
mathematics

Article

Acceleration and Parallelization of a Linear Equation Solver for
Crack Growth Simulation Based on the Phase Field Model

Gaku Ishii 1, Yusaku Yamamoto 1,* and Takeshi Takaishi 2

����������
�������

Citation: Ishii, G.; Yamamoto, Y.;

Takaishi, T. Acceleration and

Parallelization of a Linear Equation

Solver for Crack Growth Simulation

Based on the Phase Field Model.

Mathematics 2021, 9, 2248.

https://doi.org/10.3390/

math9182248

Academic Editor: Junseok Kim

Received: 31 July 2021

Accepted: 10 September 2021

Published: 13 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Communication Engineering and Informatics, The University of Electro-Communications,
Tokyo 182-8585 , Japan; QZY13306@nifty.com

2 Department of Mathematical Engineering, Musashino University, Tokyo 135-8181, Japan;
taketaka@musashino-u.ac.jp

* Correspondence: yusaku.yamamoto@uec.ac.jp; Tel.: +81-42-443-5360

Abstract: We aim to accelerate the linear equation solver for crack growth simulation based on the
phase field model. As a first step, we analyze the properties of the coefficient matrices and prove that
they are symmetric positive definite. This justifies the use of the conjugate gradient method with the
efficient incomplete Cholesky preconditioner. We then parallelize this preconditioner using so-called
block multi-color ordering and evaluate its performance on multicore processors. The experimental
results show that our solver scales well and achieves an acceleration of several times over the original
solver based on the diagonally scaled CG method.

Keywords: crack growth simulation; phase field model; conjugate gradient method; incomplete
Cholesky factorization; parallelization; block red-black ordering; performance evaluation

MSC: 15A06; 35F61; 65F08; 65M60; 74R99; 74S05

1. Introduction

Crack growth is a ubiquitous phenomenon that affects the strength and functions of
materials and structures. Since cracks can grow very quickly, simulation is a useful tool to
study their growth process in detail. Simulation can also be used to predict the generation
of cracks under given stresses or other conditions. In the conventional method of crack
growth simulation, the finite element method (FEM) is used and the mesh is regenerated at
every time step so that the mesh boundary conforms to the crack boundary. However, this
incurs huge computational cost. Moreover, to determine the direction of crack growth, it
is usually necessary to evaluate the total energy for various possible scenarios. This also
adds to the computational cost.

To resolve these problems, a crack growth simulation method based on the phase
field model has been proposed [1–4]. In this model, a new continuous dependent variable
z(x, t) called the phase field [5,6] is introduced in addition to the displacement u(x, t).
This variable expresses the degree of the crack at each point: z'0 if there is no crack
and z'1 if there is a crack. Moreover, a partial differential equation (PDE) describing
the time evolution of z(x, t) is also derived along with that of u(x, t). This makes it
possible to determine the direction of crack growth without the total energy evaluations.
Hence, the method is a promising candidate for real-time three-dimensional crack growth
simulation. Takaishi et al. implemented a crack growth simulation program based on this
method and showed that it works well in various examples. For evaluation purposes,
a two-dimensional FreeFEM code based on the method is also available.

When implementing this method, the time-discretization of the PDEs both for u(x, t)
and z(x, t) is usually done with the semi-implicit method to ensure numerical stability.
In that case, the time taken to solve the resulting linear simultaneous equations is often
dominant in the total computation time. Takaishi et al.’s simulation program uses the

Mathematics 2021, 9, 2248. https://doi.org/10.3390/math9182248 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5682-3434
https://doi.org/10.3390/math9182248
https://doi.org/10.3390/math9182248
https://doi.org/10.3390/math9182248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182248
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182248?type=check_update&version=1

Mathematics 2021, 9, 2248 2 of 21

conjugate gradient (CG) method with a diagonal scaling preconditioner for both of the
equations for u(x, t) and z(r, t), which is a simple preconditioner applicable to a wide class
of matrices but is not very efficient. The reason for using this preconditioner is that the
properties of the coefficient matrices have not been fully understood yet.

In this paper, we aim to accelerate this linear equation solver by employing a more
powerful preconditioner. This will help to speed up the linear equation solution that
accounts for a large part of the computing time and open a way to solve larger scale and
more realistic problems. To this end, we make the following contributions. First, we
analyze the properties of the coefficient matrices obtained by applying semi-implicit time
discretization and space discretization by FEM to the PDEs for u(x, t) and z(x, t). We show
that, under appropriate boundary conditions, both of these coefficient matrices become
symmetric positive definite (SPD). This justifies the use of the incomplete Cholesky (IC)
preconditioner, which is more powerful than diagonal scaling. Second, we show that the IC
preconditioner can be parallelized efficiently using the block multi-color ordering proposed
by Iwashita et al. [7,8]. In fact, our numerical experiments suggest that the number of CG
iterations increases only slightly, if at all, by this parallelization method compared to the
sequential case. Finally, we optimize several performance parameters such as the block
division scheme and show that the resulting parallel solver is several times faster than
the diagonally scaled CG solver on multicore processors. Our results will be applicable
to crack growth simulation in a variety of fields in science and engineering, such as the
prediction of cracking in buildings and bridges and the analysis of solder cracking in circuit
boards [2].

The rest of this paper is structured as follows. In Section 2, we briefly describe the crack
simulation method based on the phase field model and its space and time discretization.
In Section 3, the properties of the coefficient matrices arising from the discretization are
analyzed, and their symmetric positive definiteness is proved under certain conditions.
Section 4 describes the parallelization of the IC preconditioner using block multi-color
ordering. Numerical results are given in Section 5. Finally, Section 6 concludes the paper.

2. Crack Growth Simulation Based on the Phase Field Model

In this section, we briefly explain the crack growth simulation method based on the
phase field model, which was proposed by Takaishi and Kimura [3]. We begin with the
two-dimensional case and then proceed to the three-dimensional case.

2.1. The Two-Dimensional Case

Let us consider crack growth in a thin panel as shown in Figure 1. Here, we focus
on the so-called mode 3 crack, in which the displacement of the panel is in the direction
perpendicular to the panel. Thus, we treat the problem as two-dimensional and denote
the displacement at a point x = (x1, x2) by a scalar variable u(x, t). We denote the region
by Ω, its boundary by Γ, and the crack, which is modeled as a curve on Ω, by Σ. Hence,
u(x) is discontinuous across Σ. In the example shown in Figure 1, the Dirichlet boundary
condition is imposed on ΓD ⊂ Γ, while the Neumann boundary condition is imposed on
ΓN = Γ\ΓD.

Mathematics 2021, 9, 2248 3 of 21

Figure 1. A two-dimensional region Ω and crack Σ.

The basic idea of the crack growth simulation method to be described below goes
back to Griffith [9]. He proposed the expression of the total energy of the system as a
sum of the elasticity energy E1 and the surface energy E2 due to the existence of a crack.
Both of these energies depend on the crack Σ, as well as on u(x, t), so we denote them
as E1[u, Σ] and E2[u, Σ]. Griffith assumed that crack growth occurs if the total energy
E[u, Σ] = E1[u, Σ] + E2[u, Σ] decreases due to that factor. In the two-dimensional case, E1
and E2 can be written as follows [1]:

E1[u, Σ] =
µ

2

∫
Ω\Σ
|∇u|2 dx (1)

E2[u, Σ] =
∫

Σ
γ(x) ds, (2)

where γ(x) > 0 is fracture toughness at x and µ is one of Lamé’s constants. Equation (1)
means that the elasticity energy is expressed as an integral of µ

2 |∇u|2 over the entire region
Ω, excluding the crack Σ. This is because the difference of u across Σ does not contribute
to the elasticity energy. On the other hand, the surface energy (2) is expressed as a line
integral along the crack.

While in principle (1) and (2) can be used to study the development of crack Σ, they
are not convenient for numerical computation because the regions of the integral depend
on Σ and change from step to step. To resolve this problem, Bourdin et al. [10] introduced
a phase field variable z(x, t) that expresses the degree of crack at (x, t): z'0 if there is
no crack and z'1 if there is a crack. z(x, t) is assumed to be a smooth function of x, and
the transition between z = 0 and z = 1 is assumed to occur across a narrow region of
width ' ε, where ε > 0 is a regularization parameter [11]. Under these assumptions,
Bourdin et al. propose the use of the following regularized total energy functional instead
of E[u, Σ]:

E [u, z; ε] =
µ

2

∫
Ω
(1− z)2|∇u|2 dx +

1
2

∫
Ω

γ(x)
(

ε|∇z|2 + 1
ε

z2
)

dx. (3)

In this formulation, the region of the integral is the entire region Ω for both the elasticity
and surface energies, which greatly simplifies the numerical procedure.

For the efficient computation of u(x, t) and z(x, t) based on (3), Takaishi and Kimura [3]
proposed the use of the gradient flow

∂u
∂τ

= −α1
δE
δu

,
∂z
∂τ

= −α2
δE
δz

, (4)

where τ is a virtual time parameter and α1 and α2 are time constants. It can easily be
shown that if u(x, t) and z(x, t) evolve according to (4), the total energy functional (3)
decreases monotonically. Thus we can expect that the (local) minimum of E [u, z; ε] is
reached as τ → ∞. Furthermore, if α1 and α2 are sufficiently large, u(x, t) and z(x, t)

Mathematics 2021, 9, 2248 4 of 21

are expected to reach the minimizer of E [u, z; ε] for given external conditions such as the
boundary conditions and external forces (if any) very quickly. Thus, we can regard u(x, t)
and z(x, t) determined by (4) as instantaneous reactions to the external conditions and (4)
as approximately describing the time evolution of u(x, t) and z(x, t). By computing δE

δu and
δE
δz explicitly, we obtain the following set of PDEs:

α1
∂u
∂t = ∇ ·

(
(1− z)2∇u

)
(x ∈ Ω),

α2
∂z
∂t =

(
ε∇ · (γ(x)∇z)− γ(x)

ε z + |∇u|2(1− z)
)
+

(x ∈ Ω),

u(x, t) = g(x, t) (x ∈ ΓD),
∂u
∂n = 0 (x ∈ ΓN),
∂z
∂n = 0 (x ∈ Γ),

u(x, 0) = u0(x) (x ∈ Ω),
z(x, 0) = z0(x) ∈ [0, 1] (x ∈ Ω),

(5)

where we changed τ to t and set µ = 1 for simplicity. g(r, t) denotes the Dirichlet boundary
condition that causes the development of the crack. The symbol (·)+ in the second equation
means max(·, 0), which expresses the fact that a crack does not vanish once it is created [12].
See [13] for the treatment of partial differential equations with such terms. ∂

∂n denotes the
partial derivative in the direction of the outgoing normal vector.

Crack growth simulation based on (5) has the following advantages:

• The direction of crack growth is automatically determined by the PDEs. Hence, total
energy evaluation under multiple possible scenarios, which is needed in simulation
methods based directly on (3), is not necessary;

• By introducing the phase field variable z(x, t) and the regularization parameter ε,
the divergence of the stress at the tip of the crack is kept to a level manageable by
numerical methods;

• It is not necessary to regenerate the mesh at every time step to conform to the
crack boundary.

Our theoretical analysis and numerical experiments in the two-dimensional case are based
on these PDEs.

2.2. The Three-Dimensional Case

In the three-dimensional case, the displacement becomes a vector field variable
u(x, t) = (u1(x, t), u2(x, t), u3(x, t))>, where x = (x1, x2, x3). The phase field variable
z(x, t) is still a scalar field variable. Using the same idea as in the previous subsection, we
can derive the set of PDEs corresponding to (5). In the following, we assume isotropic

materials for simplicity. First, let us define the strain tensor εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
and the

stress tensor σij. These tensors are connected by Hooke’s law, which has the following form
in the case of isotropic materials:

σij = λδij∇ · u + 2µεij (i, j = 1, 2, 3), (6)

where λ and µ are Lamé’s constants and δij is Kronecker’s delta. We also write the stress
tensor as

σ = (σij) = (s1, s2, s3). (7)

Using these tensors, the elasticity energy density e(u), which corresponds to µ
2 |∇u|2 in the

two-dimensional case, can be defined as follows:

e(u) =
1
2

3

∑
i=1

3

∑
j=1

σijεij =
1
2

λ(∇ · u)2 + µ
3

∑
i=1

3

∑
j=1

εijεij. (8)

Mathematics 2021, 9, 2248 5 of 21

Using this, the regularized total energy functional is defined as

E [u, z; ε] =
∫

Ω
(1− z)2e(u) dx +

1
2

∫
Ω

γ(x)
(

ε|∇z|2 + 1
ε

z2
)

dx, (9)

which has the same form as (3) except that µ
2 |∇u|2 is replaced with e(u). Note that now Ω

is a three-dimensional region and
∫

Ω · dx denotes a volume integral. By considering the
gradient flow as in (4), we obtain the following set of PDEs after some calculations [2]:

α1
∂u
∂t = ∇((λ + µ)(1− z)2(∇ · u)) +∇ · (µ(1− z)2∇u) (x ∈ Ω),

α2
∂z
∂t =

(
ε∇ · (γ(x)∇z)− γ(x)

ε z + 2e(u)(1− z)
)
+

(x ∈ Ω),

u(x, t) = g(x, t) (x ∈ ΓD),
sj · n = 0 (j = 1, 2, 3) (x ∈ ΓN),

∂z
∂n = 0 (x ∈ Γ),

u(x, 0) = u0(x) (x ∈ Ω),
z(x, 0) = z0(x) ∈ [0, 1]. (x ∈ Ω).

(10)

Here,

∇u =

 ∇u1(x, t)
∇u2(x, t)
∇u3(x, t)

 =

∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (11)

and

∇ · (µ(1− z)2∇u) =

 ∇ · (µ(1− z)2∇u1)
∇ · (µ(1− z)2∇u2)
∇ · (µ(1− z)2∇u3)

. (12)

where n = (n1, n2, n3)
> denotes the unit normal vector. Note that the first equation of (10)

can also be written as

α1
∂uj

∂t
= ∇ ·

(
(1− z)2sj

)
(j = 1, 2, 3, x ∈ Ω). (13)

This can be verified directly using the definitions of εij, σij and sj. The fourth equation of
(10) is often expressed as

σ · n = 0. (14)

and is known as the stress-free boundary condition.

2.3. Temporal Discretization

For the temporal discretization of (5) and (10), we use a semi-implicit method. More
specifically, to compute the solution (ut+∆t, zt+∆t)at time t + ∆t from (ut, zt) at time t, we
replace u and z in the right-hand side of the equation for ∂u/∂t by ut+∆t and zt, respectively.
Similarly, in the right-hand side of the equation for ∂z/∂t, we replace u and z by ut and
zt+∆t, respectively. Thus, in the two-dimensional case, we obtain the following set of
equations, which are linear both in ut+∆t and zt+∆t:.

α1
ut+∆t − ut

∆t
= ∇ · ((1− zt)

2∇ut+∆t), (15)

α2
z̃t+∆t − zt

∆t
= ε∇ · (γ(x)∇z̃t+∆t)−

γ(x)
ε

z̃t+dt + |∇ut|2(1− z̃t+∆t), (16)

zt+∆t = max(z̃t+∆t, zt). (17)

Here, (17) corresponds to taking (·)+ In the numerical simulation; we set α1 = 0,
which corresponds to assuming that the displacement u(x, t) responds to the changes of
z(x, t) and the boundary conditions instantaneously.

The equations for the three-dimensional case are as follows:

α1
ut+∆t − ut

∆t
= ∇((λ + µ)(1− zt)

2∇ · ut+∆t) +∇ · (µ(1− zt)
2∇ut+∆t), (18)

α2
z̃t+∆t − zt

∆t
= ε∇ · (γ(x)∇z̃t+∆t)−

γ(x)
ε

z̃t+∆t + 2e(ut)(1− z̃t+∆t), (19)

zt+∆t = max(z̃t+∆t , zt). (20)

Mathematics 2021, 9, 2248 6 of 21

We set α1 = 0 also in this case. Using expression (13), Equation (18) can also be
written as

α1
ut+∆t,j − ut,j

∆t
= ∇ ·

(
(1− zt)

2st+∆t,j

)
(j = 1, 2, 3), (21)

where st+∆t,j is the jth column of the stress tensor σ at time t + ∆t.

3. Properties of the Coefficient Matrices Arising from Phase Field-Based Crack
Growth Simulation

In this section, we study the properties of the coefficient matrices arising from the
finite element discretization of the basic equations for the phase field-based crack growth
simulation. In particular, we prove that these matrices become symmetric positive definite
under certain assumptions. This is important to be able to apply the efficient incomplete
Cholesky preconditioner to these matrices.

3.1. The Two-Dimensional Case
The weak forms

We start with the time-discretized Equation (15) with α1 = 0. This is a Poisson equation
for ut+∆t with variable coefficient (1− zt)2, and it is well known that its weak form can be
written as follows: ∫

Ω
(1− zt)

2∇v · ∇ut+∆t dx = 0, (22)

where v(x) is a test function with v(x) = 0 on ΓD. Finding ut+∆t satisfying (15) with α1 = 0
is equivalent to finding ut+∆t satisfying (22) for arbitrary test functions v(x).

Next, we derive the weak form for (16). By multiplying (16) by a test function w(x),
integrating over Ω, using a slight extension of Green’s identity (see Lemma 1),∫

Ω
φ∇ · (f∇ψ) dx =

∫
Γ

φ f∇ψ · n ds−
∫

Ω
f∇φ · ∇ψ dx (23)

with φ = w, ψ = z̃t+∆t and f = γ(x), and noting that ∇z̃r+∆t · n = 0 on ΓN = Γ, we obtain∫
Ω

{
α2wz̃t+∆t + ∆t

(
εγ(x)∇w · ∇z̃t+∆t + w

γ(x)
ε

z̃t+∆t + w|∇ut|2z̃t+∆t

)}
dx

−
∫

Ω
w(α2zt + ∆t|∇ut|2)dx = 0. (24)

Equations (17), (22) and (24) constitute the weak forms for the two-dimensional case.

Properties of the coefficient matrix for ut+∆t

Now, we consider the properties of the matrix obtained by applying the finite element
discretization to the weak form (22). Let φ0(x) be a function satisfying the boundary
condition φ0(x, t) = g(x, t) (x ∈ ΓD) and {φj}m

j=1 be basis functions that are zero on ΓD. We
approximate ut+∆t by ût+∆t(x), which is a linear combination of these functions:

ût+∆t = φ0 +
m

∑
j=1

ajφj. (25)

Inserting this into (22) and choosing the test function as v = φi, we obtain

m

∑
j=1

{∫
Ω
(1− zt)

2∇φi · ∇φj dx
}

aj = −
∫

Ω
(1− zt)

2∇φi · ∇φ0 dx. (26)

Mathematics 2021, 9, 2248 7 of 21

By defining the matrix C = (cij) ∈ Rm×m and the vector d = (di) ∈ Rm by
cij =

∫
Ω
(1− zt)

2∇φi · ∇φj dx, (27)

di = −
∫

Ω
(1− zt)

2∇φi · ∇φ0 dx (28)

and letting a = (a1, a2, . . . , am)>, (26) can be written as follows.

Ca = d. (29)

Since cij = cji from (27), it is clear that C is a symmetric matrix. Moreover, for an arbitrary
nonzero vector p = (p1, p2, . . . , pm)>, we have

p>Cp =
m

∑
i=1

m

∑
j=1

pj pj

∫
Ω
(1− zt)

2∇φi · ∇φj dx

=
∫

Ω
(1− zt)

2

(
m

∑
i=1

pi∇φi

)
·
(

m

∑
j=1

pj∇φj

)
dx

=
∫

Ω
(1− zt)

2

∣∣∣∣∣∇ m

∑
i=1

piφi

∣∣∣∣∣
2

dx. (30)

Noting that ∇∑m
i=1 piφi is not identically zero from the linear independence of {φi}, we

know that the integral in the right-hand side is positive as long as ∀x, 0 ≤ zt(x) < 1. Hence,
C is positive definite, and we obtain the following theorem.

Theorem 1. If ∀x, 0 ≤ zt(x) < 1, then the coefficient matrix C of the equation for ut+∆t is
symmetric positive definite.

Properties of the coefficient matrix for z̃t+∆t

For the phase field variable z̃t+dt, the boundary condition consists of only the Neu-
mann boundary condition. We therefore choose the basis functions {ψj}m

j=1 and approxi-
mate z̃t+dt by the following function:

ẑt+dt =
m

∑
j=1

bjψj. (31)

Inserting this into (24) and choosing the test function as w = ψi gives

m

∑
i=1

[∫
Ω

{
α2ψiψj + ∆t

(
εγ(x)∇ψi · ∇ψj + ψi

γ(x)
ε

ψj + ψi|∇ut|2ψj

)}
dx
]

bj

=
∫

Ω
ψi(α2zt + dt|∇ut|2)dx. (32)

By defining the matrix E = (eij) ∈ Rm×m and the vector f = (fi) ∈ Rm by

eij =
∫

Ω

{
α2ψiψj + ∆t

(
εγ(x)∇ψi · ∇ψj + ψi

γ(x)
ε

ψj + ψi |∇ut |2ψj

)}
dx, (33)

fi =
∫

Ω
ψi(α2zt + ∆t|∇ut |2)dx (34)

and letting b = (b1, b2, . . . , bm)>, we have the following linear simultaneous equation.

Eb = f . (35)

Mathematics 2021, 9, 2248 8 of 21

Since eij = eji from (33), E is symmetric. Furthermore, the first term of eij, which is∫
Ω α2ψiψj dx, is a Gram matrix and is therefore positive definite if {ψi} is linearly indepen-

dent. It is also clear that the remaining parts of eij are also symmetric positive semidefinite.
Thus, we arrive at the following theorem.

Theorem 2. The coefficient matrix E of the equation for z̃t+∆t is symmetric positive definite.

Theorems 1 and 2 ensure that the CG method preconditioned by the incomplete
Cholesky decomposition can be used to solve (29) and (35).

3.2. The Three-Dimensional Case

We next consider the three-dimensional case described by (18) through (21). First, we
prepare the following lemma.

Lemma 1. Let Ω be a bounded region in the three-dimensional space, Γ its boundary, and n the
outward normal vector on Γ. Additionally, let φ(x), ψ(x) and f (x) be scalar fields and w(x) be a
vector field defined in a region containing Ω. Then, the following equations hold:∫

Ω
φ∇ · (f w)dx =

∫
Γ

φ f w · n dS−
∫

Ω
f∇φ ·w dx, (36)∫

Ω
φ∇ · (f∇ψ)dx =

∫
Γ

φ f∇ψ · n dS−
∫

Ω
f∇φ · ∇ψ dx, (37)

where
∫

Γ · dS denotes the surface integral on Γ.

Proof. First, we integrate both sides of the identity

∇ · (φ f u) = φ∇ · (f u) + f∇φ · u (38)

over Ω and apply Gauss’s theorem to the left-hand side to transform it to
∫

Γ φ f w · n dS.
By moving the terms, we have (36). Then, we obtain (37) by letting w = ∇ψ.

The weak forms

We derive the weak form for ut+∆t by considering a vector test function v(x) that
becomes 0 on ΓD, computing its inner product with both sides of (21), assuming α1 = 0,
and integrating the results over Ω (this is equivalent to deriving a weak form for each
component of (18) by multiplying it by a scalar test function and integrating the result over
Ω. This is because if we choose a special vector test function with its y and z components
identical to zero, we obtain the same result as if we multiply the x component of (18) by a

Mathematics 2021, 9, 2248 9 of 21

scalar test function). By letting φ = vq, f = (1− zt)2 and w = st+∆t,q (q = 1, 2, 3) in (36)
and summing both sides over q, we have

0 =
3

∑
q=1

∫
Ω

vq∇ ·
(
(1− zt)

2st+∆t,q

)
dx

=
3

∑
q=1

∫
Γ

vq(1− zt)
2st+∆t,q · n dS−

3

∑
q=1

∫
Ω
(1− zt)

2∇vq · st+∆t,q dx

= −
3

∑
j=1

3

∑
q=1

∫
Ω
(1− zt)

2 ∂vq

∂xj
(σt+∆t)jq dx

= −
3

∑
j=1

3

∑
q=1

∫
Ω
(1− zt)

2 ∂vq

∂xj

(
λδjq∇ · ut+∆t + 2µ(εt+∆t)jq

)
dx

= −
∫

Ω
λ(1− zt)

2(∇ · v)(∇ · ut+∆t) dx

−2
3

∑
j=1

3

∑
q=1

∫
Ω

µ(1− zt)
2 ∂vq

∂xj
(εt+∆t)jq dx, (39)

where, in the second equality, we use the fact that vq = 0 on ΓD and st+∆t,q · n = 0 on ΓN
and therefore the surface integral on Γ vanishes. By equating the right-hand side of (39) to
zero, we obtain the weak form for ut+∆t.

The weak form for z̃t+∆t is exactly the same as (24) for the two-dimensional case,
except that |∇ut|2 is replaced with 2e(ut).

Properties of the coefficient matrix for ut+∆t

For finite element discretization of the weak form for ut+∆t, we approximate each
component ut+dt,j (j = 1, 2, 3) of ut+dt as a linear combination of a function φj,0 satisfying
the boundary condition on ΓD and basis functions {φj,`}m

`=1 that become zero on ΓD:

ût+dt,j = φj,0 +
m

∑
`=1

aj,`φj,` (k = 1, 2, 3). (40)

Now, we choose as the test function v a function whose ith element is φi,k and whose other
elements are 0. Thus, vq = δqiφi,k. Inserting this along with (40) and the definition of εij
into the weak form for ut+∆t gives

0 = −
∫

Ω
λ(1− zt)

2 ∂φi,k

∂xi

3

∑
j=1

(
∂φj,0

∂xj
+

m

∑
`=1

aj,`
∂φj,`

∂xj

)
dx

−
3

∑
j=1

∫
Ω

µ(1− zt)
2 ∂φi,k

∂xj

(
∂φj,0

∂xi
+

m

∑
`=1

aj,`
∂φj,`

∂xi
+

∂φi,0

∂xj
+

m

∑
`=1

ai,`
∂φi,`

∂xj

)
dx.

Mathematics 2021, 9, 2248 10 of 21

By moving the terms containing the unknowns {aj,`} to the left-hand side and the other
terms to the right-hand side, we have

∫
Ω

λ(1− zt)
2 ∂φi,k

∂xi

3

∑
j=1

m

∑
`=1

aj,`
∂φj,`

∂xj
dx

+
3

∑
j=1

∫
Ω

µ(1− zt)
2 ∂φi,k

∂xj

(
m

∑
`=1

aj,`
∂φj,`

∂xi
+

m

∑
`=1

ai,`
∂φi,`

∂xj

)
dx

= −
∫

Ω
λ(1− zt)

2 ∂φi,k

∂xi

3

∑
j=1

∂φj,0

∂xj
dx

−
3

∑
j=1

∫
Ω

µ(1− zt)
2 ∂φi,k

∂xj

(
∂φj,0

∂xi
+

∂φi,0

∂xj

)
dx (41)

Equations (39) for i = 1, 2, 3 and k = 1, 2, . . . , m constitute linear simultaneous equations of
order 3m in {aj,`}. Let us write this equation as

Ca = d, (42)

where C is a 3m× 3m coefficient matrix, a is a 3m-dimensional unknown vector and d is a
3m-dimensional right-hand side vector. To investigate the positive definiteness of C, we
compute p>Cp, where p is a nonzero 3m-dimensional vector. To this end, we replace aj,`
with pj,` in the left-hand side of (41), multiply the result with pi,k and sum over i and k.
Then, after some calculations, we obtain

p>Cp =
∫

Ω
λ(1− zt)

2

(
3

∑
i=1

m

∑
k=1

pi,k
∂φi,k

∂xi

)(
3

∑
j=1

m

∑
`=1

pj,`
∂φj,`

∂xj

)
dx

+
1
2

3

∑
i=1

3

∑
j=1

∫
Ω

µ(1− zt)
2

(
m

∑
k=1

pi,k
∂φi,k

∂xj
+

m

∑
k=1

pj,k
∂φj,k

∂xi

)

×
(

m

∑
`=1

pi,`
∂φi,`

∂xj
+

m

∑
`=1

pj,`
∂φj,`

∂xi

)
dx

=
∫

Ω
λ(1− zt)

2

(
3

∑
i=1

m

∑
k=1

pi,k
∂φi,k

∂xi

)2

dx

+
1
2

3

∑
i=1

3

∑
j=1

∫
Ω

µ(1− zt)
2

(
m

∑
k=1

pi,k
∂φi,k

∂xj
+

m

∑
k=1

pj,k
∂φj,k

∂xi

)2

dx. (43)

It is clear from the expression in the middle that C is symmetric, since interchanging (i, k)
and (j, `) leaves it invariant. Furthermore, if ∀x, 0 ≤ zt(x) < 1, we have p>Cp ≥ 0 from
the last expression, so C is also positive semidefinite.

Finally, we investigate whether p>Cp = 0 can occur for some p 6= 0. By writing
wi = ∑m

k=1 pi,kφi,k and w = (w1, w2, w3)
>, we can rewrite (43) as

p>Cp =
∫

Ω
λ(1− zt)

2(∇ ·w)2dx +
1
2

3

∑
i=1

3

∑
j=1

∫
Ω

µ(1− zt)
2

(
∂wi
∂xj

+
∂wj

∂xi

)2

dx. (44)

For the right-hand side to be zero, under the assumption that ∀x, 0 ≤ zt(x) < 1, ∂wi
∂xj

+
∂wj
∂xi

must be identically zero for i, j = 1, 2, 3. This means that the strain tensor computed from
w can have only a rotational component. However, if the target solid is fixed at three or
more points, no such rotation is possible, and therefore the vector field w must be identical
to zero, implying that p = 0. Thus, we arrive at the following theorem.

Mathematics 2021, 9, 2248 11 of 21

Theorem 3. If ∀x, 0 ≤ zt(x) < 1, then the coefficient matrix C of the equation for ut+∆t is
symmetric positive definite.

Properties of the coefficient matrix for z̃t+∆t

The weak form for z̃t+∆t in the three-dimensional case is identical to that of the two-
dimensional case except that |∇ut|2 is replaced with 2e(ut). Since e(ut) is nonnegative
as well as |∇ut|2, by repeating the same argument that led to Theorem 2, we obtain the
following theorem:

Theorem 4. The coefficient matrix of the equation for z̃t+∆t is symmetric positive definite.

So far, we have assumed that both λ and µ are constants over Ω. However, a close
examination of the derivation of Theorems 3 and 4 reveals that they are valid even when
λ and µ are continuous functions of x. In some applications, λ(x) and µ(x) might have
discontinuities. In such a case, we can approximate them with smooth functions of x,
by using sufficiently fine mesh around the discontinuities.

4. Application of the Incomplete Cholesky Preconditioner and Its Parallelization

Now that we have established that the coefficient matrices are symmetric positive
definite, we can apply the IC preconditioner, which is more effective than diagonal scal-
ing. In this section, we first describe the IC conditioner briefly and then explain how to
parallelize it using the block multicolor ordering proposed by Iwashita et al.

4.1. The Incomplete Cholesky Preconditioner

Let A = (aij) ∈ Rn×n be a sparse symmetric positive definite matrix and consider
solving a linear simultaneous equation Ax = b by the conjugate gradient (CG) method.
In the preconditioned conjugate gradient method, one applies the CG method to the modified
equation (K−1 AK−>)(K>x) = K−1b, whose coefficient matrix K−1 AK−> is again SPD.
Here, K ∈ Rn×n is a nonsingular matrix designed so that K−1 AK−> has a smaller condition
number than A. Thus, the convergence of the CG method is accelerated. The diagonal
scaling preconditioner uses diag(

√
a11,
√

a22, . . . ,
√

ann) as K. This preconditioner is simple
and applicable to a wide class of matrices but not as effective in reducing the number of
iterations of the CG method.

In this study, we use a more powerful preconditioner based on the incomplete
Cholesky decomposition without fill-ins (the IC(0) decomposition). In this decompo-
sition, we compute the Cholesky decomposition of A approximately by allowing the
element l̃ij of the approximate Cholesky factor L̃ to be nonzero only when aij 6= 0. Thus,
fill-ins in the Cholesky decomposition are suppressed, and the computational cost and the
memory requirement are reduced. The algorithm of the IC(0) decomposition is shown as
Algorithm 1. Here, in the sums ∑

j−1
k=1 l̃2

jk and ∑
j−1
k=1 l̃ik l̃jk, zero terms are skipped to reduce

the computational work.

Algorithm 1: IC(0) decomposition
1: for j = 1 to n do
2: l̃jj = (ajj −∑

j−1
k=1 l̃2

jk)
1/2

3: for i = j + 1 to n if aij 6= 0 do

4: l̃ij = (aij −∑
j−1
k=1 l̃ik l̃jk)/ljj

5: end for
6: end for

In the incomplete Cholesky preconditioner, L̃ computed by Algorithm 1 is used as
K. While L̃ satisfies only an approximate relation A ' L̃L̃>, it is often a sufficiently good

Mathematics 2021, 9, 2248 12 of 21

approximation to the true Cholesky factor to make K−1 AK−> much better conditioned
than A.

For a sparse matrix A arising in the finite element method, a simplified IC(0) decompo-
sition is sometimes used instead of Algorithm 1. In this variant, the off-diagonal elements
are not updated and the fourth line of Algorithm 1 is replaced with l̃ij = aij/ljj. We use
this variant in this study.

4.2. Parallelization by the Block Multi-Color Ordering

The IC(0) decomposition algorithm inherits the sequential nature of the original
Cholesky decomposition. Suppose that i < j and aij 6= 0. Then, since l̃ii depends on l̃ij by
line 2 of Algorithm 1 and l̃ij depends on l̃jj by line 4, l̃ii depends on l̃jj. In the finite element
method using triangular (or tetrahedral) elements and piecewise linear basis functions,
the matrix element aij is nonzero if and only if the nodes i and j belongs to the same
element. The dependency thus caused gives rise to a difficulty in parallelizing the IC(0)
decomposition.

One of the techniques to resolve this problem is multi-color ordering [14]. In this order-
ing strategy, we assign colors 1, 2, . . . , c to the nodes in such a way that nodes belonging
to the same element have different colors and the number of required colors is minimal.
Then, we renumber the nodes so that the nodes with color 1 are numbered first, those with
color 2 are numbered next, and so on. Then, if nodes i and j have the same color, they do
not belong to the same element, and therefore aij = 0. Thus, the computation of l̃ii and l̃jj
can be done in parallel.

However, it has been pointed out that this reordering can degrade the quality of the
IC(0) preconditioner, thereby increasing the number of CG iterations. Consult [15] for more
details about this phenomenon. As a remedy, Iwashita et al. proposed block multi-color
ordering [7,8], which partitions the set of nodes into blocks and applies the multi-color
ordering to the blocks rather than to the individual nodes. It is known that this modification
is effective in retaining the quality of the IC(0) preconditioner, since the ordering within
each block can be made the same as the natural ordering. The block multi-color ordering
applied to a two-dimensional triangular mesh and the nonzero pattern of the resulting
matrix are depicted in Figures 2 and 3, respectively. Here, c = 4, and thus the matrix has a
4× 4 block structure. Each of the four diagonal blocks has a 2× 2 block diagonal structure,
reflecting the fact that there are two blocks of each color. Thus, the IC(0) decomposition
of these two (small) diagonal blocks can be performed in parallel. We use this ordering
strategy in our numerical experiments.

Figure 2. Block multi-color ordering for a two-dimensional triangular mesh.

Mathematics 2021, 9, 2248 13 of 21

Figure 3. The coefficient matrix ordered by block multi-color ordering.

5. Numerical Results

In this section, we apply the conjugate gradient method with the IC(0) preconditioner
to the linear simultaneous equations to compute the time evolution of u(x, t) and z(x, t)
in the phase field-based crack growth simulation. We parallelize the IC(0) preconditioner
using the block red-black ordering and evaluate its parallel performance, as well as the
convergence acceleration effect compared with the diagonal scaling preconditioner. Both
two and three-dimensional problems are used as test problems.

5.1. The Two-Dimensional Case

We used the 2-D phase field-based crack growth simulation code developed by
Takaishi et al. as a basis and replaced its linear equation solver, which uses the CG method
with diagonal scaling, with our solver. Our solver is based on the CG method with IC(0)
preconditioning and is thread-parallelized using multi-color ordering. We used four colors,
as in Figure 2, and set the number of blocks equal to four times the number of threads.
The program was written in C and OpenMP, and all computations were performed in
double precision arithmetic. In the numerical experiments in this subsection, we used an
Intel Xeon processor E5-2660 v2, which has 10 cores, and Intel C Compiler Ver. 16.0.0.109
with the -O3 option.

The computational region Ω used in the numerical experiments is as shown in Figure 1.
It is a square region (panel) with the initial crack Σ running from the left edge to the center.
The Dirichlet boundary conditions, which represent the forces to widen the crack, are
applied to the upper and lower edges. More specifically, the problem is defined as follows.

• Computational region: Ω = [−1, 1]× [−1, 1], Γ = ΓD + ΓN .
• Dirichlet boundary: ΓD = {(x1, x2) | x1 ∈ [−1, 1], x2 = ±1}.
• Neumann boundary: ΓN = {(x1, x2) | x1 = ±1, x2 ∈ [−1, 1]}.
• Time step: ∆t = 0.05.
• Parameters: α1 = 0, α2 = 10−3, γ = 0.5, ε = 10−3.
• Initial conditions: u(x, 0) = 0, z(x, 0) = ξ(x1 + 0.5, x2),

where ξ(x1, x2) = exp(−(x2/δ)2)/(1 + exp(x1/δ)).
• Convergence criterion of the CG method: relative residual ≤ 10−10.

We first checked the positive definiteness of the coefficient matrix C for u(x, t) (see (
27)) using a small problem with 11× 11 to 50× 50 mesh. Note that the matrix E for z(x, t)
(see (33)) is obviously positive definite because it is an O(∆t) perturbation of the positive
definite Gram matrix. It was confirmed by the numerical experiment that the smallest
eigenvalue of C is always positive, and thus the matrix C is positive definite. The smallest
eigenvalue λmin and the largest eigenvalue λmax of C for each mesh before, during and
after crack growth are shown in Table 1. We also show the change of the condition number
of C as the crack grows in Figure 4. It can be seen that the condition number leaps up
suddenly around t = 35, where the crack grows rapidly. It seems that this is because the

Mathematics 2021, 9, 2248 14 of 21

area of z(x, t) ' 1 is widened, causing the near-singularity of C, as can be inferred from (
30).

Table 1. The smallest and the largest eigenvalues of C for each mesh.

Point 11 × 11 30 × 30 50 × 50

λmin λmax λmin λmax λmin λmax

Before growth 1.000 493.486 0.182 520.190 0.063 522.691
During growth 0.544 424.596 0.070 428.934 0.015 504.204
After growth 0.376 424.558 0.065 428.934 0.014 504.204

0 20 40 60 80 100

10000

20000

30000

40000

Iterations

C
o
n
d
it

io
n
 n

u
m

b
e
r

11 x 11

30 x 30

50 x 50

Figure 4. Time evolution of the condition number of C.

The time evolution of z(x, t) for this problem is shown in Figure 5. Here, the mesh
size is 101× 101 and the period of simulation is from t = 0 to t = 34.5. Until t = 28.5,
z(x, t) does not change significantly and z(x, t) ' 1 only along the line connecting (−1, 0)
and (0, 0), showing that the crack exists only in this region. As time passes, the region of
z(x, t) ' 1 extends to the right edge of the region, meaning that the panel has broken into
two pieces. The evolution of z(x, t) for other initial conditions, which was computed using
a FreeFEM code, is shown in Appendix A.

Figure 5. Time evolution of the phase-field variable z(x, t).

We next evaluated the parallel acceleration of our linear equation solver by varying
the number of threads from 1 to 10. The results for 101× 101 and 201× 201 meshes are
shown in Figures 6 and 7, respectively. The number of blocks in the x1 and x2 directions,
which we denote by nbx and nby, are shown in Table 2. These numbers were determined
experimentally to achieve the best performance in each case, under the condition that
nbx× nby equals four times the number of threads. It can be seen that the solution of the
linear simultaneous equations for u and z achieves an acceleration of up to 5 and 4 times,
respectively, using 10 threads.

Mathematics 2021, 9, 2248 15 of 21

Table 2. Optimal combinations of nbx and nby.

Number of Threads 101 × 101 201 × 201

1 (1, 4) (1, 4)

2 (2, 4) (2, 4)

3 (2, 6) (2, 6)

4 (2, 8) (2, 8)

5 (2, 10) (2, 10)

6 (4, 6) (4, 6)

7 (14, 2) (14, 2)

8 (4, 8) (4, 8)

9 (6, 6) (6, 6)

10 (4, 10) (4, 10)

equation for z

equation for u

Number of threads

P
ar

al
le

l
sp

ee
d
u
p

Figure 6. Parallel acceleration for the 101× 101 mesh.

equation for z

equation for u

Number of threads

P
ar

al
le

l
sp

ee
d
u
p

Figure 7. Parallel acceleration for the 201× 201 mesh.

Finally, we compare the execution time of our solver with that of the original solver
using the diagonal scaling preconditioner. The results are shown in Figures 8 and 9.
Compared with the original solver, our solver achieved an acceleration of 7.2 and 7.4 times
for the 101× 101 and 201× 201 meshes, respectively.

Mathematics 2021, 9, 2248 16 of 21

diagonal scaling

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

parallel ICCG

7.2 times

Figure 8. Execution time for the 101× 101 mesh.

diagonal scaling

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

parallel ICCG

7.4 times

Figure 9. Execution time for the 201× 201 mesh.

5.2. The Three-Dimensional Case

For the three-dimensional case, we again used Takaishi et al.’s code and replaced
its linear equation solver with our parallel CG solver with IC(0) preconditioning and
multi-color ordering. We used a semi-structured mesh as shown in Figure 10, which is
unstructured in the (x1, x2) plane and is structured in the x3 direction, sliced it horizontally
into 2× (number of threads) panels, and colored them in an alternating manner using
two colors. Then, each pair of panels was allocated to one thread for parallel execution.
In the numerical experiments in this subsection, we used an Intel Xeon Gold 6148 Processor
with 20 cores (1 node of the Grand Chariot supercomputer at the Hokkaido University
Information Initiative Center) and Intel C Compiler Ver. 18.0.3 with the -O3 option.

thread 0

thread 0

thread 1

thread 1

Figure 10. Semi-structured mesh for the 3-D simulation and its ordering.

The test problem is crack growth in a rectangular parallelepiped region, defined
as follows.

• Computational region: Ω = [−1, 1]× [−1, 1]× [−0.5, 0.5], Γ = Γ(1)
D + Γ(2)

D + ΓN ;

• Dirichlet boundary: Γ(1)
D = {(x1,x2,x3) | x1 ∈ [−1, 1], x2 ∈ [−1, 1], x3 = ±0.5};

• Dirichlet boundary: Γ(2)
D = {(x1,x2,x3) | x1 ∈ [−1, 1], x2 = ±1, x3 ∈ [−0.5, 0.5]};

• Neumann boundary: ΓN = {(x1,x2,x3) | x1 = ±1, x2 ∈ [−1, 1], x3 ∈ [−0.5, 0.5]};

Mathematics 2021, 9, 2248 17 of 21

• Time step: ∆t = 0.05;
• Parameters: α1 = 0, α2 = 10−3, γ = 0.5, ε = 10−3;
• Initial conditions: u(x, 0) = 0, z(x, 0) = ξ(x1 + 0.5, x2),

where ξ(x1, x2) = exp(−(x2/δ)2)/(1 + exp(x1/δ));
• Convergence criterion of the CG method: relative residual ≤ 10−10.

The parallel acceleration of our solver for the 51× 51× 52 and 101× 101× 102 meshes
is shown in Figures 11 and 12, respectively. For the latter mesh, the solution of the linear
system for u and z was accelerated by up to 6.7 and 4.4 times, respectively. We also show
the acceleration of each component of our solver and the breakdown of the execution time
in Figures 13–16. Our solver consists of a matrix-vector product, forward and backward
substitutions corresponding to the application of L̃−1 and L̃−>, respectively, and other parts
such as vector additions, dot products and computation of norms. Figures 13 and 15 show
that the matrix-vector product and the forward/backward substitutions are reasonably
well accelerated, but Figures 14 and 16 reveal that the other parts are not accelerated at
all. The latter are difficult to parallelize efficiently because they are vector operations with
small computational work and a relatively large amount of data transfer. If this part could
be improved, our solver could achieve further acceleration.

equation for z

equation for u

Number of threads

P
ar

al
le

l
sp

ee
d

u
p

Figure 11. Parallel acceleration for the 51× 51× 52 mesh.

equation for z

equation for u

Number of threads

P
ar

al
le

l
sp

ee
d
u
p

Figure 12. Parallel acceleration for the 101× 101× 102 mesh.

Mathematics 2021, 9, 2248 18 of 21

Number of threads

P
ar

al
le

l
sp

ee
d

u
p

matrix-vector product

forward substitution

backward substitution

Figure 13. Parallel acceleration of each component for the 51× 51× 52 mesh.

Number of threads

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

matrix-vector product

forward substitution

backward substitution

others

Figure 14. Breakdown of the execution time for the 51× 51× 52 mesh.

Number of threads

P
ar

al
le

l
sp

ee
d

u
p

matrix-vector product

forward substitution

backward substitution

Figure 15. Parallel acceleration of each component for the 101× 101× 102 mesh.

Mathematics 2021, 9, 2248 19 of 21

Number of threads

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

matrix-vector product

forward substitution

backward substitution

others

Figure 16. Breakdown of the execution time for the 101× 101× 102 mesh.

Finally, we compare the execution time of our solver with that of the original solver in
Figures 17 and 18. Thanks to the use of the IC(0) preconditioner with multi-color ordering,
our solver attains an acceleration of 6.1 and 8.3 for the 51× 51× 52 and 101× 101× 102
meshes, respectively.

diagonal scaling

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

parallel ICCG

6.1 times

Figure 17. Execution time for the 51× 51× 52 mesh.

diagonal scaling

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

)

parallel ICCG

8.3 times

Figure 18. Execution time for the 101× 101× 102 mesh.

6. Conclusions

In this paper, we accelerated the linear equation solution part in phase field-based
crack growth simulation using the conjugate gradient method with IC(0) preconditioning.
To this end, we first analyzed the properties of the coefficient matrices both for the dis-
placement u(x, t) and the phase field z(x, t) and proved that they are symmetric positive
definite under certain conditions. Thus, the use of the IC(0) preconditioning is justified.
Then, we parallelized the IC(0) preconditioner using the block multi-color ordering and
evaluated its performance on multicore processors. The experimental results show that
our solver scales well both for the two and three-dimensional problems and achieves an
acceleration of several times over the original solver based on the diagonally scaled CG

Mathematics 2021, 9, 2248 20 of 21

method. Our future work will include the distributed-memory parallelization of our solver
and its application to real-world crack growth problems.

Author Contributions: Conceptualization, T.T. and Y.Y.; theoretical analysis, G.I. and Y.Y.; coding,
G.I. and T.T.; parallelization and optimization, G.I.; numerical experiments, G.I. All authors have
read and agreed to the published version of the manuscript.

Funding: This study is partially supported by JSPS KAKENHI Grant Numbers 17H02828, 17K19966
and 19KK0255.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The parallel ICCG solver developed in this work, as well as the
FreeFEM code used in the Appendix, is available from the authors upon request. Some of these
programs are also downloadable from the following URL: https://github.com/yusakuyamamoto/
Crack-growth-simulation, accessed on 20 August 2021 .

Acknowledgments: The authors thank Prof. Takaharu Yaguchi of Kobe University and Prof. Shuhei
Kudo of The University of Electro-Communications for valuable discussion. They are also grateful
to Prof. Takeshi Fukaya of Hokkaido University for providing computational environments for the
three-dimensional problem. Part of our numerical experiments were performed on the Grand Chariot
supercomputer at Hokkaido University Information Initiative Center.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Two-Dimensional Crack Growth Simulation for Various
Initial Conditions

Here, we present the results of the two-dimensional crack growth simulation for
various initial conditions. The computational region is the same as that used in Section
5.1, and a FreeFEM [16] code was used for the simulation. The initial conditions used are
as follows:

1. z(x, 0) = ξ(−x1 + 0.5, x2 + 0.2) + ξ(x1 + 0.5, x2 − 0.2)
2. z(x, 0) = ξ(−x1 + 0.5, x2 + 0.8) + ξ(x1 + 0.5, x2 − 0.8)
3. z(x, 0) = ξ(−x1 + 0.5, x2 + 0.2) + ξ(x1 + 0.5, x2 − 0.2) + ξ(−x1 + 0.5, x2)

Here, the function ξ(x) is as defined in Section 5.1 and the initial condition for u is the same
as that used in Section 5.1. Cases 1 and 2 correspond to the case of two initial cracks: one
at the left and another at the right. The vertical distance between the cracks is small for
case 1 and large for case 2. Case 3 corresponds to the case of three initial cracks: two at the
left and one at the right. The time evolution of z(x, t) for these cases is shown in Figures
A1–A3 as contour maps. We used a 50× 50 mesh for cases 1 and 2. For case 3, it turned
out that this mesh is too coarse, so we used a 100× 100 mesh. It can be seen that all of the
simulations give physically plausible results.

Figure A1. Time evolution of the phase-field variable z(x, t) (Case 1).

https://github.com/yusakuyamamoto/Crack-growth-simulation
https://github.com/yusakuyamamoto/Crack-growth-simulation

Mathematics 2021, 9, 2248 21 of 21

Figure A2. Time evolution of the phase-field variable z(x, t) (Case 2).

Figure A3. Time evolution of the phase-field variable z(x, t) (Case 3).

References
1. Francfort, G.A.; Marigo, J.-J. Revisiting Brittle Fracture as an Energy Minimization Problem. J. Mech. Phys. Solids 1998, 46,

1319–1342.
2. Kimura, M.; Takaishi, T.; Alfat, S.; Nakano, T.; Tanaka, Y. Irreversible phase field models for crack growth in industrial applications:

Thermal stress, viscoelasticity, hydrogen embrittlement. J. Fract. Mech. 2021, 3, 781
3. Takaishi, T. and Kimura, M. Phase field model for mode III crack growth. Kybernetika 2009, 45, 605–614.
4. Takaishi, T. Numerical simulations of a phase field model for mode III crack growth. Trans. Jpn. Soc. Ind. Appl. Math. 2009,

19, 351–369. (In Japanese)
5. Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D 1998, 63, 410–423.
6. Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; Wiley-VCH: Weinheim Germany 2010.
7. Iwashita, T., Nakashima, H. and Takahashi, Y. Algebraic block multi-color ordering method for parallel multi-threaded sparse

triangular solver in ICCG method. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, Shanghai, China, 21 May 2012 ; pp. 474–483.

8. Iwashita, T.; Li, S.; Fukaya, T. Hierarchical block multi-color ordering: A new parallel ordering method for vectorization and
parallelization of the sparse triangular solver in the ICCG method. CCF Trans. High. Perform. Comput. 2020, 2, 84–97.

9. Griffith, A.A. The Phenomena of Rupture and Flow in Solids. Phil. Trans. R. Soc. Lond. 1921, A221, 163–198.
10. Bourdin, B.; Francfort, G.A.; Marigo, J.-J. Numerical Experiments in Revisited Brittle Fracture. J. Mech. Phys. Solids 2000, 48,

797–826.
11. Ambrosio, L.; Tortorelli, V.M. On the approximation of free discountinuity problems. Boll. Un. Mat. Ital. 1992, 7, 105–123.
12. Akagi, G.; Kimura, M. Unidirectional evolution equations of diffusion type. J. Differ. Equ. 2019, 266, 1–43.
13. Visintin, A. Models of Phase Transitions; Birkhaeuser: Basle Switzerland 1996.
14. Saad, Y. Iterative Methods for Sparse Linear Systems; SIAM: Philadelphia, PA, USA , 2003.
15. Iwashita, T., Nakanishi, Y. and Shimasaki, M. Comparison criteria for parallel orderings in ILU preconditioning. SIAM J. Sci. Com-

put. 2005, 26, 1234–1260.
16. FreeFEM. Available online: https://freefem.org/ (accessed on 20 August 2021).

https://freefem.org/

	Introduction
	Crack Growth Simulation Based on the Phase Field Model
	The Two-Dimensional Case
	The Three-Dimensional Case
	Temporal Discretization

	Properties of the Coefficient Matrices Arising from Phase Field-Based Crack Growth Simulation
	The Two-Dimensional Case
	The Three-Dimensional Case

	Application of the Incomplete Cholesky Preconditioner and Its Parallelization
	The Incomplete Cholesky Preconditioner
	Parallelization by the Block Multi-Color Ordering

	Numerical Results
	The Two-Dimensional Case
	The Three-Dimensional Case

	Conclusions
	Two-Dimensional Crack Growth Simulation for Various Initial Conditions
	References

