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Abstract: In this paper, the numerical analytic continuation problem is addressed and a fractional
Tikhonov regularization method is proposed. The fractional Tikhonov regularization not only over-
comes the difficulty of analyzing the ill-posedness of the continuation problem but also obtains a
more accurate numerical result for the discontinuity of solution. This article mainly discusses the a
posteriori parameter selection rules of the fractional Tikhonov regularization method, and an error
estimate is given. Furthermore, numerical results show that the proposed method works effectively.
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1. Introduction

The problem of analytic continuation arises in many fields [1–3]. For instance, medical
imaging [4,5], the inversion of Laplace transform [6], inverse scattering problems [7], and
so on. The analytical continuation problem is described as follows [8].

Problem 1. Let
Ω∗ := {z = x + iy ∈ C|x ∈ R, 0 < y ≤ a, a > 0}

be the strip domain in complex plane C, where i is the imaginary unit and a is a positive constant.
The function h(z) = h(x + iy) is an analytic function in Ω∗. When y = 0, h(z)|y=0 = h(x) ∈
L2(R). It is easy to show that the data h(z) are only given on the real axis, so we want extend h(z)
analytically from these data to the whole domain Ω∗ and determine the value of function h(z) on
Ω∗ by using data h(x) for 0 < y ≤ a.

Numerical analytic continuation is a severely ill-posed problem [9]. In order to calcu-
late a stable numerical solution, a certain regularization technique is required. In [8], the
authors used the modified Tikhonov regularization method to solve this problem. Recently,
this problem has been studied by many researchers with different regularization meth-
ods [10–13]. In [14,15], the authors give an optimal filtering method and a wavelet method
for stable analytic continuation, respectively. In [16], Xiong gives the conditional stability
estimate for the analytical continuation problem and provides a generalized Tikhonov
regularization method. Landweber-type iteration and modified Lavrentiev iterative regu-
larization method are provided by Cheng and Xiong in [17,18]. In [19], the authors used
fractional Landweber iterative regularization method to solve this problem, which greatly
reduces the number of iteration steps.

In this study, in order to better reconstruct the characteristics of exact solutions, we
propose a fractional Tikhonov regularization method to solve Problem 1. The fractional
Tikhonov regularization method was first proposed by Klann [20], which is based on the
classic Tikhonov regularization method; regarding the Tikhonov’s variational approach,
we can refer to the work of A.N. Tikhonov et al. [21]. Related research on fractional
regularization methods can refer to the literature [22–29]. The fractional Tikhonov method
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with the a priori parameter for the same analytic continuation problem has been researched
by [30]. As far as we know, there are very few works related to the a posteriori fractional
regularization methods, and most of the research on the fractional regularization methods
are in the case of compact operators. However, the a priori regularization parameter
selection method is based on the smoothness condition of the solution. Although it is
convenient for theoretical analysis, it is difficult to verify. Therefore, in practical problems,
the a posteriori regularization parameter selection method is more widely used based on
the error level information and the error data themselves. Based on the above reasons, we
will use the a posteriori fractional Tikhonov regularization method to study the analytical
continuation problem mentioned at the beginning of the article. Let

ĥ(ξ) =
1√
2π

∫ ∞

−∞
e−ixξ h(x)dx, i =

√
−1, (1)

be the Fourier transform of the function h(x) ∈ L2(R); ξ ∈ R, the corresponding inverse
Fourier transform of the function ĥ(ξ), is given by

h(x) =
1√
2π

∫ ∞

−∞
eixξ ĥ(ξ)dξ. (2)

In this paper, ‖ · ‖ denotes the L2(R) norm; according to the Parseval formula, it has the
following form:

‖h‖ = (
∫ ∞

−∞
|ĥ(ξ)|2dξ)

1
2 , (3)

According to the inverse Fourier transform, we have

h(z) = h(x + iy) =
1√
2π

∫ ∞

−∞
ei(x+iy)ξ ĥ(ξ)dξ =

1√
2π

∫ ∞

−∞
eixξ e−yξ ĥ(ξ)dξ. (4)

For simplicity, we denote ω(x, y) = h(x + iy). Therefore, we can easily obtain the solution
to the problem in the frequency domain as follows:

ω̂(ξ, y) = e−yξ ĥ(ξ). (5)

From (5), we know that the operator equation of the problem is as follows

Kyω̂(ξ, y) = ĥ(ξ). (6)

where Ky = eyξ : L2(R)→ L2(R) is the self-adjoint multiplication operator.
Note the factor e−yξ → +∞ as ξ → −∞ , given a small change in the data h(ξ), the

solution ω̂(ξ, y) will have a huge change through the error factor e−yξ . It is easy to see the
ill-posedness of Problem 1 is due to the negative high frequencies. Therefore, when ξ < 0, it
is impossible to stably solve the problem using classical methods, it needs to be regularized
to calculate a stable numerical solution. We construct the regularization solution of Problem
1 in the frequency domain according to the fractional Tikhonov regularization method
given in reference [29] as follows

ω̂δ
µ(ξ, y) =

e−yξ

1 + µe−2γyξ
ĥδ(ξ),

1
2
< γ ≤ 1. (7)

Compared with expression (5), the filter factor 1
1+µe−2γyξ in (7) attenuates the high-frequency

part of understanding, and we can use another better decay filter 1
1+µe−2γaξ to replace the

original one and we can get better convergence results. Therefore, we can obtain a new
regularization solution
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ω̂δ
µ(ξ, y) =

e−yξ

1 + µe−2γaξ
ĥδ(ξ),

1
2
< γ ≤ 1, (8)

where µ > 0 plays the role of regularization parameter. We call γ the fractional parameter;
when γ = 1

2 , we obtain the quasi-boundary value method, and when γ = 1, it expresses
the classic Tikhonov method. 1

2 < γ < 1 is used for the fractional Tikhonov regularization
methodBecause measurement errors exist in the data function h(x), we assume the exact
data h(x) and the measured data hδ(x) both belong to L2(R) and satisfy

‖hδ(·)− h(·)‖ ≤ δ, (9)

where δ > 0 denotes the noise level. Then we extend h(z) analytically from these data to
the whole domain Ω such that

‖ω(·, a)‖ = ‖ω̂(·, a)‖ ≤ M, (10)

where M is a fixed positive constant.
The article is organized as follows. In Section 2, we consider the a posteriori parameter

choice rule for fractional Tikhonov regularization method and give a Hölder-type error
estimate. In Section 3, we provide some numerical examples to show the validity of the
proposed fractional Tikhonov regularization method. Finally, we give concluding remarks
in Section 4.

2. An A Posteriori Regularization Parameter Choice Rule for the Fractional Tikhonov
Method and the Convergence Estimate

In this section, we apply the fractional Tikhonov method with posterior parameter
selection rules to the analytical continuation problem and provide the specific rate of con-
vergence for the regularized approximation. We use the Morozov’s discrepancy principle
to choose the regularization parameter µ; for Morozov’s discrepancy principle, please refer
to Reference [31]. We choose the regularization parameters µ to satisfy∥∥∥Kyω̂δ

µ(ξ, y)− ĥδ(ξ)
∥∥∥ = τδ, (11)

where 1
2 < γ ≤ 1, τ > 1 is a constant and µ > 0 is a regularization parameter.

In order to prove our main result, we give the following auxiliary lemmas.

Lemma 1 ([32]). Let 0 < m < n, k > 0; then

sup
k>0

ekm

1 + µekn ≤ µ−
m
n . (12)

Lemma 2. Set d(µ) =
∥∥∥Kyω̂δ

µ(ξ, y)− ĥδ(ξ)
∥∥∥. If 0 < δ < ‖ĥδ‖, then the following hold:

(a) d(µ) is a continuous function;
(b) limµ→0d(µ) = 0;
(c) limµ→∞d(µ) = ‖ĥδ‖L2(R);
(d) d(µ) is a strictly increasing function over (0, ∞).

Proof. From (11), we have

d(µ) =
∥∥∥ µe−2γaξ

1 + µe−2γaξ
ĥδ(ξ)

∥∥∥. (13)

The above result can be easily obtained by the expression of d(µ).
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Remark 1. From Lemma 2, we know that there exists a unique solution µ satisfying Equation (11).

Lemma 3. If µ is the solution of Equation (11), we also obtain the following inequality:

µ
− 1

2γ ≤ M
(τ − 1)δ

. (14)

Proof. From (11) and Lemma 2, we obtain

τδ =
∥∥∥ µe−2γaξ

1 + µe−2γaξ
ĥδ(ξ)

∥∥∥
≤
∥∥∥ µe−2γaξ

1 + µe−2γaξ
(ĥδ(ξ)− ĥ(ξ))

∥∥∥+ ∥∥∥ µe−2γaξ

1 + µe−2γaξ
ĥ(ξ)

∥∥∥.
(15)

From the noise assumptiona priori condition (9) and the a priori condition (10), there holds

τδ ≤ δ + µ ·
∥∥∥ e−(2γ−1)aξ

1 + µe−2γaξ
e−aξ ĥ(ξ)

∥∥∥
≤ δ + µ ·M · sup

ξ<0

e−(2γ−1)aξ

1 + µe−2γaξ
.

(16)

According to Lemma 1, we obtain

τδ ≤ δ + µ
1

2γ M.

So

µ
− 1

2γ ≤ M
(τ − 1)δ

.

Lemma 4. Set
φδ

µ(·, y) := ω̂(ξ, y)− ω̂δ
µ(ξ, y); (17)

then the following inequality holds

‖φδ
µ(·, y)‖ ≤ ‖φδ

µ(·, a)‖
y
a ‖φδ

µ(·, 0)‖1− y
a . (18)

Proof. By (17), it is easy to see that

φδ
µ(·, y) = e−yξ ĥ(ξ)− e−yξ

1 + µe−2γaξ
ĥδ(ξ),

then
φδ

µ(·, 0) = ĥ(ξ)− 1
1 + µe−2γaξ

ĥδ(ξ),

φδ
µ(·, a) = e−aξ ĥ(ξ)− e−aξ

1 + µ|e−aξ |2γ
ĥδ(ξ).
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By the Hölder inequality, we obtain

‖φδ
µ(·, y)‖2 =

∫ ∞

−∞
|e−yξ ĥ(ξ)− e−yξ

1 + µe−2γaξ
ĥδ(ξ)|2dξ

=
∫ ∞

−∞
e−2yξ

(
Θh(µ, ξ, δ)

) 2y
a ·
(

Θh(µ, ξ, δ)
)2(1− y

a )
dξ

≤
( ∫ ∞

−∞
(e−yξ)

2a
y
(

Θh(µ, ξ, δ)
)2

dξ

) y
a

·
( ∫ ∞

−∞

(
Θh(µ, ξ, δ)

)2
dξ

)1− y
a

=

( ∫ ∞

−∞
e−2aξ

(
Θh(µ, ξ, δ)

)2
dξ

) y
a

·
( ∫ ∞

−∞

(
Θh(µ, ξ, δ)

)2
dξ

)1− y
a

= ‖φδ
µ(·, a)‖

2y
a ‖φδ

µ(·, 0)‖2(1− y
a ),

where Θh(µ, ξ, δ) = ĥ(ξ)− 1
1+µe−2γaξ ĥδ(ξ). Thus, we obtain the result.

Lemma 5. The following inequalities holds

‖φδ
µ(·, 0)‖ ≤ (τ + 1)δ, (19)

‖φδ
µ(·, a)‖ ≤ τE

τ − 1
. (20)

Proof. First we prove (19). Using the triangle inequality and Equation (11), we get∥∥∥φδ
µ(·, 0)‖ =

∥∥∥ĥ(ξ)− 1
1 + µe−2γaξ

ĥδ(ξ)
∥∥∥

≤
∥∥∥ĥ(ξ)− ĥδ(ξ)

∥∥∥+ ∥∥∥ĥδ(ξ)− 1
1 + µe−2γaξ

ĥδ(ξ)
∥∥∥

≤ (τ + 1)δ.

(21)

Then, we prove (20). Using the triangle inequality, we get∥∥∥φδ
µ(·, a)

∥∥∥ =
∥∥∥e−aξ ĥ(ξ)− e−aξ

1 + µe−2γaξ
ĥδ(ξ)

∥∥∥
≤
∥∥∥e−aξ ĥ(ξ)− e−aξ

1 + µe−2γaξ
ĥ(ξ)

∥∥∥+ ∥∥ e−aξ

1 + µe−2γaξ
(ĥ(ξ)− ĥδ(ξ))

∥∥ (22)

By the noise assumption (9) and the a priori condition (10) and Lemma 3, we obtain,∥∥∥φδ
µ(·, a)

∥∥∥ ≤ ∥∥∥(1− 1
1 + µe−2γaξ

)e−aξ ĥ(ξ)
∥∥∥+ δ sup

ξ<0

e−aξ

1 + µe−2γaξ

≤ M + δµ
− 1

2γ

≤ τM
τ − 1

.

(23)

Now we give the main result of our regularization.

Theorem 1. Suppose the a priori condition (10) and the noise assumption (9) hold. Let ω(·, y)
be the exact solution, and ωδ

µ(·, y) be its regularized approximation defined by (7). Choose the
solution of Equation (11) as the value of the posterior regularization parameter µ; then we obtain
the following error estimate:
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‖ωδ
µ(·, y)−ω(·, y)‖ ≤ c1M

y
a δ1− y

a , (24)

where c1 := ( τ
τ−1 )

y
a (τ + 1)1− y

a .

Proof. Using Parseval’s equality and Lemma 4, we know

‖ωδ
µ(·, y)−ω(·, y)‖ = ‖ω̂δ

µ(ξ, y)− ω̂(ξ, y)‖
≤ ‖φδ

µ(·, a)‖
y
a ‖φδ

µ(·, 0)‖1− y
a .

(25)

According to Lemma 5, we have

‖ωδ
µ(·, y)−ω(·, y)‖ ≤ (

τM
τ − 1

)
y
a ((τ + 1)δ)1− y

a = c1M
y
a δ1− y

a ,

where c1 = (τ + 1)( τ
(τ+1)(τ−1) )

y
a . The proof of Theorem 1 is completed.

3. Numerical Examples

In this section, we use some numerical examples to verify the effectiveness of the
fractional Tikhonov regularization method. The fractional Tikhonov regularization method
can be implemented by fast Fourier transform. In these numerical experiments, we always
take a = 1 and fix the domain Ω∗ = {z = x + iy ∈ C | |x| ≤ 10, 0 < y < 1}. Suppose the
vector G and G(x + iy) represent samples from the function G(x) and ω(·, y); then we can
obtain the perturbation data through

Gδ = G + δ · randn(size(G)). (26)

Here “randn(·)” means to generate a set of random numbers that obey the standard
normal distribution. The error is given by (Root Mean Square Error (RMSE))

RMSE = ‖Gδ − G‖l2 :=

√√√√ 1
N + 1

N+1

∑
n=1
|Gδ(n)− G(n)|2. (27)

In the numerical experiments, we denote the corresponding RMSEs of the real part and
imaginary part as RMSERe and RMSEIm, respectively. We usually choose N = 200. ωδ

µ(·, y)
represent the regularization solution calculated by the fractional Tikhonov method. We
give numerical results under the a posteriori choice rule. The a posteriori parameter µ is
selected by (11). In these experiments, we fix the fractional parameter γ = 2/3 and noise
level δ = 0.01. In the following numerical examples, we consider problems of [18].

Example 1. The function

h(z) = e−z2
= e−(x+iy)2

= ey2−x2
(cos 2xy− i sin 2xy)

is analytic in the domain

Ω∗ = {z = x + iy ∈ C | x ∈ R, 0 < y ≤ 1}

with h(z) |y=0= e−x2 ∈ L2(R), Reh(z) = ey2−x2
cos 2xy, Imh(z) = −ey2−x2

sin 2xy.

Figure 1 shows the numerical results of the a posteriori parameter selection of Example 1.
µ is selected by the discrepancy principle (11), where τ = 50, δ = 0.01. Figure 1a–f show
the comparison of the exact solution and the approximate solution at y = 0.2 y = 0.5 and
y = 0.8.
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Figure 1. Example 4.1. Numerical results under the posteriori fractional Tikhonov method.
(a) and (b) are real part and imaginary part at y = 0.2, respectively, where µ = 1e− 03;
(c) and (d) are real part and imaginary part at y = 0.5, respectively, where µ = 1e− 03;
(e) and (f) are real part and imaginary part at y = 0.8, respectively,where µ = 1e− 03.

Figure 1. Example 1. Numerical results under the posteriori fractional Tikhonov method. (a,b) are
real part and imaginary part at y = 0.2, respectively, where µ = 1× 10−3; (c,d) are real part and
imaginary part at y = 0.5, respectively, where µ = 1× 10−3; (e,f) are real part and imaginary part at
y = 0.8, respectively, where µ = 1× 10−3.

Table 1 shows the different error results for different y in Example 1. We fix τ = 50,
δ = 0.01 and compare the numerical results when γ = 2/3 and γ = 1. From Table 1, we
can see that the numerical result of γ = 2/3 is better than the numerical result of γ = 1.

Example 2. The function h is given by:

h(z) =
{ √

25− z2 =
√

25− (x + iy)2, |x| < 5,
0, |x| ≥ 5.
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It is a piecewise analytic function, and
√

25− (x + iy)2 has a single-valued determination in the
complex plane minus the set x : |x| ≥ 5.

Figure 2 shows the numerical results of the a posteriori parameter selection of Example 2.
µ is selected by the discrepancy principle (11), where τ = 1.1, δ = 0.01. Figure 2a–f show
the comparison of the exact solution and the approximate solution at y = 0.2 y = 0.5 and
y = 0.8.
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Figure 2. Example 4.2. Numerical results under the posteriori fractional Tikhonov method.
(a) and (b) are real part and imaginary part at y = 0.2, respectively, where µ = 1e− 04;
(c) and (d) are real part and imaginary part at y = 0.5, respectively, where µ = 0.01;
(e) and (f) are real part and imaginary part at y = 0.8, respectively, where µ = 0.1.

Figure 2. Example 2. Numerical results under the posteriori fractional Tikhonov method. (a,b) are
the real part and imaginary part at y = 0.2, respectively, where µ = 1× 10−4; (c,d) are the real part
and imaginary part at y = 0.5, respectively, where µ = 0.01; (e,f) are the real part and imaginary part
at y = 0.8, respectively, where µ = 0.1.
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Table 1. Numerical results of Example 1 for different y and γ.

y 0.2 0.5 0.8

γ = 2/3 RMSERe 0.0725 0.1009 0.2769
RMSEIm 0.0168 0.0732 0.2684

γ = 1 RMSERe 0.0857 0.2866 0.7765
RMSEIm 0.0238 0.2774 0.7227

Table 2 shows the different error results for different y in Example 2. We fix τ = 1.1,
δ = 0.01 and use γ = 2/3 and γ = 1 for comparison. According to the data in Tables 1 and 2,
it is not difficult to see that the fractional Tikhonov method is better than the classical
Tikhonov method.

Table 2. Numerical results of Example 2 for different y and γ.

y 0.2 0.5 0.8

γ = 2/3 RMSERe 1.2201 3.2006 5.1905
RMSEIm 1.2208 2.0412 2.8628

γ = 1 RMSERe 1.6075 5.6605 6.5887
RMSEIm 1.7714 3.5022 3.7275

4. Conclusions

In this article, a fractional Tikhonov regularization method for analytic continuation
problem is given, and we overcome its ill-posedness and obtained a regularized solution.
Furthermore, we proved the error estimates for the fractional regularization methods
under the the Morozov’s parameter choice rule. The numerical experiment shows that the
proposed method works effectively. It is worth pointing out that the method we provide
not only includes the classical Tikhonov regularization method, but the numerical results
obtained are also more accurate and stable. Future research will extend the analytical
continuation problem of one-dimensional cases to two-dimensional cases or even higher-
dimensional cases. At the same time, other regularization methods will be tried to solve
such inverse problems in order to obtain more accurate convergence results.
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