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Abstract: This paper provides an accurate chronology of the Spanish reference business cycle adapt-
ing a multiple change-point model. In that approach, each combination of peaks and troughs dated
in a set of economic indicators is assumed to be a realization of a mixture of bivariate Gaussian
distributions, whose number of components is estimated from the data. The means of each of these
components refer to the dates of the reference turning points. The transitions across the components
of the mixture are governed by Markov chain that is restricted to force left-to-right transition dynamic.
In the empirical application, seven recessions in the period from February 1970 to February 2020 are
identified, which are in high concordance with the timing of the turning point dates established by
the Spanish Business Cycle Dating Committee (SBCDC).

Keywords: business cycles; turning points; finite mixture models; Spain

1. Introduction

Although it seems a truism truth, the business cycle turning points, the dates of
the transitions from expansion to recession and vice versa, are not directly observable.
Indeed, determining the reference cycle peaks and troughs is very crucial for policy makers,
for businesses and for the academia because they are used to determine the causes of
recessions, to design public policies, to guide investors, and to test competing economic
theories, among others.

Aware of this requirement, Martin Feldstein established a Business Cycle Dating Com-
mittee of National Bureau of Economic Research (NBER) scholars and gave it responsibility
for business cycle dating when he took over the institution in 1978. In sum, the committee
looks at various coincident indicators to perform judgments the dates of the historical
dates of the past US turning points. Following these guidelines, other countries have
created business cycle dating committees in the last years. Some examples are the Euro
Area Business Cycle Dating Committee, created in 2002 by the Center for Economic Policy
Research and the Spanish Business Cycle Dating Committee (SBCDC), created in 2014 by
the Spanish Economic Association.

Despite the interest in establishing and maintaining a historical chronology of the
business cycle, the dating methodology of the Committees has received some criticism as
their decisions represent the consensus of individuals. Thus, their dating methodology is
neither transparent nor reproducible. In addition, the dating committees date the turning
points with a considerable lag, which last more than two years in some cases. This reduces
the interest of the committees’ decisions to provide real-time assessments of the business
cycle changes.

To overcome these drawbacks, we propose a method date the historical business
cycle turning points for Spain, with the advantage of being systematic, comprehensive,
and transparent. Following the business cycle concept of [1], we consider the reference
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cycle as a set of dates of wave-like movements occurring at about the same time and in
many economic activities. Its computation requires collecting a number of coincident
indicators and determining global change-points, from which the reference cycle can be
extracted using average-then-date or date-then-aggregate methods. The first case consists
on summarizing the coincident information in a single composite indicator from which the
turning points are determined. The second case consists on identifying turning points in the
individual indicators from which the common turning points are then estimated. Although
the literature has focused primarily on average-then-date methods, the date-then-average
alternative has recently proved to be successful in dating the turning points. Examples of
the latter are [2–6].

Against this background, ref. [7] recently proposed a novel date-then-average method-
ology that views the reference cycle as a multiple change-point mixture model. They con-
sider that the reference cycle is a collection of increasing change-points (peak-trough dates)
that segment the time span into non-overlapping episodes. With the help of a Markov-
switching mixture model representation, the method classifies the dates and the specific
turning points, which are viewed as realization of a mixture of Gaussian distributions.

This method has a number of important advantages over other date-then-average
methods. First, the number of historical change-points are data-driven, so the estimates
are not conditioned by the known occurrence of a phase shift as in [5,6]. Second, the
estimation is simple as it is estimated using standard Bayesian techniques of finite Markov
mixture models. Third, the reference dates are population concepts, which allows us to
make inferences in contrast to [3,4]. Four, missing data for some coincident indicators is
not a problem as they only imply determining some reference cycles from less observations.
Five, the detection of phase changes in real time is a simple as it reduced to a classification
problem. This method was successfully applied to date the US business cycle by using
several monthly coincident indicators.

This paper addresses the challenge of applying this methodology to achieve the
reference cycle dates in Spain in a quarterly basis. This poses us several difficulties. Our
first challenge was collecting a set of coincident economic indicators with homogeneous
quality information throughout the entire sample given that the Spanish economy has
suffered from dramatic transformations in the last five decades, especially in the 1970s
and 1980s. Our second challenge was adapting the method to a quarterly basis. In order
to date the turning points of each quarterly indicator, we employ either the so-called
BBQ algorithm—proposed by [1], who extend the monthly algorithm of [8] to a quarterly
basis, or the parametric Markov-switching procedure—proposed by [9]—depending on
the characteristics of each indicator.

We evaluate the extension of the [7] algorithm developed in this paper in terms of
its capacity to generate the SBCDC reference cycle for Spain. The results of this exercise
suggest that our approach is able to identify the SBCDC turning points with high accuracy.
Leaving aside the period of the late 1970s and early 1980s, where some deviations occur
with respect to the chronology established by the SBCDC, the method clearly identifies
the crisis of the 1990s, the double dip with which Spain received the impact of the Great
Recession and, finally, the current impact of the COVID-19 pandemic. Thus, we consider
that this method can be very useful to complement and guide the work carried out by the
SBCDC in dating the Spanish business cycles.

The rest of the paper is organized as follows. Section 2 summarizes the methodology
proposed in [7] which estimation technique is described in Section 3. Section 4 presents the
empirical application to date the reference cycle of the Spanish reference cycle since the
1970s. Finally, Section 5 concludes.

2. Multiple Change-Point Model

Reference cycle dates can be obtained from the estimates of a multiple change-point
model with an unknown number of K breaks. In practice, we have data in the bivariate
time series τ = {τ1, . . . , τN} of the specific pairs of turning point dates collected from a set
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of coincident economic indicators. Each of these turning points, τi, contains a peak date,
τP

i , and a trough date, τT
i , and determines the start and the end of one specific recessions

for a particular coincident indicator. For estimation purposes, the estimated peaks and
troughs dates from set of coincident indicators are sorted increasingly, which implies that
τP

i ≤ τP
i+1 and τT

i ≤ τT
i+1, for i = 1, . . . , N − 1.

The approach described in Camacho et al. (2021) assumes that each individual pair of
peak and trough dates in a reference cycle k, τi, is a realization of a density conditioned
by τi−1 = {τ1, . . . , τi−1} that depends on the two dimension vector µk = (µP

k , µT
k )
′ and

a covariance matrix Σk. The turning points of the reference cycle are the means of these
densities and the specific turning points are clustered around their means. The means and
covariances change at unknown time periods, which produce a segmentation of the time
span occupied by the k = 1, 2, . . . , K business cycles.

We collect the distribution parameters in the reference cycle k in θk = (µk, Σk) and
assume that these parameters remain constant within each regime and change their values
when a regime change occurs. Then, given that the state is k, τi is drawn from the population
given the conditional density

τi|Ti−1, θk ∼ p(τi|τi−1, θk) (1)

for k = 1, . . . , K, where p(τi|τi−1, θk) is the Gaussian density N(µk, Σk). Let us collect all
the unknown distribution parameters in θ = (θ1, . . . , θK).

This multiple change-point model can be formulated in terms of an integer-valued
unobserved state variable s referred to as the state of the system and that controls the regime
changes. In particular, the realizations of the discrete random variable are collected in
S = (s1, . . . , sN), where si = k means that τi is drawn from p(τi|Ti−1, θk), with k = 1, . . . , K.

To specify the statistical properties of si, we assume that it follows a first-order Markov
chain, which means that the state probability of each period depends only on the state
attained in the previous period. In this case, the probability of moving from regime l to
regime k at observation i conditional on past regimes and past observations τi−1 is

Pr(τi = k|si−1 = l, . . . , s1 = w, τi−1) = Pr(si = k|si−1 = l) = plk. (2)

In this context, the transition probabilities are constrained to reflect the one-step ahead
dynamics of the multiple change-point specification. In particular, the order constraints of
the break point model hold when the transition probabilities hold the following restrictions

Pr(si = k|si−1 = l) =


pll if k = l 6= M
1− pll if k = l + 1
1 if l = K
0 otherwise

. (3)

The restrictions imply that when the process reaches one regime, for example regime
l, it remains in this regime with probability pll or moves to regime l + 1 with a probability
1− pll . The process starts at regime 1 and moves forward (never backward) to the next
regime until it reaches regime K in which the process stays permanently. Let us collect the
transition probabilities {p11, . . . , pK−1K−1} in the vector π.

3. Bayesian Estimation

In sum, the focus is on computing inference on the allocations si, which classify the
specific peak-trough pairs τi into one of the K reference cycles. To perform the estimation of
the parameters collected in θ and π and the inference on the set of allocations S, Chib (1998)
describes a Markov Chain Monte Carlo (MCMC) algorithm. From the set of observations,
the algorithm is implemented using the Gibbs sampler by simulating the conditional
distribution of the parameters given the states, and the conditional distribution of the states
given the parameters.
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3.1. Simulation of the Parameters

Let us consider sampling the transition probabilities and the parameters of the Gaus-
sian distributions given the observations and their corresponding allocations, which are
assumed to be independent. Starting with the transition probabilities, ref. [10] showed that
the full conditional distribution π|S, τ is independent of τ given S. Following [11], we sim-
ulate the transition probabilities from π|S using independent Beta priors, pkk ∼ Beta(a, b).
The posteriors remain independent and also follow Beta distributions

pkk|S ∼ Beta(a + nkk, b + 1), (4)

where nkk is the number of periods the process stays in regime k, with k = 1, . . . , K. Note
that NKK+1 = 1.

To sample θ conditioned to the data and their allocations, we propose an indepen-
dent normal inverse-Wishart prior. Conditional on the mean µk the prior of the inverse
covariance matrix is Σ−1

k ∼ W(c0, C−1
0 ) and the posterior is Σ−1

k |S, τ, µk ∼ W(ck, C−1
k ),

where

ck = c0 + Nk (5)

Ck = C0 + ∑
i:si=k

(τi − µk)(τi − µk)
′
. (6)

In addition, conditional on the covariance matrix, the prior distribution for the means
is µk ∼ N(b0, B0), and its posterior is µk|S, τ, Σk ∼ N(bk, Bk), where

Bk =
(

B−1
0 + Nk(S)Σ−1

k

)−1
(7)

bk = Bk(S)

(
B−1

0 b0 + Σ−1
k ∑

i:si=k
τi

)
. (8)

Given the data, one can easily sample means and covariances from their conditional
posterior distributions.

3.2. Simulation of the States

Let us consider now the question of sampling the states from the distribution S|θ, π, τ.
Using the statistical properties of the Markov chain described above, this distribution holds

Pr(S|θ, π, τ) = Pr
(

sN |θ, π, τN
) N−1

∏
i=1

Pr
(

si|si+1, θ, π, τi
)

, (9)

where the last of these distributions is degenerated because we assume that the process
starts at s1 = 1.

Reference [11] showed that each of the probabilities in expression (9) holds

Pr
(

si|si+1, θ, π, τi
)

∝ Pr(si+1|si)Pr
(

si|θ, π, τi
)

. (10)

The first ingredient in this expression refers to the transition probabilities, which are
simulated from the distribution.

The second component in (10), Pr
(
si|θ, π, τi), is known as the filtered probability.

They can be calculated recursively in an easy way from the data. Let Pr
(
s0 = k|θ, π, τ0),

with k = 1, . . . , K, be an initial guess of the probability. In the empirical example, our initial
guess is Pr

(
s0 = 1|θ, π, τ0) = 1, and Pr

(
s0 = k|θ, π, τ0) = 0 for k = 2, . . . , K. In a first step,

we compute the prediction probabilities conditional on the information up to turning point
i− 1

Pr
(

si = k|θ, π, τi−1
)
=

K

∑
l=1

plk Pr
(

si−1 = l|θ, π, τi−1
)

(11)
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In a second step, the sample is enlarged with the i-th peak-trough and the filtered
probability is updated in the following way

Pr
(

si = k|θ, π, τi
)
=

Pr
(
si = k|θ, π, τi−1)p

(
τi|θk, τi−1)

p
(
τi|θ, π, τi−1

) , (12)

where p
(
τi|θ, π, τi−1) =

K
∑

k=1
Pr
(
si = k|θ, π, τi−1)p

(
τi|θk, τi−1). Now, one can obtain the

conditional distribution of the states, Pr
(
si|si+1, θ, π, τi), writing the probabilities first for

the final period and then proceeding backwards to the first period.
The unconstrained MCMC sampler described above could present label switch-

ing problems, which makes the samples simulated from the posterior distribution non-
identifiable because different parameterizations can induce similar mixture distributions
leading to multiple local maxima. To handle label switching in mixture models, we use
the identifiability constraint µP

k < µT
k < µP

k+1 for all k = 1, . . . , K. In words, the constraint
implies that each sample produces a segmentation of the time span. Although there are
several strategies to deal with this issue, we follow [12] and use rejection sampling, which
implies discarding the samples for which the restriction does not apply.

3.3. The Number of Clusters

For exposition purposes, the number of clusters, K, has been assumed as known so far.
In empirical applications, the optimal number of components of the mixture model needs
to be determined by the data. Unfortunately, there is no definite method in the existing
literature on data clustering to obtain the correct choice of K. To ensure robustness of the
results, we describe in this section the set of the most commonly used methods.

One strand of the literature focuses on likelihood-based selection methods. In its
straightforward form, one could choice the number of components that maximizes the
marginal likelihood, log p

(
τ|θ̂K, MK

)
, from the set {1, . . . , K∗}. In this case, the upper

bound K∗ is determined by the user, MK is the mixture that uses K components, and θ̂K is
the vector of the dK model parameters that achieve the maximum of the likelihood.

Although simple, this unrestricted selection method would select a large number
of components because increasing the number of cluster tends to increase the likelihood
regardless of the accuracy of the resulting mixture. To overcome this drawback, we
also consider selection methods that penalize for model complexity. First, we consider
selecting the model with the number of components that minimizes the Akaike’s criterion
AICK = −2 log p

(
y|θ̂K

)
+ 2dK. Second, we also consider choosing the mixture with the

number of components for which Schwarz’s criterion BICK = −2 log p
(

y|θ̂K

)
+ dK log(N)

reaches a minimum. It has been documented in the literature that AIC tends to choose
models with higher number of components than BIC.

Other strand of the literature proposes choosing the number of components that
optimizes the cluster quality. For this purpose, it is convenient to define the entropy of a
clustering algorithm as the sum of the individual cluster entropies

ENK = −
N

∑
i=1

K

∑
k=1

p(si = k|τi, θ) log p(si = k|τi, θ). (13)

In this expression, larger entropy values indicate worse clustering solutions in terms of
quality classification, where the value will be 0 for an ideal cluster solution.

In this context, it is also interesting to combine model fit and good partitioning by
including the entropy in the likelihood-based model selection criteria. In particular, we
also consider selecting the model whose number of clusters minimizes BICK + ENK, which
penalizes both model complexity and model misclassification simultaneously.
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A final model selection criteria used in this paper focused in the Bayes factors. To
state this approach, let Ki and Kj be the number of clusters of two different models, i and j,
respectively. Let Bij be the ratio of the integrated likelihood of model i over that of model j,
which is commonly known as the Bayes factor. Reference [13] suggest that the difference
between the BICs of models i and j is a good approximation of twice the logarithm of the
Bayes factor:

2 log
(

Bij
)
≈ BIC(Ki)− BIC(Kj). (14)

An increase in this quantity means that there is more evidence in support of a model with
Kj clusters relative to a model with Ki clusters. In an influential contribution, ref. [14]
suggest a rule of thumb for pairwise comparison in empirical applications. Differences
between the BIC of the models lower than 2 correspond to weak evidence in favor of the
model with Kj clusters. BIC differences between 2 to 6 indicate positive evidence, between
6 and 10 suggest strong evidence, and greater than 10 show very strong evidence.

3.4. Handling Data Problems

The application of the mixture model described above leads to two challenges related
to continuity and missing observations. The first challenge implies dealing with data
sampled at quarterly frequency when the model is designed for Gaussian distributions,
which are defined for continuous data. Let XXXX.q be the quarter q of the year XXXX that
refer to the quarterly date of a particular turning point. In this case, the distance between
the first and the second quarter of the same year is lower than the distance between the
last quarter of a year and the first quarter of the following year. To solve this problem,
prior to using the data to estimate the model, we transform the peak-trough dates XXXX.q
into XXXX.d, where d = 1/4(q− 1). This transformation can be changed back easily to
recover the quarterly calendar dates.

Moving to the second challenge of the empirical applications, it is worth recalling
that the economic datasets are usually collected with incomplete statistical information. In
particular, some time series are available over a diminished time span and show missing
observations at the beginning of the sample as the data are collected late. Some others show
missing observations at the end of the sample due to the different publication lags that
characterizes the flow of economic information in real time. In our context, this so-called
ragged edge issue is rarely a problem in practice. The reason is that since it only implies
some of the components of the mixture are going to be estimated from a lower number of
turning point dates.

4. Empirical Application

In this section we apply the proposed automatic algorithm to generate the reference
cycle of the Spanish economy. Using the multiple change-point model described above to
date the reference cycle turning point dates requires several steps in practice. To serve as
an example to other application, we review these steps in this section.

4.1. Collect a Set of Business Cycle Indicators

The national Business Cycle Dating Committees of the National Bureau of Economic
Research (NBER) examines the behavior of a broad set of economic indicators. Embedded
in concept of a national recession is that it influences not only a particular sector but to
the total economy. Thus, the committees emphasize using economy-wide measures of
economic activity. Typically, the committees view real gross domestic product (GDP) as it is
commonly viewed as the more comprehensive measure of the aggregate economic activity.

Figure 1 shows that GDP does not increase every single year in Spain. Instead, there
are particular identifiable episodes during which GDP sharply falls. The downturns occur
at around the periods designated as recessions by the SBCDC, which are marked as shades
areas in the graph. (Information about the Committee and the Spanish turning point dates
can be found at http://asesec.org/CFCweb/en/ accessed on 20 May 2021). The committee
identified six recessions since the 1970s: the impact of the two oil crises in the 1970s and

http://asesec.org/CFCweb/en/
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early 1980s, the brief crisis of the 1990s, the double dip caused by the global financial crisis
in 2008 and the European sovereign debt crisis in 2010 and, finally, the economic impact
of COVID-19 pandemic. To determine when a particular recession begins and ends, the
committee uses judgments and their decisions are, therefore, difficult to replicate.

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

100

150

200

250

300

Figure 1. Business cycle SBCDC. Notes: This figure displays with grey shadow bars the recessions
established by the Spanish Business Cycle Dating Committee (SBCDC). The vertical red lines repre-
sent the peaks and troughs detected by the BBQ applied to the GDP. Finally, the blue line shows the
evolution of GDP.

To overcome this inconvenient, in this paper we date peaks and troughs from economic
indicators using the so-called BBQ mechanical algorithm, which is an implementation of the
methodology outlined in [15]. In short, the non-parametric algorithm provides peaks and
troughs of a time series by following three steps: (i) it estimates the possible turning points
in the series by picking the local maxima and minima; (ii) it ensures alternating the troughs
and the peaks; and (iii) it applies a set of censoring of rules that meet pre-determined
criteria of the duration and amplitudes of phases and complete cycles. For example, a
complete cycle must last four quarters at least. In addition, the minimum duration of a
recession is two quarters. To ease of comparison, the peaks and trough dates identified
with BBQ are plotted in Figure 1 as red vertical lines. As can be seen in the figure, there
is no instance in which a SBCDC recession is not identified by the BBQ algorithm, which
picks up an additional recession at the begging of the eighties.

Although GDP is the most prominent indicator, the committees emphasize that a
recession typically implies a downturn that is widespread across the broad economy. Thus,
they consider a variety of indicators to determine turning points. In this paper, we have
collected a broad set of 51 specific indicators of both aggregate activity and employment,
and others of a sectoral nature, which includes both hard and soft indicators. Table A1 in
the Appendix A shows the details of the definitions and the acronyms that will be used
in the rest of the work, as well as the sources and samples. Overall, the sample begins in
February 1970 and ends in March 2020, although each series has a different length and
combines monthly and quarterly frequencies. The monthly series are transformed into
quarterly by taking the average of the corresponding 3 months, although all series have
been previously seasonally adjusted to their original frequency.

The specific business cycle turning points have been dated by applying either the BBQ
algorithm, when the series have a trend, or the Markov-switching procedure, when they
are represented by a composite index or growth rates. Figure 2 displays the series-specific
recessions, where the recession of a time series (in red) is the period from a BBQ peak to
a BBQ trough or the periods with a probability of a recession determined by a Markov-
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switching model is above 0.5. In addition, Figure 3 displays the estimated probability that
all indicators are in recession in each quarter, adding the SBCDC turning points as red
vertical lines.
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Figure 2. Heat map of specific indicators. Notes: This figure represents the periods of expansion
(blue) and recession (garnet) for each specific indicator. The switch of the states has been determined
from the turning points computed with the Bry–Boschan algorithm.
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Figure 3. Diffusion index of specific indicators. Notes: The blue bars show the percentage of series
that are in recession in each period. The garnet boxes represent the recessions established by the
Spanish Business Cycle Dating Committee (SBCDC).

Summing up, around the dates that the SBCDC identifies recessions there is a wide
set of specific indicators that show a recession. However, there are indicators that either
advance (usually related to the industrial sector), delay or extend the duration of recessions
(for example, those associated with the labor market). Furthermore, not all the specific
indicators have the same behavior in each recession.
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4.2. Select a Set of Highly Coincident Indicators

Although Figures 2 and 3 show that the set of indicators would be useful for ascer-
taining whether a turning point has occurred, the figures evidence a high dispersion of
the specific turning point dates around the beginning and end of the recessions. As the
multiple change-point method assumes that the series being dated have been chosen to be
coincident indicators, we strongly recommend testing for this in advance by checking how
synchronized the cycles are.

For this purpose, we address the issue of synchronization between each indica-
tor and the SBCDC chronology by computing the index of concordance advocated by
Harding and Pagan (2002), which measures the percentage of time units spent in the same
phase. The index, whose values are plotted in Figure 4, confirms that there is a relatively
high degree of synchronization within the SBCDC business cycles. To ensure strong syn-
chronization, we pick only those indicators for which the concordance index exceeds 90%.
Thus, the final set of indicators that exhibit the highest correlation with the SBCDC chronol-
ogy is formed by six time series: SSAI, SAI, ESIS, ESIC, GDP, and PC. This selection, which
combines aggregated, sectorial, and hard and soft indicators, is not very different from the
one commonly used by the NBER. Employment indicators are not capable of pinpointing
the Spanish cycle since they have a lagging behavior during expansions.
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Figure 4. Concordance index of specific indicators. Notes: This figure displays the concordance index
of each indicator and the business cycle established by the Spanish Business Cycle Dating Committee
(SBCDC). The garnet line corresponds with a value of 0.9.

We use the SBCDC chronology to select the coincident indicators, given the high
coincidence of the modes detected in the set of indicators and the dating of the committee.
Nevertheless, it should be noted that our methodology does not require any prior informa-
tion or the existence of any dating committee. Alternatively, we could select the optimal
set of coincident indicators with a search algorithm applied to different combinations of
indicators, where the optimal combination could be selected on the basis of the number of
clusters, the entropy, and the variance of the confidence intervals. This procedure could
allow us to discard leading or lagging indicators and to choose the combination of indica-
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tors that produces the largest modes. Since this option is computationally more expensive,
external information of experts, such as that of the SBCDC, can be used to speed up the
process.

Figure 5 provides a preliminary inspection of the individual chronologies of turning
points. In particular, the figure displays the kernel density of the turning points dated with
either BBQ or the Markov-switching procedure. The bivariate distribution of the specific
peak-trough dates exhibits several modes, which cluster the turning points around the
periods of SBCDC-referenced peaks and troughs. In particular, the figure exhibits several
modes around the 1970s and the beginning of the 1980s, the early 1990s, the first decade
of the new century and, finally, a large concentrated mode at the end of the sample, in
2020. The figure also shows a larger variance of the turning point dates in the 1970s and
early 1980s, probably due to the lower quality of the indicators in the late years of Franco’s
dictatorship and the unstable political transition towards democracy. By contrast, this
figure shows a lower dispersion of the specific turning point dates in the 1990s, around the
three modes of the new century related with the double-dip, and in 2020, and the specific
turning points shrink toward the modes.

Figure 5. Bivariate distribution of specific turning point dates. Notes: The figure plots the bivariate
kernel density of the specific pairs of peak-trough dates.

4.3. The Number of Clusters

Prior to determining the number of clusters, we need to specify whether the first phase
of reference cycle starts in a recession or an expansion. In our case, we determine that the
Spanish economy was in expansion in February 1970 because the first turning point for all
the indicators that were available in this period was a peak. In addition, the last turning
point in the six indicators is a peak, which implies that the pairs of turning points are not
complete. In this case, we create artificial troughs by adding the average duration of the
preceding recessions to the peaks.

As a first approximation to the determination of the number of clusters, Figure 5
suggests that the tentative number of components of the mixture could be six or seven.
These numbers refer to the distinct local maxima of the kernel distribution of pairs of peaks
and troughs. The main discrepancy between the modes and the SBCDC referenced turning
points appears at the end of the 1970s and the early 1980s. This period seems to include an
additional cluster.
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To formally determine the number of clusters, we estimate mixture models MK with
different number of clusters K = 1, . . . , K∗, being the maximum number of clusters K∗ = 8
as suggested by visual inspection of the kernel distribution displayed in Figure 5. For
these models, the model selection measures described in Section 3.3 are computed and the
resulting estimates are reported in Table 1. The first column of the table reveals that the
likelihood rises continuously with the number of clusters, reaching a local maximum at
K = 7. The algorithm is not able to generate a valid result for K = 8 because there are not
sufficient numbers of draws to achieve identification.

Table 1. Results of selection of K.

K LogLik AIC BIC Entropy BIC-Entropy Bayes Factor (k = i/k = i + 1)

1 −2229.78 4469.57 4486.30 - - -
2 −696.46 1414.91 1451.73 0.03 1451.80 3034.57
3 −400.14 834.27 891.18 0.00 891.18 560.55
4 −141.25 328.51 405.49 0.00 405.50 485.69
5 −25.28 108.57 205.63 0.00 205.63 199.86
6 13.64 42.72 159.87 0.00 159.87 45.76
7 42.61 −3.22 134.01 0.00 134.01 25.86
8 - - - - - -

Notes: The (log) likelihoods appear in the first column displays. AIC and BIC model selection criteria are in the
second and third columns. Entropy and BIC corrected with entropy are in the fourth and fifth columns. The
Bayes factors form models of K− 1 versus K clusters (K = 2, . . . , 8) appear in the sixth column.

The results of the penalized classification methods are displayed in columns 2, 3,
and 5 of Table 1. The reported figures show that the local minima of AIC, BIC, and BIC
are also achieved for K = 7 clusters. According to the figures reported in column 4, the
entropy of the model with K = 7 clusters is 0, indicating a perfect segmentation of the
Spanish cycles. The procedure also takes into account some indicators of the quality of the
results. More specifically, we count the percentage of draws in which the algorithm has
been unable to generate a bivariate vector of µ that complies with the partition constraints
of the reference cycle; we check if the estimated µ values are within the range of data values
allowing a margin of 1 year at the beginning and end; and, finally, we count the percentage
of classifications that leave an empty cluster.

Finally, as in [7], we follow [11] and compute the Bayes factors sequentially. The
sequence of (twice the log of) Bayes factors also points to K = 7 as the Bayes factor that
establishes the comparison of the model with K = 7 clusters and the model with K = 6
clusters favors the extra cluster. Although this result does not require prior knowledge
of the number of clusters, it is worth noting that the SBCDC establishes K = 6 clusters,
considering the last peak as an incomplete pair. The difference is found in the late 1970s
and early 1980s, a complex period with scarce information, in which the SBCDC chronology
establishes 2 recessions, while the specific indicators detect 3 as shown in Figure 5.

4.4. Estimation of Turning Points

Table 2 shows the results of evaluating our proposal in terms of its ability to capture
the turning point dates established by the Spanish Business Cycle Dating Committee. The
columns labeled SBCDC and MCPM report the reference cycle dates as determined by
the Spanish Business Cycle Dating Committee and our multiple change-point model. The
means of the components of the mixtures are estimated using the posterior distributions
obtained with the Gibbs rejection sampler algorithm. The BBQ algorithm imposes that a
recession should last at least 2 quarters and an expansion, at least 4 quarters. In addition,
the table also shows the 95% credible intervals.



Mathematics 2021, 9, 2241 12 of 17

Table 2. Results of empirical illustration (K = 7).

SBCDC MCPM Deviation (in Quarters)

Peaks Troughs Peaks Troughs Peaks Troughs

1974.4 1975.2 1974.4 1975.3 0 1
(1974.4, 1975.1) (1975.3, 1975.4)

1978.3 1979.2 1978.3 1979.3 0 1
(1978.3, 1978.4) (1979.2, 1979.3)

- - 1980.4 1981.3 - -
(1980.4, 1981.1) (1981.3, 1981.4)

1992.1 1993.3 1992.2 1993.4 1 1
(1992.1, 1992.2) (1993.3, 1994.1)

2008.2 2009.4 2007.4 2009.4 −2 0
(2007.4, 2007.4) (2009.3, 2009.4)

2010.4 2013.2 2010.3 2013.3 −1 1
(2010.3, 2010.4) (2013.3, 2013.4)

2019.40 - 2019.4 - 0.00 -
(2019.4, 2019.4) (-,-)

Notes: The SBCDC-established dates appear in the first two columns. The peaks and troughs estimated with
the mixture model, along with their respective 95% credible intervals are in Columns 3 and 4. The last two
columns show the quarters of difference between the SBCDC peaks and troughs and those obtained from the
mixture model.

The table shows that for each SBCDC-referenced turning point, our mixture model
estimates a corresponding turning point, whose credible intervals contain the SBCDC
dates in all episodes. Notably, our proposal replicates the SBCDC peaks and troughs very
accurately, especially for the turning points dated since the 1990s. However, our method
provides an extra pair of turning points at the beginning of the 1980s.

Finally, we address the issue of estimation uncertainty and the misleading signal of
turning point dates that some indicators could provide. For this purpose, we focus on the
credible intervals, which are the interval within which the estimated turning point dates
fall with a particular probability. In our application, the 95% credible intervals provided in
Table 2 are substantially narrow. Given the observed data, the credible intervals indicate
that, in the worse-case scenario, the distribution of possible values of the turning point
dates have 95% probability of deviating from the estimates only on 1 quarter in the case
of peaks and 3 quarters in the case of troughs. This indicates that the method provides
very precise estimates of the reference dates and agrees with the view that the economic
indicators tend to provide accurate signals of the business cycle turning points.

In particular, the short recession of the 1990s is detected with a delay of a quarter in
both the peak and the trough, although the confidence intervals include the exact date
provided by the SBCDC. Regarding the global financial crisis, the first impact is identified
early in the peak and late in the trough, and something similar occurs with the second blow
of the crisis. Finally, the peak that marks the beginning of the crisis caused by the COVID-
19 pandemic fully matches that announced by the SBCDC. As expected, the uncertainty
in determining the reference dates is a bit larger in the 1970s. In fact, the Committee
acknowledges that “Business cycle dating for the period January 1970 (the start of the
sample based on available national income accounts at quarterly frequency), until about
April 1986 is especially challenging”.

Figures 6 and 7 display some technical aspects of the estimation process. In particular,
Figure 6 plots the draws of the means and the variances obtained from the replications
of the MCMC algorithm. In particular, the two scatter plots of Panel A display the draws
for

(
µP

k , Σ11,k
)

and
(
µT

k , Σ22,k
)
, respectively. In addition, Panel B shows the scatter plots

for
(
µP

k , µT
k
)
. From these scatter plots, it is obvious that the component parameters of

the 7 clusters do not differ in the variances but in the means. In addition, the estimated
clusters provide a clear segmentation of the time span, which agrees with the restrictions
imposed in the Markov-switching transitions. Interestingly, we find that the changes from
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one cluster to the following one occur very close to the SBCDC-designated pairs of peaks
and troughs.
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Figure 6. Scatter plots of means and variances. Notes: The figure plots the scatter plots of conditional
draws of the MCMC sampler for

(
µP

k , µT
k
)

and
(
µP

k , Σ11,k
)

(Panel A) and
(
µT

k , Σ22,k
)

(Panel B) for each
of the K = 7 clusters.

To provide a diagnosis of potential divergent transitions in the MCMC filter, we plot
in Figure 7 the estimated parameter values for each iteration of the filter. In particular, the
figure displays the conditional plots of the peaks µP

k (Panel A), the troughs µT
k (Panel B),

the variances log(|Σk|) (Panel C), and the transition probabilities pk,k and pk,k+1 (Panel D)
for each of the K = 7 components of the mixture model. In all of these cases, the rejection
sampler seems to mix well because the trace plots of the parameter estimates converge to
their respective posterior distributions at the initial labeling.

In addition, we computed the Gelman–Rubin scale reduction factor diagnostic cor-
rected by accounting for sampling variability, usually known as Rc. In our context, all the
Gelman–Rubin diagnostics were 1 (or very close to one). More importantly, the maximum
Rc was less than 1.1, which indicated that no convergence issues were detected.
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Figure 7. Diagnosis of the Gibbs sampler. Notes: The figure plots the trace plots of the MCMC draws
for µP

k (Panel A), µT
k (Panel B), log(|Σk|) (Panel C), and pi,j (Panel D) for each of the K = 7 clusters.

Finally, Figure 8 displays the classification probabilities, which are estimated as the
number of times that a particular observation is classified in each of the 7 cluster across the
replication of the MCMC sampler. The figure shows a high classification performance of
the model because the classification probabilities stay close to 1 at about each of the seven
pairs of peak-trough dates established by the SBCDC business cycle committee, providing
a clear segmentation of the Spanish reference cycle.
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Figure 8. Classification probabilities. Notes: The figure plots the estimates of Pr(si = k|θ), for
k = 1, . . . , 8 and i = 1, . . . , N from January 1959 to August 2010.

5. Conclusions

This paper provides an automatic procedure to date the reference cycle turning points
in Spain. Based on the novel methodology proposed by [4], the turning points obtained
from a set of economic indicators are assumed to be realizations of a restricted Markov-
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switching Gaussian mixture model, where the means of the model components are viewed
as the reference cycle peak-trough dates. This approach is equivalent to considering a
multiple change-point model where the reference cycle is a collection of increasing change-
points (peak-trough dates) that segment the time span into K non-overlapping episodes.
The computation is carried out with Bayesian techniques using a Markov Chain Monte
Carlo (MCMC) algorithm which is implemented using the Gibbs sampler.

The application comprises several steps. Firstly, we collect a broad set of specific
indicators that includes aggregate and sectorial variables, both hard and soft. Secondly,
we compute the turning points of each individual indicator by using the quarterly Bry–
Boschan method and analyze carefully their behavior with respect to the business cycle. A
search algorithm using the concordance index allows us to find the optimal set of coincident
indicators and build the database of peak-trough pairs. Thirdly, we select the number of
clusters through several measures based on the likelihood function and Bayesian criteria.
Finally, we estimate the turning points as the mean of the draw distribution for each cluster
and then compute their confidence intervals.

The method identifies seven recessions in the period from February 1970 to February
2020. Three of these recessions are dated in the 1970s and early 1980s. It also dates the
recession of the 1990s, the double-dip of the global financial crisis and the sovereign debt
crisis in the first two decades of the 21st century and, finally, the recent hit of the COVID-19
pandemic. These results show the good performance of the model provide estimates of
the Spanish turning point dates, which are in close agreement to those established by the
Spanish Business Cycle Dating Committee (SBCDC). In fact, since the nineties there has
been an almost perfect coincidence of the timings. The greatest discrepancies occurred in
the 1970s and early 1980s, a turbulent period in Spain characterized by the juxtaposition of
the successive oil crises and the political transition of the 1970s together with the scarcity
of statistical sources.

Summing up, the method proposed by Camacho et al. (2021) has successfully over-
come the challenge of producing a credible chronology of the reference cycle of the Spanish
economy using automatic rules based on a set of specific indicators. It is, therefore, a
useful instrument that complements the work carried out by the Spanish Business Cycle
Dating Committee and that can be used by both policy-makers and academics interested
in analyzing the economic cycle in Spain.
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Appendix A

Table A1. Variable definitions.

Variable Acronym Source Sample

Gross Domestic Product GDP National Statistics Institute (INE) 1970:I-2020:II
Private consumption PC INE 1995:I-2020:II
Labor force LF INE 1972:III-2020:II
Female labor force FLF INE 1972:III-2020:II
Unemployment rate UR INE 1989:01-2020:07

Social Security registrations SSR Ministerio de Inclusión, Seguridad
Social y Migraciones 1982:01-2020:09

Social Security registrations without workers
on furlough SSRwF Ministerio de Inclusión, Seguridad

Social y Migraciones 1982:01-2020:09

Electricity consumption EC Red eléctrica de España 1981:01-2020:08
Big firms sales BFS Agencia Tributaria 1996:01-2020:07
Retail trade index RTI INE 1995:01-2020:06
Industrial production index IPI INE 1975:01-2020:08

Private vehicles registration PVR Asociación Española de Fabricantes de
Automóviles y Camiones (ANFAC) 1975:01-2020:07

Services sector activity index SSAI INE 2000:01-2020:07
Cement consumption CC Oficemen 1989:02- 2020:05

New construction permits PT Ministerio de Transportes, movilidad y
agenda urbana 1992:01-2020:07

Home sales HS INE 2007:01-2020:08
Mortgages M INE 2003:01-2020:07
Business turnover index BTI INE 2002:01-2020:05

Exports EX
Departamento de Aduanas y
Ministerio de Asuntos Económicos y
Transformación Digital

1970:06-2020:05

Imports IM
Departamento de Aduanas y
Ministerio de Asuntos Económicos y
Transformación Digital

1970:06-2020:05

Overnight tourist stays OTS INE 1995:01-2020:09
Tourist arrivals TA INE 1995:01-2020:09

Productive capacity utilization PCU Ministerio de Asuntos Económicos y
Transformación Digital 1995:I-2020:III

Synthetic activity indicator SAI EDE Business 1995:01-2020:06
Synthetic activity indicator. Industry SAII EDE Business 1995:01-2020:06
Synthetic activity indicator. Construction SAIC EDE Business 1995:01-2020:06
Synthetic activity indicator. Construction
investment SAICI EDE Business 1995:01-2020:06

Synthetic activity indicator. Services SAIS EDE Business 1995:01-2020:06

Synthetic consumption indicator SCI Ministerio de Asuntos Económicos y
Transformación Digital 1995:01-2020:06

Synthetic consumption indicator. Large chain
stores SCIL Ministerio de Asuntos Económicos y

Transformación Digital 1995:01-2020:06

Composite produce manager index PMI
Comp IHS Markit 1999:08-2020:06

Economic sentiment indicator ESI European Commission 1987:04-2020:10
Economic sentiment indicator. Industry ESII European Commission 1987:04-2020:08
Economic sentiment indicator. Services ESIS European Commission 1996:01-2020:08
Economic sentiment indicator. Consumption ESIC European Commission 1986:06-2020:08
Economic sentiment indicator. Retail ESIR European Commission 1988:01-2020:08
Economic sentiment indicator. Building ESIB European Commission 1989:01-2020:08
Employment expectations indicator EEI Eurostat 1996:01-2020:08

Consumer confidence index CCI Centro de investigaciones sociológicas
(CIS) 2004:09-2020:10

Credit to households (% GDP) CH Banco de España 1995:IV-2020:IV
Credit to Non Financial Corporate (% GDP) HHRBD Banco de España 1995:IV-2020:IV
Ratio of households debt over disposable
income HHGDP Banco de España 1987:I-2020:II

Ratio of households debt over GDP CNFC Banco de España 1987:I-2020:II
Ratio of non financial corporate debt over
GDP NFCDGDP Banco de España 1987:I-2020:II

Ratio of non performing housing loans NPHL Banco de España 1998:IV-2020:II
Ratio of non performing durable consumption
loans NPDCL Banco de España 1998:IV-2020:II

Ratio of non performing production activities
loans NPPAL Banco de España 1998:IV-2020:II

Sovereign risk premia ES-DE SRP Datastream 1991:07-2020:09
IBEX 35 index IBEX Datastream 1987:01-2020:09
EA Gross Domestic Product EAGDP Eurostat 1995:I-2020:II
VIX index VIX Datastream 1990:01-2020:09

Notes: The variables include either monthly (arabic numbers) or quarterly data (roman numbers).
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