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Abstract: This paper addresses the challenges of selecting a suitable method for negative tempera-
ture coefficient (NTC) thermistor-based temperature measurement in electronic devices. Although
measurement accuracy is of great importance, the temperature calculation time represents an even
greater challenge since it is inherently constrained by the control algorithm executed in the microcon-
troller (MCU). Firstly, a simple signal conditioning circuit with the NTC thermistor is introduced,
resulting in a temperature-dependent voltage UT being connected to the MCU’s analog input. Next,
a simulation-based approximation of the actual temperature vs. voltage curve is derived, resulting
in four temperature notations: for a look-up table principle, polynomial approximation, B equa-
tion and Steinhart–Hart equation. Within the simulation results, the expected temperature error
of individual methods is calculated, whereas in the experimental part, performed on a DC/DC
converter prototype, required prework and available MCU resources are evaluated. In terms of
expected accuracy, the look-up table and the Steinhart–Hart equation offer superior results over
the polynomial approximation and B equation, especially in the nominal temperature range of the
NTC thermistor. However, in terms of required prework, the look-up table is inferior compared to
the Steinhart–Hart equation, despite the latter having far more complex mathematical functions,
affecting the overall MCU algorithm execution time significantly.

Keywords: NTC thermistor; temperature measurement; microcontroller; control algorithm; calcula-
tion time; power electronics

1. Introduction

In power electronics, not only voltage and current but also temperature are very
indicative quantities. With the measurement of the first two, the complete operation of
an electronic device is controlled by means of a supervising microcontroller (MCU). With
the latter, also various system quantities, i.e., root mean square (RMS) values of current
and voltage, apparent and active power [1], can be calculated. Voltage and current mea-
surements in electronic devices together with inventive circuit topologies can prevent
severe malfunction, resulting in fault-tolerant devices that can still operate under a short-
or open-circuit switch failure [2–4]. The case is similar regarding temperature measure-
ments: they are not limited only to applications where the temperature of a technological
process is monitored or controlled, as, for instance, in material science and mechanics [5],
bioelectrochemistry and biomedical engineering [6,7] or microfluidics [8,9], to name just
a few. Temperature measurements are also used—often in conjunction with voltage and
current measurements—to monitor key components of the device in order to increase
the operational safety and reliability of the device in general. A preventive monitoring
based on voltage and current measurement to calculate the temperature of a power switch
is reported in [10,11], whereas a direct temperature measurement was studied in [12] to
prevent power switch failure and efficiency degradation.
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As for the temperature measurement, there are mainly four types of sensors used in
power electronics: thermocouples [13], resistance temperature detectors (RTD) such as the
temperature probe PT100 as reported in [14], thermistors [15] and dedicated integrated
circuits (IC) [16]. In contrast to thermocouples, being active elements, the latter three must
have a source of excitation. Nevertheless, in all cases, some sort of signal conditioning
circuit needs to be implemented to obtain information on temperature.

Among the four types of sensors, thermistors are the most widely used, because they
offer a fast response and are cost-effective. Their usage is not limited to electronic devices
only. In [17], they were used to measure the temperature profile of the ground top layer
to determine the effect of weather and rainfall on the quality of the soil; moreover, in [18],
they were used to study the quality of ice cover in rivers.

A distinctive feature of thermistors is the highly non-linear dependence of resistance
with temperature, which is a fact to consider even with modern cutting-edge materials
and manufacturing technologies [19]. To compensate for this, various approaches have
been made to linearise the response—from hardware-based signal conditioning circuits to
computer-based solutions or their combinations, implementing modern techniques, such as
artificial neural networks [20] and field-programmable arrays (FPGA) [21–23]. On the hard-
ware side, common solutions mainly rely on conditioning circuits implementing standalone
operational amplifiers (OP ap) circuits [23,24] or voltage-controlled oscillators using dedi-
cated timer ICs (555) [25–27], where a thermistor is connected to a frequency-determining
input stage of the timing circuit, thus resulting in a more or less linear dependence of
output frequency with temperature.

In this paper, a thermistor-based temperature measurement is analysed for four
calculation methods from the perspective of the calculation time needed in the MCU to
calculate the temperature from the measured voltage at its input. However, since all four
methods rely on the approximation of the actual thermistor resistance vs. temperature,
they inherently introduce a certain temperature error. The main goal of the analysis was
to evaluate the amount of required prework and to find a calculation method that results
in a tolerable error (i.e., maximum of ±1 ◦C) in the broadest temperature range possible,
yet not to exceed the hardware-imposed maximum time of the control algorithm that is
executed in the MCU.

The paper is organised as follows. Section 2 recaps the basics of thermistors and
their resistance change with temperature. Furthermore, a simple and cost-effective sig-
nal conditioning circuit is introduced. In Section 3, a simulation-based review of four
analytical methods for temperature calculation is given. The main contribution of this
paper is described in Section 4, where experimental results are compared for all proposed
temperature calculation routines. Additionally, the investigated approaches are evaluated
in terms of their required prework, complexity, expected accuracy and, finally, required
MCU resources.

2. Principle of Temperature Measurement Using NTC Thermistors
2.1. NTC Thermistor Basics

There are two types of temperature-dependent resistors (thermistors) used to detect
a temperature change. With Negative Temperature Coefficient (NTC) thermistors, the
resistance decreases as the temperature increases—in contrast to Positive Temperature
Coefficient (PTC) thermistors. NTC thermistors are most common in cost-sensitive tem-
perature measurements over a wide temperature range—typically between −55 ◦C and
150 ◦C [28]. Their resistance versus temperature dependence (R(T)) is highly non-linear and
resembles an exponential-like function. Actual measured data R(T) are usually available
in a graph or a table for a limited number of discrete temperatures and various nominal
ranges. In the following text, the range between −55 ◦C and 150 ◦C is denoted as nominal.
Many datasheets, in addition, offer parameters for the analytical description of R(T). The
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Steinhart–Hart equation [29] yields a very close match [22] with the actual measurement
data in the whole nominal temperature range of the NTC thermistor:

1
T

= a + b· ln R + c·(ln R)3, (1)

where T is the temperature on the Kelvin scale and a, b and c stand for Steinhart–Hart
parameters. They can be provided by the thermistor manufacturer or calculated manually
based on a set of three NTC resistances measured at different temperatures [30]. To find the
R(T) dependence, the cubic equation for lnR in (1) should be solved, yielding in a real root

R = e(
3
√

y− x
2− 3
√

y+ x
2 ) (2)

With

x =
1
c

(
a− 1

T

)
and (3)

y =

√(
b
3c

)3
+

x2

4
(4)

Due to the rather complex calculation of parameters to obtain the NTC resistance from
the Steinhart–Hart Equation (2), we prefer its simplified version using the B (beta) parameter

R = R0·e
B( 1

T−
1

T0
). (5)

obtained after a substitution
a = 1

T0
− 1

B · ln R0,
b = 1

B and
c = 0

(6)

in (1) is made. In (5), R0 stands for the resistance at room temperature (at T0 = 298.15 K).
In contrast to the Steinhart–Hart equation, only two points on the R(T) curve are needed
to calculate the possibly missing beta parameter. A general notation B25/100 indicates
that reference temperatures 25 ◦C and 100 ◦C are used to describe (5) across the nominal
temperature range. Consequently, both analytical expressions (1) and (5) describe the R(T)
only with a certain precision. To illustrate this, the calculated resistance Rcalc of 10 kΩ
thermistor EPCOS B57351V5103H060 with a B25/100 = 4000 K [28] using (5) is compared
in Figure 1 against its measured resistance Rmeas, extracted and interpolated from the
datasheet table.

Figure 1. Calculated and measured resistance of 10 kohm NTC thermistor (logarithmic scale).
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Expressing the error

∆R% =
Rcalc− Rmeas

Rmeas
·100%, (7)

the matching across the nominal temperature range can be even more apparent, as depicted
in Figure 2 (labelled ∆RB). The resistance error ∆RB is zero on the B25/100 boundaries, i.e., at
25 ◦C and 100 ◦C. Between these two values, the error never surpasses 2%. In contrast, the
error becomes higher outside the B25/100 region, especially in the low-temperature region,
where the NTC thermistors exhibit immense resistance change by default. In the same fig-
ure, the resistance error for the Steinhart–Hart NTC model ∆RSH is also plotted (secondary
y-axis). It was calculated using (2–4) and (7), where the NTC resistance (2) was obtained
based on the manufacturers’ datasheet [28] for resistances at temperatures −55 ◦C, 25 ◦C
and 150 ◦C, respectively. The parameters a = 1.139357363 × 10−3, b = 2.327048139 × 10−4

and c = 9.134393411 × 10−8 needed in (2–4) were assessed using an online Steinhart–Hart
calculator tool [31]. It is noticeable (Figure 2) that the Steinhart–Hart model is far superior
to the B model in describing the NTC resistance vs. temperature. In contrast with the
Steinhart–Hart parameters fitted for the whole nominal temperature range, the B25/100-
related calculation optimally describes the thermistor in the partial range from 25 ◦C to
100 ◦C only.

Figure 2. Resistance error for B equation and Steinhart–Hart equation.

With a modified B value tuned for a selected temperature range of interest, as reported
in [32], higher accuracy can also be achieved in a low-temperature region.

2.2. Signal Conditioning Circuit

To convert the change in NTC resistance into an equivalent voltage suitable for
subsequent acquisition with an Analog–Digital Converter (ADC), the conditioning circuit
is mandatory. Several types are known [33–35], yet the most cost-efficient version with
only one additional fixed resistor (RS), shown in Figure 3a, was selected. In our case,
the voltage divider tap was directly connected to the ADC input, thus resulting in the
measured voltage:

UT,meas = US+·
RS

RNTC + RS
. (8)
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Figure 3. Conditioning circuit: (a) Proposed; (b) Optional.

For further simplification, the DC supply voltage US+ is considered time- and
temperature-invariable. The proposed direct connection is justified if the settling time
of the ADC’s sample and hold circuitry is not violated. An operational amplifier-based
voltage follower inserted in front of the ADC (Figure 3b) can omit the resulting error that
could more likely occur at low temperatures, i.e., high NTC resistance. Moreover, the
follower is also mandatory whenever the ADC’s input resistance is comparable to the
equivalent resistance formed by RNTC and RS. Nevertheless, the operational amplifier’s
offset voltage and temperature drift could raise accuracy concerns.

The resistance RS should be selected primarily according to the preferred temperature
operating range in which maximum measurement sensitivity should occur, but also con-
sidering the supply current in order to avoid thermistor self-heating. To illustrate this, the
UT vs. temperature is plotted in Figure 4a for three values of RS, namely 176.8 kΩ, 10 kΩ
and 674 Ω, which coincide with the measured NTC resistance (Figure 1) at −30 ◦C, 25 ◦C
and 100 ◦C, respectively. Its impact on the voltage measurement sensitivity is additionally
shown in Figure 4b, assuming a supply voltage US+ = 3.3 V. Figure 4b reveals that sensitiv-
ity peaks for the selected values RS at around −30 ◦C, 25 ◦C and 100 ◦C, respectively. The
sensitivity curve flattens as its magnitude decreases, demonstrating the linearisation effect
of the RS.

Figure 4. Influence of resistance RS value: (a) Voltage vs. temperature; (b) Voltage measurement sensitivity vs. temperature.

3. Simulation-Based Review of Calculation Methods

Temperature measurement using NTC thermistors in an electronic device relies on
a voltage measurement by means of a supervising microcontroller and its analog input
circuitry. The main objective during the design stage is to find a relevant algorithm that
can convert the measured voltage into its temperature equivalent. There are several ways
to achieve this. Since their execution time, required prework, accuracy and adequacy to be
used in the whole temperature range could differ, the methods were numerically evaluated,
supposing a specimen thermistor [28,36], the proposed conditioning circuit (Figure 3) for
US+ = 3.3 V and RS = 10 kΩ.
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3.1. Look-Up Table with Interpolation

The look-up table principle is relatively simple but requires quite a lot of prework. A
table of actual measured data R(T) provided by the manufacturer is initially subjected to
indexation, forming an input array T(i) (Figure 5). Using the relation (8), an extra column
with corresponding voltage equivalents UT(i) is added.
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However, since the input data are given at discrete temperatures, most commonly in
5 ◦C intervals, and the microcontroller memory space is also limited, intermediate values
(Tmeas) must be calculated by linear interpolation. In this way, a nonlinear curve defined
at discrete points is converted into a set of straight lines, thus introducing a slightly more
complex calculation procedure. It becomes a part of the control algorithm being executed in
the microcontroller at periodic interrupts. When triggered, the algorithm checks to which
interval (index i) the sampled voltage UT,meas correlates (Figure 6):

UT(i) ≤ UT,meas ≤ UT(i + 1). (9)

For the established index (i), two corresponding temperatures T(i) and T(i + 1) from
the manufacturer’s array are picked up to calculate the slope k(i) (can be done as prework
in advance) for the approximation line (labelled ulinear in Figure 6)

k(i) =
T(i + 1)− T(i)

UT(i + 1)−UT(i)
(10)

resulting finally in the temperature equivalent Tmeas calculated from the measured
voltage UT,meas

Tmeas = k(i)·(UT,meas −UT(i)) + T(i). (11)
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Figure 6. Linear interpolation principle.

An error ∆T created by linear approximation (Figure 6) is zero only at the boundaries
of each interval. Between them, the error depends on the shape of the interpolated curve
based on data from the datasheet table (labelled umeas). Following (11), the implemented
method exhibits a temperature error calculated for the specimen thermistor [28] across the
whole range, as seen in Figure 7.

Figure 7. Temperature error with look-up table and linear interpolation.

3.2. Approximation of Tabular Data with Polynomials

Similarly to the look-up method, the following approach relies on input data R(T)
presented in table form. The third and fourth columns are extracted from the look-up table
(Figure 5) to establish the correlation between T and UT at given discrete points. Finally,
a polynomial function T(UT) is then fitted on these points in the preferred temperature
range (Figure 8). A linear approximation can be acceptable if the temperature is to be
measured on a smaller range than the nominal. This situation is depicted in Figure 8, where
a trendline

Tlinear = 29.89·UT − 23.80. (12)

is fitted for a limited temperature range from −10 ◦C to 50 ◦C. A closer look at the ap-
proximated curve reveals that the temperature error between the manufacturer data-based
T(UT) and the approximated (calculated) temperature Tlinear(UT) (labelled ∆T in Figure 9)
is around ±1 ◦C.
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Figure 8. Temperature vs. calculated voltage for manufacturer-based data and linear approximation.

Figure 9. Temperature error for linear approximation.

If a wider temperature range is required, a higher-order approximation should be
used to maintain the error within the initially set limit, resulting in a more complex and
consequently more time-demanding (for the microcontroller) calculation procedure. As
expected, the obtained results are more promising than the linear approximation can
offer, as shown in Figure 10, where the temperature error is calculated for polynomials
of the third, fourth, fifth and sixth order. For the latter, the analytical expression follows
the syntax

Tpoly6 = a6·u6 + a5·u5 + a4·u4 + a3·u3+
+a2·u2 + a1·u + a0,

(13)

where ai are the polynomial coefficients and u is the voltage UT from the conditioning circuit.
In all cases shown in Figure 10, the polynomial fitting was completed for the nominal
temperature range (−55 ◦C to 150 ◦C). It is obvious that higher polynomial orders reduce
the temperature error, yet not to such an extent as desired—especially if we compare it with
the ±1 ◦C error obtained already by the first-order approximation—yet the latter was fitted
to a narrower temperature range (Figure 9). Applying this approach, the error in Figure 10
can be further reduced if temperature measurement is confined to a narrower range. This
is evident in Figure 11, where temperature error based on the sixth-order approximation is
given, for three temperature ranges—the nominal (poly6) as already presented in Figure 10,
then for a limited range from −40 ◦C to 120 ◦C (poly6_lim) and another one for a range
from −10 ◦C to 50 ◦C (poly6_lim*). As seen, the lattermost temperature error is practically
negligible, whereas the second shows a significant decrease compared to the first, i.e., to
the polynomial fitted for the nominal range.
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Figure 10. Temperature error for different polynomial order approximations—fitted across nominal
temperature range.

Figure 11. Temperature error for 6th-order polynomial approximation—fitted across different tem-
perature ranges: nominal and limited (poly6_lim, poly6_lim*).

3.3. Analytical Approach Using the B Equation

In contrast to tabular-based methods, the following one is more straightforward as
the analytical expression (5) is known at the procedure’s beginning—with its inherent
limitations considered in Section 2. Their impacts reflect consequentially in measured
voltage, obtained by inserting (5) into (8):

UT,meas = US+·
RS

R0·e
B( 1

T−
1

T0
)
+ RS

. (14)

After antilog of (14) and rearrangement, the expression for temperature (in Kelvin) follows

Tmeas =
1

1
T0

+ 1
B · ln

(
RS
R0

(
US+

UT,meas
− 1
)) . (15)

The calculated temperature error is given in Figure 12. As expected, the temperature
error is relatively small in the temperature range between 25 ◦C and 100 ◦C, where the
implemented B25/100 = 4000 K optimally describes the NTC thermistor.
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Figure 12. Temperature error for combined B equation-based expression.

If a wider temperature range should be covered, a suitable B, optimised for a low-
temperature range, should be combined with the first one. As seen in Figure 12, an
additional curve with B−55/25 = 3750 K is included to significantly reduce the temperature
error in the range from −55 ◦C to 25 ◦C. For a practical implementation, we should stress
that the intersection point of both curves lies at 25 ◦C, where, due to the originally selected
RS = 10 kΩ and according to relation (8), the measured voltage should be UT,meas = 1.65 V.
Therefore, the calculation of temperature should be performed using B25/100 for measured
voltages UT,meas ≥ 1.65 V, whereas for UT,meas ≤ 1.65 V, we should use B−55/25. Nevertheless,
in practice, due to a possible discrepancy between nominal and actual B values, a calibration
procedure as in [32] should be performed first in order to achieve the best results.

3.4. Analytical Approach Using the Steinhart–Hart Equation

In this case, we rely on the Steinhart–Hart Equation (1) to calculate the temperature T.
Besides the Steinhart–Hart parameters (a, b and c), we need to know the resistance R of the
thermistor. The procedure for resistance calculation using (2–4) has already been discussed.
However, we have another option for practical implementation. Since the temperature is
calculated indirectly utilising the voltage measurement, we can use the relation (8) at a
given temperature:

RNTC = RS·
(

US+
UT,meas

− 1
)

. (16)

After inserting (16) into the original Steinhart–Hart notation (1), we obtain the temper-
ature (in Kelvin):

Tmeas =
1

a + b· ln
(

RS·
(

US+
UT,meas

− 1
))

+ c·
(

ln
(

RS·
(

US+
UT,meas

− 1
)))3 . (17)

It can be seen that relation (15), which is used for the calculation of temperature with
the B equation approach, is merely a simplification of (17) if the cubic part is neglected
(c = 0) and a and b are calculated from relation (6). For practical implementation in the
microcontroller, the procedure for temperature calculation following (17) is not overly
complex, after all, provided that the Steinhart–Hart parameters are known. The benefit
of using this approach is evident from Figure 13, where the temperature error is plotted
for the whole temperature range using the thermistor manufacturer’s data from [28]
and Steinhart–Hart parameters a = 1.139357363 × 10−3, b = 2.327048139 × 10−4 and
c = 9.134393411 × 10−8 again.
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Figure 13. Temperature error for Steinhart–Hart equation-based expression.

4. Experimental Results—Comparison of Methods

In the following section, all four presented methods for temperature calculation will be
analysed in terms of the required prework and overall complexity, with a special focus on
the execution time of the algorithm that runs in the microcontroller. We opted to calculate
the temperature for up to six NTC thermistors for each approach in order to determine
their influence on the calculation time needed for the MCU to execute the algorithm. A set
of measurements was performed on a laboratory prototype of an advanced 3.7 kW DC/DC
converter (Figure 14), designed for the automotive industry. Its topology is not essential
for this paper, though further information can be found in [37]. In Figure 14, thermistor
positions are marked in orange; some thermistors are located on the lower side of the
printed circuit board (PCB).

Figure 14. Experimental set-up.

The converter prototype is controlled by means of the Texas Instruments’ MCU
TMS320F280049 [38] with a control algorithm executed at a frequency of 30 kHz, so the volt-
age at the ADC inputs is sampled every 33.3 µs. It must be stressed here that temperature
calculations generally do not require such a high frequency. However, if the temperature is
used for online diagnostics in safety-critical applications, then high bandwidth is manda-
tory. In our case, high sampling frequency is dictated by hardware and software. The
primary function of the converter required precise sampling of currents at 30 kHz. As
analog-to-digital converters (ADC) could not be configured to sample the temperature at
a lower frequency while maintaining precise sampling of currents, the temperature was
also sampled at the same frequency. Furthermore, to keep the software architecture unified
and simple, temperature calculations were executed with the same frequency as the in
calculation of other measured signals.

Obviously, adding rather complex calculation routines into the control algorithm of the
electronic device is in contradiction with the tendency to use higher sampling frequencies
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for better accuracy of the primary control quantity in focus, since added routines increase
the algorithm execution time.

In our test environment (Figure 14), temperature calculation algorithms were tested
in the converter’s standby mode to avoid a possible severe malfunction if the algorithm
execution time exceeds the pre-set time interrupt value of 33.3 µs. In the following, the
required prework is first outlined for each presented calculation method, and then results
for temperature calculation time are given.

• Look-Up Table

The investigated thermistor was supported with the manufacturer’s data for 5 ◦C
intervals [28], but there are also data available for 1 ◦C intervals in [36], resulting in a larger
MCU memory space requirement, yet yielding higher accuracy. In our case, an array of
42 values from [28]; curve no. 8502 for temperature and for calculated voltages UT from
the signal conditioning circuit using (8) was firstly prepared for the MCU used [38]. Then,
at every time interrupt, the voltage UT,meas at analog input was sampled and fed to the
temperature calculation routine, which started with a search for two corresponding indexes
(9) using a binary search method. Finally, the temperature was calculated using (11).

Starting from the standby mode of the converter and adding consecutive temperature
calculations for six NTC thermistors installed on the PCB, the temperature calculation time
in total was 9.87 µs. On average, each temperature calculation using the look-up table and
a linear interpolation required 1.65 µs.

• Approximation of a Tabular Data with Polynomials

To test the polynomial approach, we chose to use a first-order and sixth-order poly-
nomial for approximation of the temperature vs. voltage curve (as depicted in Figure 8).
Firstly, the first-order polynomial (line) was examined, with a line fitted for a limited
temperature range from −10 ◦C to 50 ◦C. Since the temperature was calculated using a
simple notation (12), the expected calculation time for all six temperatures was relatively
small. Nonetheless, the total time was 1.31 µs. On average, each temperature calculation
using a linear approximation added 0.22 µs to the algorithm execution time.

Next, we tested two sixth-order polynomial notations, i.e., the original notation as
written in (13) and a modified one using a Horner’s method notation to reduce the number
of arithmetic operations:

Tpoly6 = (((((a6·u + a5)·u + a4)·u + a3)·u + a2)·u + a1)·u + a0. (18)

In both cases, the following polynomial parameters (rounded to four significant digits
of precision) were used:

a6 = 3.7883;
a5 = −27.1741;
a4 = 59.5590;
a3 = −10.7668;
a2 = −109.7692;
a1 = 145.9399 and
a0 = −55.1190.

Polynomial parameters were calculated in advance based on calculated values of volt-
age (8) and thermistor data using the LINEST function in Excel for the nominal temperature
range (−55 ◦C to 150 ◦C; labelled poly6).

As expected, there was a significant difference in the algorithm execution time between
polynomial notations (13) and (18). With the first one, with only one temperature, the
calculation time was already 7.29 µs. With two temperature calculation routines, the
calculation time increased to 14.42 µs, so further temperatures were not tested since the
maximum available time limit for temperature calculations was reached. Namely, the
control algorithm for the converter itself needed around 18 µs. With the Horner notation
(18), calculation times were significantly lower. Namely, the calculation time for all six
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temperatures was 2.28 µs (on average, each NTC temperature measurement required
0.38 µs), which speaks in favour of Horner’s polynomial notation.

• Analytical Method Using the B Equation

This method requires less prework since the measured voltage UT is fed directly to the
temperature calculation routine based on (15), which only needs some predefined constants
that are related to the thermistor and the signal conditioning circuit. During the experiment,
only results for the initially presented method with a B25/100 constant (Figure 12) were
monitored, yielding a total calculation time of 5.16 µs (on average, 0.86 µs per one NTC
temperature channel).

• Analytical Method Using the Steinhart–Hart Equation

With this approach, we also start with the measured voltage UT that is (directly or
through “extraction” of resistance RNTC using (16)) fed to the temperature calculation
routine (17). For the latter, however, the Steinhart–Hart parameters need to be defined
in advance. In our case, the manufacturer did not provide them, so we used an online
tool [31] together with the manufacturer resistance data at three temperatures, so they
were not a result of a calibration procedure, as in [39]. As suggested in [30], we used two
temperatures that coincided with the nominal temperature range, i.e., −55 ◦C and 150 ◦C
and a point between them—we opted for 25 ◦C—thus resulting in a = 1.139357363 × 10−3,
b = 2.327048139 × 10−4 and c = 9.134393411 × 10−8. It must be stressed here that, in terms
of the required calculation time, notation (17) is not overly complex compared to (15), since,
in both cases, a natural algorithm (ln) operation is performed first, followed by one or more
multiplications. For a selected set of values, all six temperature calculations resulted in
the calculation time of 5.32 µs (on average, each NTC temperature measurement required
0.89 µs), which is comparable to results calculated with the B equation.

Obtained results of the MCU load for all four calculation methods are summarised in
Figure 15. It is clear that the look-up table method with linear interpolation (11) results in
high calculation times, although there are no complex arithmetic operations involved. How-
ever, the significant time increase is related to a time-demanding binary search algorithm of
appropriate indexes from the look-up table, for which the microcontroller is not optimised.
With the polynomial approximation method, the first-order linear approximation (12) is,
in terms of calculation time, quite comparable to the sixth-order Horner notation (18)
(labelled poly6_Horner). In contrast, the original polynomial notation (13) (poly6) requires
by far the most time. As suspected, both the B equation and the Steinhart–Hart equation
require similar MCU resources, though more than double that required for the polynomial
methods. However, in regard to Figures 2, 12 and 13, the results are clearly more in favour
of the Steinhart–Hart equation. In general, it does require more computational power
than polynomial methods. However, it performs excellently—almost comparably to the
look-up table—on the whole nominal temperature range, which is not the case for either
the polynomial approximation or the B equation.

Figure 15. Time comparison of different temperature calculation methods.
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5. Discussion

The design process of complex electronic devices always requires many compromises
that relate to various areas. In the presented paper, we focused on challenges associated
with temperature measurement in a complex electronic device using a simple conditioning
circuit with an NTC thermistor.

The main objective of the paper was to identify the influence of different temperature
calculation routines on the MCU calculation time. Additionally, the intention was to
select a method that can result in an acceptable temperature error (maximum ±1 ◦C)
in the broadest—preferably nominal—temperature range of the thermistor. The signal
conditioning circuit was assumed to be ideal, so the temperature error was introduced
solely by the method itself. Table 1 gives an overview of crucial parameters observed
during the simulation and experimental tests. The sign “+” speaks in favour of the method,
the sign “–” advises against the use of the method and the sign “o” indicates neutrality in
this respect.

Table 1. Comparison of key parameters of calculation methods.

Look-Up Table
with Interpolation

Polynomial
Approximation B Equation Steinhart–Hart

Equation

Parameter Observed 1st Order 6th Order

required prework −/o o −/o o/+ o/+
accuracy (limited range) + + + + +

accuracy (nominal range) + − −/o o +
MCU load − + + o o

After all four presented methods were analysed and tested, we could conclude that
the selection in fact depends on the available MCU resources. Namely, the temperature
calculation using the look-up table or the Steinhart–Hart equation is far superior to other
methods in terms of accuracy. On the other hand, these methods use significantly more
MCU resources compared to polynomial methods—the first one essentially because of a
time demanding index search routine in the look-up table and the second due to the calcu-
lation of the natural logarithm function. It is true, though, that temperature calculations
could be performed with a lower sampling frequency compared to the sampling frequency
of currents and voltages; however, this disrupts the otherwise unified algorithm structure,
with only one time interrupt request. However, in the case of a possible MCU overload, we
could implement a sequential routine with only one temperature calculation per interrupt
cycle. Thus, we could summarise that the look-up table and the Steinhart–Hart method are
the top choices when searching for an algorithm that offers a reasonably small error in the
whole temperature range. If a narrower temperature range is tolerated, surprisingly good
results in terms of accuracy and, above all, in terms of calculation time can be obtained
with the higher-order polynomial method. Nonetheless, if a high accuracy of temperature
measurement is of interest instead of the MCU load, then the look-up table would certainly
be preferable.
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