. mathematics

Article

Optic Disc Preprocessing for Reliable Glaucoma Detection in

Small Datasets

José E. Valdez-Rodriguez

check for

updates
Citation: Valdez-Rodriguez, J.E.;
Felipe-Riverén, E.M.; Calvo, H. Optic
Disc Preprocessing for Reliable
Glaucoma Detection in Small
Datasets. Mathematics 2021, 9, 2237.
https:/ /doi.org/10.3390/math9182237

Academic Editors: Cornelio Yafiez
Marquez, Yenny Villuendas-Rey and
Miltiadis D. Lytras

Received: 2 August 2021
Accepted: 10 September 2021
Published: 12 September 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Edgardo M. Felipe-Riverén ** and Hiram Calvo *

Centro de Investigacion en Computacion, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
jvaldezr1000@alumno.ipn.mx
* Correspondence: edgardo@cic.ipn.mx (E.M.F.-R.); hcalvo@cic.ipn.mx (H.C.)

Abstract: Glaucoma detection is an important task, as this disease can affect the optic nerve, and
this could lead to blindness. This can be prevented with early diagnosis, periodic controls, and
treatment so that it can be stopped and prevent visual loss. Usually, the detection of glaucoma is
carried out through various examinations such as tonometry, gonioscopy, pachymetry, etc. In this
work, we carry out this detection by using images obtained through retinal cameras, in which we can
observe the state of the optic nerve. This work addresses an accurate diagnostic methodology based
on Convolutional Neural Networks (CNNs) to classify these optical images. Most works require a
large number of images to train their CNN architectures, and most of them use the whole image to
perform the classification. We will use a small dataset containing 366 examples to train the proposed
CNN architecture and we will only focus on the analysis of the optic disc by extracting it from the full
image, as this is the element that provides the most information about glaucoma. We experiment with
different RGB channels and their combinations from the optic disc, and additionally, we extract depth
information. We obtain accuracy values of 0.945, by using the GB and the full RGB combination, and
0.934 for the grayscale transformation. Depth information did not help, as it limited the best accuracy
value to 0.934.

Keywords: glaucoma; convolutional neural networks; medical-diagnosis method; optic disc

1. Introduction

Glaucoma is an illness that causes blindness in people of any age, but commonly in
older adults. This hereditary disease damages the eye’s optic nerve, which usually happens
when fluid builds up in the front part of the eye. That extra fluid increases the pressure in
the eye (aqueous humor), damaging the optic nerve. Although it is permanent damage
and cannot be reversed, medicine and surgery may help to stop further damage. That is
why an early diagnosis of glaucoma is very important. The most common way of detecting
it is carried out through different analyses that involve the use of tools that are in contact
with the patient’s eye, such as tonometry, that consists in applying a small amount of
pressure to the eye by using a tonometer or by a warm puff of air, to measure the inner eye
pressure; ophthalmoscopy, that is a procedure that consists in dilating the pupil through
eye drops, and examining the shape and color of the optic nerve; or gonioscopy, which
aims to determine whether the angle where the iris meets the cornea is open and wide or
narrow and closed, that defines the type of glaucoma, which is made by a hand-held contact
lens placed on the eye (https:/ /www.glaucoma.org/glaucoma/diagnostic-tests.php, last
accessed 2 September 2021).

To detect glaucoma, in this work, digital retinal fundus images are required, as the
glaucoma is mainly detected in the optic disc, through which the optic nerve transport to
the brain the visual information. The image of the optic disc provides the necessary infor-
mation to detect glaucoma, as shown in Figure 1. In this work, we propose a methodology
consisting in preprocessing digital images and extracting their color planes, to compare the
internal information this kind of image can contain. We focus our analysis on the optic disc
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by using some preprocessing techniques, as this element provides all the information about
the optic nerve and shows how glaucoma has evolved in the eye. Additionally, estimated
depth information will be added as an image to see if it can help the classification method-
ology, to correctly detect glaucoma by using Convolutional Neural Networks (CNNSs).

Disc
heigth

Cup
heigth

Figure 1. Optic disc with normal cup and increased cup caused by glaucoma: (A,B) show optic discs
with normal cup and dimension quotes; (C,D) show optic discs with increased cup derived from
glaucoma. Image from [1].

The content of this work is divided as follows: Section 2 shows some related works;
Section 3 describes the methodology employed in this work; Section 4 describes the
experiments carried out, and Section 5 presents the conclusions of the paper.

2. Related Work

Glaucoma detection using CNNs is a common task in computer science, as many
solutions used so far have shown good results in classification tasks as mentioned by
Sultana et al. [2]; other recent works using CNNSs to classify digital retinal fundus images
with glaucoma are mentioned below. Li et al. [3] use the Inception [4] CNN model trained
with their own private dataset; they trained it with the full RGB retinal fundus image and
classify them in positive or negative glaucoma. Fu et al. [5] created a four stage CNN
named DENet, that consists in first locating the optic disc in the full retinal fundus image,
then extract it and classify it; on the other hand, in another stage carries out a classification
from the full RGB retinal fundus images. Finally they obtain a final classification using the
results of the previous stages; to perform their experiments they used the SCES dataset [6].
Raghavendra et al. [7] proposes a CNN model composed of 18 layers trained with their
own dataset, using the full RGB image.

Dos Santos Ferreira et al. [8] use a two stage methodology; the first one consists in
using the U-Net [9] model to extract a binary representation of the optic disc and the second
stage classifies this representation into two classes. They use the DRISHTI-GS dataset [10]
to perform their experiments. Christopher et al. [11] compare the results of different CNN
architectures such as VGG16 [12], Inception [4] and ResNet50 [13] with their own dataset.
Additionally, they mention the importance of data augmentation and transfer learning as
additional information for training the CNNs.
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Chai et al. [14] propose a multi-stage CNN trained with their own data, extracting
the first stage features from the full digital retinal fundus image; the second stage extracts
features from a subimage containing only the optic disc; the final stage joins both features
extracted from the previous stages and performs the classification using fully connected
layers. Bajwa et al. [15] propose a two-stage framework in which the first one consists
in extracting the area that contains the optic disc from the digital retinal fundus image
and the second stage consists in a CNN that extracts features and classifies them into two
classes. They use the DIARETDB1 dataset [16] to perform their experiments. Liu et al. [17]
use a large collection of own fundus images and the CNN model ResNet as classifier and
perform previously a statistical analysis on their data.

Finally Barros et al. [1] perform a deep analysis on all the machine learning algorithms
and CNNs applied to glaucoma detection using many datasets. In Table 1 we show in an
arbitrary order a comparison amongst the results obtained from all previously mentioned
works, which were obtained according to the dataset each work used.

Table 1. Results obtained from the state of the art (higher is better [1]).

Paper Accuracy  Precision  Recall Dataset
Liuetal. [17] 0.9960 0.9770 0.9620 Private
Bajwa et al. [15] 0.8740 0.8500 0.7117  DIARETDBI [16]
Chai et al. [14] 0.9151 0.9233 0.9090 Private
Chistopher et al. [11] 0.9700 0.9300 0.9200 Private
Dos Santos Ferreira et al. [8] 1.0000 1.0000 1.000 DRISHTI-GS [10]
Raghavendra et al. [7] 0.9813 0.9830 0.9800 Private
Fu et al. [5] 0.9183 0.8380 0.8380 SCES [6]
Li et al. [3] 0.9200 0.9560 0.9234 Private

Although there are several works solving this task, the main problem is related to the
available data, because most of the datasets are private, due to lack of adequate public data;
another problem is that the CNN models used in many related works are complex models
that require high amounts of data (i.e., above 1000 images). In this work we propose the
use of a simple and accurate CNN model that can be trained with a low quantity of data
extracted from our own dataset.

3. Proposed Methodology

The methodology used for this work consists of firstly preprocess the digital fundus
image with the purpose of obtaining useful information about glaucoma such that one
located in the optic disc. Once we have this information, we will use a CNN model
to estimate depth information from the extracted information. This depth information
consists in a representation of the distance between the user’s point of view and the objects
contained in the image; in this work we assume that the further object is the optic disc.
Finally, we set out to use all the visual information about the optic disc and depth estimation
in order to train a CNN capable to detect glaucoma.

3.1. Image Preprocessing

Glaucoma is a disease that deteriorates the optic nerve that carries visual information
to the brain though the optic disc. For that reason we will focus our analysis precisely on
the optic disc. To perform its extraction automatically, digital image processing techniques
are used. Firstly we extract a Region of Interest (ROI) from the full retinal fundus image
containing the optic disc as it will be fed into a CNN to obtain the eventual presence of
glaucoma. In order to extract the ROI from the RGB image, we apply image thresholding
to the grayscale image in a simple and easy way, to obtain a binary representation of the
image; this binary representation contains clear information about the optic disc, as this is
always the brightest zone in the RGB image.
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After obtaining this binary image showing clearly the optic disc, we compute the
centroid of it; then we align the center of the ROI with the previously calculated centroid
and extract a subimage from the original color image containing the optic disc, since it is the
only retinal element that contains information related to glaucoma in optical retinal images;
using only this patch as input of a CNN, we can classify the image if it is a glaucomatous
or non-glaucomatous one. In Figure 2 we show a resume of the preprocessing steps taken
in this work.

In the next sections we will describe in detail the procedures that we have previously
exposed in general. As a first step before the preprocessing, we normalized the size of
all the images to 720 x 576 pixels, because the size may vary between all the images in
the dataset.

Ve

Image resize Convert to grayscale

Original RGB image

Image threshold Centroid calculation Patch extraction

Figure 2. Preprocessing steps.

3.1.1. Image Thresholding

Thresholding is the image processing operation that converts a multi-tone (graylevel)
image into a bi-tonal (binary) image. This was carried out by the well-known Otsu thresh-
old algorithm [18], Toysy,. It was derived from the histogram of the grayscale image intensity
values, h, which typically has L = 256 bins for 8-bit pixel images. Any chosen threshold
0 < T < L partitions the histogram into two segments: the optic disc and the back-
ground. The number of pixels w (Equation (1)), weighted mean intensity u (Equation (2)),
and variance o of both zones (Equation (3)), respectively, are given by:

T_1 -1
wo(T) = Y_ h(i) w(T)=)_ h(i) 1)
i=0 =T
1= 1=

no(T) = w0 l;] ih(i) w(T) = — i; ih(i) ()

2 1= 2

op(T) = P Y k(i) (i — po(T))
0 =0 3)

-1
R = o L H() (i~ ()

The threshold of Otsu Ty, (Equation (4)) was then defined as the threshold that
minimizes within-cluster variance:

Torsu = argminw(T)og (T) + w1 (T)o7 (T) €9
T
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or equivalently maximizes the between-cluster variance (Equation (5)), which reduces to:
Towsu = argmaxwo(T)ws (T) (1 (T) — o (T))? ©)
T

The search for Ty, was performed by testing all values of T that minimized Equation (4)
or maximize Equation (5). Afterwards, thresholding (Equation (6)) was performed globally:

C 0 I(i,j)<TOsu
B(l,]) - { 255 I(i,j) > TOEsu } ©

where (i, j) represent the pixel coordinates, I represents the actual grayscale value and B is
the resulting threshold value.

Figure 3 presents as an example, the thresholding resulting from the graylevel image
obtained from the shown RGB image. Once the binary image was obtained, the centroid of
the binary image was calculated according to the procedure explained in Section 3.1.2.

Retina Healthy
with glaucoma retina

Figure 3. Results of images thresholding, (A) RGB images, (B) Binary images.

3.1.2. Calculation of Centroids

The centroid of a binary image is given by the arithmetic mean of the position of all
pixels that conformed to a shape of an object. Each shape contained in a binary image was
composed of white pixels, and the centroid is the average of the coordinates of all the white
pixels constituting the shape. On the other hand, an image moment is an average of all the
pixel intensities contained in an image. First we find the image moments pq, 11,0 and g 1
of the binary image using Equations (7) and (8), where w is the width and / is the height of
the image. In this case, f takes the pixels on the (x,y) coordinates with the value of 1 in the
object, as this operation is performed in a binary image:

w h

poo =3, Y, f(xy) ?)

x=0y=0
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= 8
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To obtain the sum of x and y coordinates of all white pixels, we used Equation (9):

sumy = )} xf(x,y) sumy =)} yf(xy) ©)

Finally the coordinates of the centroid were given by Equation (10):

H10 =

H10 Ho1
cC,.="2 ¢, =22 10
* Hoo Y Hoo (10)

Cy is the x coordinate and Cy, is the y coordinate of the centroid and y denotes the
Moment (https:/ /docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html, last
accessed 2 September 2021).

3.1.3. Patch Extraction

As we mentioned before, glaucoma manifests in the optic disc; sub-images are required
to be square for simplicity, given the circularity of optic discs. It is required to have an odd
number of pixels for the sub-image to have a center both horizontally and vertically. On the
other hand, the dimensions only depend on the size of the images and that of the optic disc
they contain. That is why we propose empirically a square ROI of 173 x 173 pixels. Once
we obtained Cy and C,, we located them in the original image, we aligned the center of the
ROI C}; and C; with Cy and C, and extracted a subimage or patch of the full image that
contained the optic disc. Figure 4 depicts this operation.

.__)' [C,:n ry]

ROI

Extracted patch

(Czy Cy)

Figure 4. Example of the alignment between the proposed ROI with the RGB image.

3.2. Depth Estimation

Depth estimation was used to calculate the distance between the user’s point of view
and the object in the image; in the case of glaucoma classification, this cue was important
as it could show the status of the optic disc. As can be seen in Figure 5, depth information
can show a different perspective of the cup height inside the optic disc. The pixels with a
value near to 0 or black pixels represent the optic cup.

In this work we used this cue as an additional input channel in order to add more
features to the RGB data. We obtained it using the proposal of Shankaranarayana et al. [19],
which consists of a CNN model capable of estimating depth from RGB images of the optic
disc. We implemented their model and trained it with the INSPIRE-stereo dataset [20] to
obtain the depth estimation. Once the network is trained, we obtained results from our
own dataset (see Section 4). Some examples are shown in Figure 6.
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RGB image  Depth estimation

Figure 5. Example of depth estimation of two optic discs. (A). Optic disc with glaucoma, (B). Optic

d -
al *

disc without glaucoma.
RGB image Depth estimation Inverted depth map
(INV-Depth)

Figure 6. Depth estimation from the optic disc.

3.3. CNN Model

The CNN model used in this work was based on the original AlexNet [21], given
that this model has shown good results in classification tasks [22-24]. This CNN consisted
of six convolutional layers with Rectified Linear Unit (ReLU) [25] as activation function
combined with Max-pooling layers used as feature extractors. After the convolutional
layers, as classification layer, we used two fully connected layers with 1024 neurons each
one with ReLU as activation function. The output of the model was obtained from two
neurons that classified if the retina presented glaucoma or not. The implementation of this
CNN model is shown in Figure 7.
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Convolutional Convolutional Convolutional Convolutional
Input image RelLU > ReLU ReLU > ReLU
172x172xCXne NK = 96 NK = 96 ‘ NK = 256 NK = 256
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L Convolutional Convolutional Convolutional Convolutional
RelLU > RelLU > . > RelLU > RelLU
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Text |
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NN =1024 > NN = 1024 > T NN-2 Corssentropy Correct Classes
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¢ = Number of channels
7. = Batch Size
NK = Number of Kernels — Max-pooling layer
KS$ = Kernel Size
NN = Number of Neurons

Figure 7. AlexNet CNN model for glaucoma classification.

4. Experiments and Results

In order to train the proposed CNN, we collected a private collection of retinal RGB
images from real patients, 257 images labeled as normal and 109 images with glaucoma
certified by two ophthalmologist specialists (Glaucoma Dataset, Centro de Investigacién
en Computacién, Instituto Politécnico Nacional, available at http://cscog.cic.ipn.mx/
glaucoma, last accessed 2 September 2021). This database (366 images) gathers images of
the retina of both eyes provided by two cooperating private ophthalmologists as specialists,
in a project on analysis of retinal images carried out a decade ago at the Computer Research
Center of the National Polytechnic Institute. These images were of specific patients of
both ophthalmologists, who, motivated by the due professional secrecy to which they
are due by their profession, were provided to us without details of the patients to whom
they belonged (name, sex, ages, systemic diseases they suffered, etc.). All the images
were of Mexican natives who came to them as patients, in order to be consulted to learn
about the disease that afflicted them when they noticed deficiencies in their vision systems,
namely, glaucoma, diabetic retinopathy, hypertensive retinopathy, retinitis pigmentosa,
among other. For us, knowing details of the images did not play any role in order to later
carry out statistical or other analyzes. The manual classification of the images was done by
the two ophthalmologists, which served for countless scientific publications as a result of
the automatic analysis of the system that was being developed at that time.

We used data augmentation to randomly increase the amount of training data by
adding a modified version of the existing data; in our case we used the mirroring operation
done by reversing the pixels horizontally. In a horizontal mirroring, the pixel positions
located at coordinates (x, y) were situated at coordinates (image_width — x — 1,y) in the
new image. In order to train the CNN model, we randomly divided the full dataset into a
training set (275 images) and testing set (91 images); we expanded the training set from
275 images to 550 images using the horizontal mirroring method.

4.1. Color Plane Extraction

To help the CNN model classify color images for glaucoma detection, we decided to
extract and combine color planes obtained from the original RGB image and see if this
information may be useful for the task. In Figure 8 we show the images obtained from the
color planes and some of their combinations. Of them, we discarded the use of the red,
blue, and red + blue planes, due to the lack of information and low contrast for training.
This step was not contained in the preprocessing stage, because its main objective was the
extraction of the optic disc; we created a different dataset for each one of the extracted
planes from the optic disc image, i.e., we created a dataset for the red plane and the blue
plane separately. We also obtained the grayscale image by using the weighted method [26]:
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Grayscale = 0.299R + 0.587G + 0.114B. In the CNN model, the input image had the follow
dimensions: 173 x 173 x c x n, where ¢ = 1 when the input is the grayscale image or the
red, green or blue plane, c = 2 when the input was the combination of two color planes,
¢ = 3 when the input was the RGB image and ¢ = 4 when the input was the RGB image
plus depth information.

RGB Image Grayscale image

Red plane Green plane Blue plane

-.

(Red + Green) planes (Green + Blue) planes (Red + Blue) planes

Figure 8. Color planes extraction used for classification.

According to what we explained in previous section, we proposed the following
14 experiments: RGB and RGB-DA: training and testing with the original RGB image
with and without Data Augmentation (DA). RGB+Depth and RGB+Depth-DA: training
and testing with the original RGB image with depth estimation as additional information,
with and without DA. RGB+INV-Depth and RGB+INV-Depth-DA: training and testing
with the original RGB image with depth estimation as additional information but with
inverted gray levels, with and without DA. G and G-DA: training and testing with the
Green (G) plane of the image, with and without DA. GR and GR-DA: training and testing
with the (Green + Red) (GR) planes of the image, with and without DA. GB and GB-DA:
training and testing with the (Green + Blue) (GB) planes of the image, with and without
DA. Grayscale and Grayscale-DA: training and testing with the grayscale image, with and
without DA. In all the experiments the testing set contained 91 images; the training set
without DA contained 275 images, and 550 with DA.

4.2. Experimental Setup

The CNN training and implementation was carried out in a free GPU environment
using Google Colaboratory [27] with Tensorflow [23] and Keras (https:/ /keras.io, last ac-
cessed 2 September 2021) frameworks. Firstly, we trained the depth estimation architec-
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ture; it took approximately 3 h for training and less than a second for testing a single
image. The training time for the experiments without data augmentation took approx-
imately 1 h and less than a second to test a single image. The training time for the
experiments with data augmentation took approximately 3 h and less than a second to
test a single image. The experiments that include depth information took similar time
for training and testing, with and without data augmentation respectively (code avail-
able at https:/ /github.com/EduardoValdezRdz/Glaucoma-classification, last accessed 2
September 2021.)

4.3. Discussion

To evaluate our methodology we used state of the art metrics depicted in the follow-
ing equations:

True Positive + True Negative
True Positive + False Positive + False Negative + True Negative

(11)

Accuracy =

Precisi True Positive (12)
recision =
True Positive + False Positive

True Positive
Recall = 13
eca True Positive + False Negative (13)

Precision - Recall

F1=2-
Precision + Recall

(14)

Table 2 shows results for all performed experiments. We can see that, in general, data
augmentation was helpful and led into a better classification. RGB+Depth, RGB+INV-
Depth, G, GR led into a similar classification and we can say that these experiments could
be discarded and that depth information was not useful to classify glaucoma. We obtained
the best results using the original RGB image and the combination of the Green and
Blue planes, both with the augmented dataset. Using the grayscale image led to a good
classification of healthy cases.

Table 2. Quantitative results (higher is better).

Experiment Precision Recall Accuracy F1

RGB 0.7000 0.7777 0.8352 0.7368
RGB-DA 0.9230 0.8888 0.9450 0.9056
RGB+Depth 0.7500 0.7058 0.8351 0.6666
RGB+Depth-DA 0.9565 0.8148 0.9340 0.8800
RGB+INV-Depth 0.7500 0.7058 0.8351 0.6666
RGB+INV-Depth-DA 0.9565 0.8148 0.9340 0.8800
G 0.7727 0.6296 0.8352 0.6939
G-DA 0.8800 0.8148 0.9120 0.8561
GR 0.6111 0.8148 0.7912 0.6984
GR-DA 0.9565 0.8148 0.9340 0.8800
GB 0.9375 0.5555 0.8571 0.6977
GB-DA 0.9583 0.8518 0.9450 0.9019
Grayscale 0.7895 0.5555 0.8241 0.6522
Grayscale-DA 1 0.7777 0.9340 0.8750

Table 3 shows a relative comparison of results with similar works in the state of the
art, ordered by precision; however, it is important to note that this could not be a direct
comparison, as most datasets were private, and, although glaucoma-detection oriented,
they were not available to conduct tests directly. In terms of content, the state-of-the-art
datasets were similar since they all had fundus retinal images, the change between each
one of them was the number of images and their resolution. In general, the architectures
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of the previous works were complex models that required several training stages since
in intermediate stages they extract the optic disc and together with the complete image
perform their classification, except for Bajwa’s work in which is similar to ours, first he
uses a preprocessing to extract an image containing the optic disc and then his architecture
classifies images in which only the optic disc is presented, however our architecture showed
better results when classifying these images.

Table 3. Comparison between our best results vs. the state of the art (sorted by precision).

Paper Year Accuracy Precision Recall Model Images
Dos Santos 2018  1.0000  1.0000  1.0000 U-Net 101
Ferreira et al. [8]

Grayscale-DA 5051 0.9340 1.0000 07777  AlexNet 724
(ours)

eRtaflh?;’fndm 2018 0.9813 09830 09800 18-layer CNN 1426
Liu et al. [17] 2019 0.9960 09770 0.9620 ResNet 274,413
GB-DA (ours) 2021  0.9450 09583  0.8518  AlexNet 724
Lietal. [3] 2018 0.9200 09560 09234 Inception-v3 70,000
;h;ftFﬁ};er 2018 0.9700 09300 09200  ResNet50 4363
Chaietal. [14] 2018 09151 09233 09090  MB-NN 2554
RGB-DA (ours) 2021  0.9450 09230  0.8888  AlexNet 724
Bajwaetal [15] 2019  0.8740 0.8500 07117  7-layer CNN 780
Fu et al. [5] 2018 09183 0.8380  0.8380 DENet 1676

Finally, additional to these metrics, we were interested on examining the particular
number of false classifications our method found. True positives meant that a healthy optic
disc was classified as healthy; the true negatives mean that an optic disc with glaucoma
was classified as non-healthy; false positives meant that an optic disc with glaucoma was
classified as healthy; finally false negative meant that a healthy optic disc was classified
as non-healthy. In this work the worst case was the false positives, because a patient with
glaucoma could not be classified as healthy. In Figure 9 we show the values obtained in
our experiments. Another important point is that we identified some images that were not
classified correctly, because the images in question did not have the appropriate contrast to
be classified as depicted in Figure 10, since if they had high or low contrast the optic cup
was lost completely in the optic disc.
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(a) RGB

| True | False | Total

| True | 55 | 9 | 64
| False | 6 | 21 | 27
Total 61 30 91

(c) RGB+Depth

| True | False | Total
| True | 58 | 6 | 64
| False | 9 | 18 | 27
Total 67 24 91
(e) RGB+INV-Depth

| True | False | Total
| True | 58 | 6 | 64
| False | 9 | 18 | 27
Total 67 24 91
(g G

| True | False | Total
| True | 60 | 4 | 64
| False | 12 | 15 | 27

Total 72 19 91
(i) GR

| True | False | Total
| True | 50 | 14 ‘ 64
| False | 10 | 17 | 27

Total 60 31 91
(k) GB

] True | False ‘ Total
| True | 61 | 3 | 64
| False | 12 | 15 | 27

Total 73 18 91
(m) Grayscale

| True | False | Total

| True | 59 | 5 | 64
| False | 10 | 17 | 27
Total 69 22 91

(b) RGB-DA

| True | False | Total

| True | 62 | 2 | 64
‘ False | 3 ‘ 24 | 27
Total 65 26 91

(d) RGB+Depth-DA

| True | False | Total
| True | 63 | 1 | 64
| False | 5 | 22 | 27
Total 68 23 91
(f) RGB+INV-Depth-DA

| True | False | Total
| True | 63 | 1 | 64
‘ False | 5 ‘ 22 | 27
Total 68 23 91
(h) G-DA

| True | False | Total
‘ True | 61 ‘ 3 | 64
| False | 5 | 22 | 27
Total 66 25 91
(j) GR-DA

| True | False | Total
‘ True ‘ 63 | 1 ‘ 64
| False | 5 | 22 | 27
Total 68 23 91
() GB-DA

‘ True | False ‘ Total
| True | 63 | 1 | 64
| False | 4 | 23 | 27
Total 67 24 91
(n) Grayscale-DA

| True | False | Total

| True | 64 | 0 | 64
| False | 6 | 21 | 27
Total 70 21 91

Figure 9. Confusion matrices from some results; (b,1,n) are the best results.
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High contrast image Adecuate contrast
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Figure 10. Comparison between high, low and adequate contrast images to be classified by the CNN.

5. Conclusions and Future Work

In this work, we presented a simple CNN model capable of classifying glaucoma in
digital retinal fundus color images, under low data conditions. This is achieved by first
extracting the optic disc from a full digital color image and other preprocessing methods
that we can apply to this type of image to perform a correct classification. Although the best
results in terms of accuracy were obtained using the original RGB image, the combination
of the Green and Blue planes also showed good results, due to the contrast of optic discs
that provide both images. Grayscale images allowed us to obtain a precision of 100%,
although with a corresponding decrease in recall. We found that adding depth information
was not helpful in the detection of glaucoma. The novelty of our work is based on the
comparison of different combinations of planes that can be obtained from an RGB image,
and although we show that the best results are obtained using the original image, the green
plane and its transformation to grayscale, we conclude that we can use a simple architecture
and still be able to adequately classify glaucoma. On the other hand, we identified the type
of images that can affect the performance of the classifiers. As future work, we propose
a further exploration of preprocessing methods to increase contrast and find the extent
to which the classification relies on. Although our method was successful with a small
number of images, as future work we plan to test the influence of extending the cases to be
tested in this task.
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