (Z)

( ∫ ∞
Z f (X)dX

)
dZ

= 2
(1−F(0))2

∫ ∞
0 Z f (Z)

(
1− F(Z)

)
dZ

= 2
(1−F(0))2

∫ ∞
0 Z f (Z)F(Z)dZ−

2
(1−F(0))2

∫ ∞
0 Z f (Z)/(1− F(0))dZ,

and then evaluating the integrals, as was done for (7).
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