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Abstract: In view of the importance of Besov space in harmonic analysis, differential equations,
and other fields, Jaak Peetre proposed to find a precise description of (Bs0,q0

p0 , Bs1,q1
p1 )θ,r. In this paper,

we come to consider this problem by wavelets. We apply Meyer wavelets to characterize the real
interpolation of homogeneous Besov spaces for the crucial index p and obtain a precise description
of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r.

Keywords: real interpolation; besov space; meyer wavelet

1. Introduction

Since the middle of 20th century, the study of interpolation space has greatly promoted
the development of function space, operator theory, and developed a set of perfect mathe-
matical theories. It greatly enriches the theory of harmonic analysis, see [1–4]. However,
for a long time, only the real interpolation spaces of Lebesgue spaces have been studied
thoroughly, their forms are known as Lorentz spaces, and there are a lot of literature about
Lorentz spaces, see [2,5–9].

For the real interpolation of Besov spaces, we can refer to [9–16]. When the index
p is fixed, it has been shown that (Bs0,q0

p , B
s1 ,q1
p )θ,r are still Besov spaces, see [4,9,16]. The

interpolation for the index p is very different to which for the indices s and q. If p0 6= p1,
then (Bs,q

p0 , Bs,q
p1 )θ,r will fall outside of the scale of Besov spaces. J. Peetre proposed to

consider the real interpolation of Besov spaces in [4]. For more than forty years, due to
some inherent difficulties, little progress has been made in this regard.

In this paper, we consider the interpolation problem introduced in [4] for the crucial
index p. Wavelets have localization of both frequency and spatial position, which provides
a powerful tool for the study of the interpolation of Besov spaces. In this paper, we obtain
a precise description of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r by Meyer wavelets. Further, as q = r, we prove that

(Ḃs,q
p0 , Ḃs,q

p1 )θ,q can fall into the Besov–Lorentz spaces in [17].
For Besov and Triebel–Lizorkin spaces, we use the characterization based on the

Littlewood–Paley decomposition, see [9,18,19]. Given a function ϕ, such that its Fourier
transform ϕ̂(ξ) ∈ C∞

0 (Rn) and satisfies

supp ϕ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and ϕ̂(ξ) = 1, if |ξ| ≤ 1
2

.

For u ∈ Z, we define ϕu by

ϕu(x) = 2n(u+1)ϕ(2u+1x)− 2nu ϕ(2ux).

Mathematics 2021, 9, 2235. https://doi.org/10.3390/math9182235 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9182235
https://doi.org/10.3390/math9182235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182235
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182235?type=check_update&version=2


Mathematics 2021, 9, 2235 2 of 11

These functions {ϕu(x)}u∈Z satisfy

supp ϕ̂u ⊂ {ξ ∈ Rn,
1
2
≤ 2−u|ξ| ≤ 2};

|ϕ̂u(ξ)| ≥ C > 0, if
1
2
< C1 ≤ 2−u|ξ| ≤ C2 < 2;

|∂k ϕ̂u(ξ)| ≤ Ck2−u|k|, for all k ∈ Nn;
+∞

∑
u=−∞

ϕ̂u(ξ) = 1, for any ξ ∈ Rn.

Denote the space of all Schwartz functions on Rn by S(Rn). The dual space of
S(Rn), namely, the space of all tempered distributions on Rn, equipped with the weak-∗
topology, is denoted by S ′(Rn). Denote the space of all polynomials on Rn by P(Rn).
Let f ∈ S ′(Rn)\P(Rn). Define fu = ϕu ∗ f , the fu is called the u-th dyadic block of the
Littlewood–Paley decomposition of f . We recall the definition of Ḃs,q

p and Ḟs,q
p .

Definition 1. Given s ∈ R, 0 < q ≤ ∞ and u ∈ Z. For f ∈ S′(Rn)\P(Rn), we define

(i) For 0 < p ≤ ∞, f ∈ Ḃs,q
p , if

(
∑
u

2usq‖ fu(x)‖q
Lp

) 1
q
< ∞.

(ii) For 0 < p < ∞, f ∈ Ḟs,q
p , if

∥∥∥∥∥
(

∑
u

2usq| fu(x)|q
) 1

q
∥∥∥∥∥

Lp

< ∞.

As q = ∞, it should be replaced by the supremum norm.

The definition of the above two spaces are independent of the selection of the functions
ϕ, see [9].

Then, we recall some notations of Meyer wavelets. Let Ψ0 be an even function in
C∞

0 ([− 4π
3 , 4π

3 ]) satisfying 0 ≤ Ψ0(ξ) ≤ 1;

Ψ0(ξ) = 1, for |ξ| ≤ 2π

3
.

Let

Ω(ξ) =

√
(Ψ0(

ξ

2
))2 − (Ψ0(ξ))2.

Then, Ω(ξ) is an even function in C∞
0 ([− 8π

3 , 8π
3 ]). It is easy to get

Ω(ξ) = 0, for |ξ| ≤ 2π

3
;

Ω2(ξ) + Ω2(2ξ) = 1 = Ω2(ξ) + Ω2(2π − ξ), for
2π

3
≤ ξ ≤ 4π

3
.

Denote Ψ1(ξ) := Ω(ξ)e−
iξ
2 . For all ε = (ε1, · · · , εn) ∈ {0, 1}n, define

Φ̂ε(ξ) :=
n

∏
i=1

Ψεi (ξi).

Furthermore, Γ := {(ε, k), ε ∈ {0, 1}n \ {(0, ..., 0)}, k ∈ Zn} and

Λ := {(ε, j, k) : ε ∈ {0, 1}n \ {(0, ..., 0)}, j ∈ Z, k ∈ Zn}.

For (ε, j, k) ∈ Λ, denote

Φε
j,k(x) := 2

jn
2 Φε(2jx− k).
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For f ∈ S ′, let aε
j,k = 〈 f , Φε

j,k〉. The following results are well-known, see [17,18,20].

Lemma 1. The Meyer wavelets {Φε
j,k}(ε,j,k)∈Λ form an orthogonal basis in L2(Rn), hence, for all

f ∈ L2(Rn), the following wavelet decomposition holds in L2 sense,

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k.

In this paper, we first give some precise descriptions of (Ḃs,q
p0 , Ḃs,q

p1 )θ,r with wavelets.
Let χ(x) be the characteristic function on the unit cube [0, 1)n. For Borel set F in Rn, denote
|F| the Lebesgue measure of F. Suppose that j, u ∈ Z, 1 < p0 < p1 < ∞ and 1

α = 1
p0
− 1

p1
,

denote

cj,n(τ) := inf

λ :

∣∣∣∣∣∣
x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2
jx− k) > 2−

nj
2 λ


∣∣∣∣∣∣ ≤ τ

,

bp0,p1
j,n,u :=

(∫ 2uα

0
(cj,n(τ))

p0 dτ

) 1
p0
+ 2u

(∫ ∞

2uα
(cj,n(τ))

p1 dτ

) 1
p1

.

Theorem 1. Given θ ∈ (0, 1), s ∈ R, 1 < p0 < p1 < ∞, 0 < q, r ≤ ∞ and 1
p = 1−θ

p0
+ θ

p1
. For

f = ∑
(ε,j,k)∈Λ

aε
j,kΦj,k, we have

(i) f ∈ (Ḃs,q
p0 , Ḃs,q

∞ )θ,r if, and only if,

∑
u

2−urθ

∑
j

2jsq
[∫ 2up0

0
(cj,n(τ))

p0 dτ

] q
p0


r
q

< ∞;

(ii) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,r if and only if

∑
u

2−urθ

{
∑

j
2jsq
[
bp0,p1

j,n,u

]q
} r

q

< ∞.

The above wavelet characterization is slightly complicated. Yang-Cheng-Peng [17]
introduced Besov–Lorentz spaces. Further, when q = r, we can prove that (Ḃs,q

p0 , Ḃs,q
p1 )θ,q are

just the Besov–Lorentz spaces defined in [17]. We have

Theorem 2. Let θ ∈ (0, 1), s ∈ R, 0 < q ≤ ∞, 1 < p0 < p1 < ∞, 1
p = 1−θ

p0
+ θ

p1
, u ∈ Z and

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k. Then the following conditions are equivalent.

(i) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,q if, and only if,

∑
j

2jsq

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u


∣∣∣∣∣∣

q
p
 < ∞.

(ii) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,q if, and only if,

∑
j

2jsq

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k) > 2u


∣∣∣∣∣∣

q
p
 < ∞.
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Although the above main results still not solve the problem proposed by J. Peetre [4]
thoroughly, we obtain a precise description of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r by Meyer wavelets. The wavelet

characterization of real interpolation spaces of Besov spaces provides people with an
effective means to study the continuity of linear operators and bilinear operators on such
spaces. We are using this point to study the well-posedness of non-linear fluid equations.

The plan of this paper is the following. In Section 2, we recall the general background
of the real interpolation method and Lorentz spaces. Then we review wavelet characteriza-
tion of Ḃs,q

p and Ḟs,q
p . In Section 3, we give the proof of Theorem 1. Finally, in Section 4 we

prove Theorem 2.
In this paper, A . B means the estimation of the form A ≤ CB with some constant C

independent of the main parameters, C may vary from line to line. A ∼ B means A . B
and B . A.

2. Preliminaries on Real Interpolation and Wavelets

In this section, we present some preliminaries on real interpolation and wavelets.

2.1. K-Functional and Real Interpolation

The K-functional was introduced by J. Peetre in the process of dealing with real
interpolation spaces, see [1,4]. If (A0, A1) is a pair of quasi-normed spaces which are
continuously embedded in a Hausdorff space X, then the K-functional

K(t, f , A0, A1) := inf
f= f0+ f1

{‖ f0‖A0 + t‖ f ‖A1}

is defined for all f = f0 + f1, where f0 ∈ A0, f1 ∈ A1.

Definition 2. Let 0 < θ < 1 and 0 < q < ∞. We define

(A0, A1)θ,q,K =:{
f : f ∈ A0 + A1, ‖ f ‖(A0,A1)θ,q,K

=
{∫ ∞

0

[
t−θK(t, f , A0, A1)

]q dt
t

} 1
q
< ∞

}
.

(1)

Further, we define

(A0, A1)θ,∞,K =:{
f : f ∈ A0 + A1, ‖ f ‖(A0,A1)θ,∞,K

= sup
t

t−θK(t, f , A0, A1) < ∞
}

. (2)

Bergh-Löfström [1] has shown that the norms of the spaces (A0, A1)θ,q,K in (1) and (2)
have the following discrete representation.

Lemma 2. Let 0 < θ < 1. Then,

‖ f ‖(A0,A1)θ,q,K
∼



[
∑
j∈Z

2−jqθK(2j, f , A0, A1)
q

] 1
q

, 0 < q < ∞;

sup
j∈Z

2−jθK(2j, f , A0, A1), q = ∞.

(3)

In the following part, we always use this form. For x ∈ Rn and function f (x), the
distribution function σf (λ) and rearrangement function f ∗(τ) are defined in the follow-
ing way

σf (λ) = |{x : | f (x)| > λ}| and f ∗(τ) = inf{λ : σf (λ) ≤ τ}.

We review some results about K-functional, see [3].
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Lemma 3. Suppose that 0 < p < ∞ and f ∈ Lp + L∞. Then

K(t, f , Lp, L∞) ∼
[∫ tp

0
( f ∗(τ))pdτ

] 1
p

.

Lemma 4. If 0 < p0 < p1 < ∞ and 1
α = 1

p0
− 1

p1
, then

K(t, f , Lp0 , Lp1) ∼
[∫ tα

0
( f ∗(τ))p0 dτ

] 1
p0
+ t
[∫ ∞

tα
( f ∗(τ))p1 dτ

] 1
p1

.

For 0 < p < ∞, K-functional can be replaced to Kp functional, see [21]. Define Kp
functional by

Kp := Kp(t, f , A0, A1) = inf
f= f0+ f1

(‖ f0‖
p
A0

+ tp‖ f1‖
p
A1
)

1
p ,

and

‖ f ‖(A0,A1)θ,q,Kp
=

[∫ ∞

0
[t−θKp(t, f , A0, A1)]

q dt
t

] 1
q
.

We recall an important lemma about Kp(t, f , A0, A1) , see [21].

Lemma 5. Let (A0, A1) be a couple of quasi-normed spaces. For any 0 < p < ∞, we have

‖ f ‖(A0,A1)θ,q,K
∼ ‖ f ‖(A0,A1)θ,q,Kp

.

2.2. Lorentz Spaces and Lebesgue Spaces

In this subsection, we present first the definition of Lorentz spaces which are the
generalization of Lebesgue spaces and then some relative lemmas.

Definition 3. For 1 ≤ p < ∞ and 0 < r < ∞, the Lorentz spaces Lp,r are defined as follows

Lp,r =

 f : ‖ f ‖p,r =

[
r
p

∫ ∞

0

(
τ

1
p f ∗(τ)

)r dτ

τ

] 1
r

< ∞

.

For r = ∞,

Lp,∞ =

{
f : ‖ f ‖p,∞ = sup

τ
τ

1
p f ∗(τ) < ∞

}
.

It is easy to see that Lp,p = Lp. Further, Lp,∞ corresponds to the weak Lp spaces.
The above definition depends on the rearrangement function f ∗(τ). These spaces can be
characterized by distribution function σf (λ) also, see [2].

Lemma 6. Let 1 ≤ p < ∞ and 0 < r ≤ ∞. Then, for any f ∈ Lp,r, one has

‖ f ‖p,r ∼
[

r
∫ ∞

0

(
λσ

1
p
f (λ)

)r dλ

λ

] 1
r

and ‖ f ‖p,∞ ∼ sup
λ

λσ
1
p
f (λ).

The above continuous integral can be written as the following discrete form, see [17].

Lemma 7. Suppose that 1 ≤ p < ∞ and 0 < r < ∞. Then f ∈ Lp,r, if

(
∑
u

2ru|{x ∈ Rn : | f (x)| > 2u}|
r
p

) 1
r

< ∞,
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as r = ∞, the Lr-norm should be replaced by the L∞-norm.

The above Lorentz spaces are in fact real interpolation of Lebesgue spaces Lp, see [1].

Lemma 8. Assume that 0 < p0 < p1 ≤ ∞, 0 < r ≤ ∞, 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
. Then

(Lp0 , Lp1)θ,r = Lp,r, with
1
p
=

1− θ

p0
+

θ

p1
.

By Lemma 8, we get another characterization of Lp,r as below.

Corollary 1. Let all parameters be as defined in Lemma 8. Then,

‖ f ‖p,r ∼
[∫ ∞

0

(
t−θK(t, f , Lp0 , Lp1)

)r dt
t

] 1
r
.

2.3. Wavelet Characterization of Ḃs,q
p and Ḟs,q

p

For any function f (x) in Ḃs,q
p or Ḟs,q

p in Definition 1, the following wavelet decomposi-
tion holds in the sense of distribution,

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k.

We recall the wavelet characterization of Ḃs,q
p and Ḟs,q

p in this subsection, see [16–18,20].
For any s ∈ R and 0 < q ≤ ∞, denote

Ss,q f (x) :=

 ∑
(ε,j,k)∈Λ

2qj(s+ n
2 )|aε

j,k|
qχ(2jx− k)

 1
q

.

When s = 0 and q = 2, we denote S f := Ss,q f .

Lemma 9. Let s ∈ R and 0 < q ≤ ∞.

(i) For 0 < p < ∞, f ∈ Ḟs,q
p (Rn) if, and only if,

‖Ss,q f ‖Lp < +∞.

(ii) For 0 < p ≤ ∞, f ∈ Ḃs,q
p (Rn) if, and only if,

∑
j∈Z

2qj(s− n
p +

n
2 )

 ∑
(ε,k)∈Γ

|aε
j,k|

p


q
p


1
q

< ∞.

It is easy to see that Ḟ0,2
p = Lp. In [17], Yang-Cheng-Peng proved the wavelet charac-

terization of Lorentz spaces Lp,r.

Lemma 10. Suppose that 1 ≤ p < ∞, 0 < r < ∞ and u ∈ Z. Then f ∈ Lp,r, if

(
∑
u

2ru|{x ∈ Rn : |S f (x)| > 2u}|
r
p

) 1
r

< ∞,

as r = ∞, the Lr-norm should be replaced by the L∞-norm.
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Remark 1. f and S f can control each other by using good−λ inequality. When the Fourier
transform of f is supported on a ring, f and S f can control each other. The distribution function
σf (λ) and rearrangement function f ∗(τ) can be replaced by σS f (λ) and (S f )∗(τ), see [17].
Without affecting the proof, these notations are not strictly distinguished in this paper.

3. Proof of Theorem 1

In this section, we characterize (Ḃs,q
p0 , Ḃs,q

∞ )θ,r, and (Ḃs,q
p0 , Ḃs,q

p1 )θ,r with wavelets. Now we
come to prove Theorem 1.

Proof. Denote
‖ f ‖p := ‖ f ‖Lp , ‖ f ‖(A0,A1)θ,q

:= ‖ f ‖(A0,A1)θ,q,K
.

For any function f in Ḃs,q
p , the following wavelet decomposition holds in the sense

of distribution,
f = ∑

(ε,j,k)∈Λ
aε

j,kΦε
j,k.

From Lemma 9, it follows that

Kq(t, f ) := Kq(t, f , Ḃs,q
p0 , Ḃs,q

p1 ) = inf

∑
j

2jq(s− n
p0
+ n

2 )

 ∑
(ε,k)∈Γ

|xε
j,k|

p0


q

p0

+tq ∑
j

2jq(s− n
p1
+ n

2 )

 ∑
(ε,k)∈Γ

|aε
j,k − xε

j,k|
p1


q

p1


1
q

.

Denote
xj = ∑

(ε,k)∈Γ
xε

j,kΦε
j,k(x) , aj = ∑

(ε,k)∈Γ
aε

j,kΦε
j,k(x).

By Lemma 9, we deduce that

‖xj‖p0 = 2j(− n
p0
+ n

2 )

∑
k

(
∑
ε

|xε
j,k|

2

) p0
2


1
p0

∼ 2j(− n
p0
+ n

2 )

 ∑
(ε,k)∈Γ

|xε
j,k|

p0


1

p0

,

‖aj − xj‖p1 = 2j(− n
p1
+ n

2 )

∑
k

(
∑
ε

|aε
j,k − xε

j,k|
2

) p1
2


1
p1

∼ 2j(− n
p1
+ n

2 )

 ∑
(ε,k)∈Γ

|aε
j,k − xε

j,k|
p1


1

p1

.
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Hence,

Kq(t, aj) ∼
[
∑

j
2jsq inf

(
‖xj‖

q
p0 + tq‖aj − xj‖

q
p1

)] 1
q

∼
{

∑
j

2jsq[inf(‖xj‖p0 + t‖aj − xj‖p1)
]q
} 1

q

=

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1

)]q
} 1

q

.

Consequently,

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,r
∼
{∫ ∞

0
[t−θKq(t, a)]r

dt
t

} 1
r

∼


∫ ∞

0

t−θ

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q
} 1

q
r

dt
t


1
r

. (4)

If 1 < p0 < p1 < ∞, then Lp0 = Ḟ0,2
p0 and Lp1 = Ḟ0,2

p1 . Applying Remark 1, we have

(S∗ f )(τ) := (S∗0,2 f )(τ) = inf{λ : |{x ∈ Rn : S0,2 f (x) > λ}| ≤ τ}.

For aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x), we have

Saj(x) := S0,2aj(x) =

 ∑
(ε,k)∈Γ

22j(0+ n
2 )|aε

j,k|
2χ(2jx− k)

 1
2

=

 ∑
(ε,k)∈Γ

2jn|aε
j,k|

2χ(2jx− k)

 1
2

= 2
jn
2 ∑

k

(
∑
ε

|aε
j,k|

2

) 1
2

χ(2jx− k)

∼ 2
jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k).

Thus,

Saj(x) = 2
jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k). (5)

By (5), we deduce that

(S∗aj)(τ) = inf{λ : |{x ∈ Rn : Saj(x) > λ}| ≤ τ}

= inf

λ :

∣∣∣∣∣∣
x ∈ Rn : 2

jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k) > λ


∣∣∣∣∣∣ ≤ τ


= inf

λ :

∣∣∣∣∣∣
x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2
jx− k) > 2−

jn
2 λ


∣∣∣∣∣∣ ≤ τ

.
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Denote

cj,n(τ) := inf

λ :

∣∣∣∣∣∣
x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2
jx− k) > 2−

jn
2 λ


∣∣∣∣∣∣ ≤ τ

. (6)

Hence,

(S∗aj)(τ) = cj,n(τ). (7)

Let us prove the theorem in two cases.

(i) For p1 = ∞, by Remark 1 and Lemma 3, we have

K(t, aj, Lp0 , L∞) ∼
[∫ tp0

0
(a∗j (τ))

p0 dτ

] 1
p0
∼
[∫ tp0

0

[
(S∗aj)(τ)

]p0 dτ

] 1
p0

.

By (6) and (7), we get

K(t, aj, Lp0 , L∞) ∼
[∫ tp0

0

(
cj,n(τ)

)p0 dτ

] 1
p0

. (8)

Applying (4), (8) and the discrete representation of the spaces (A0, A1)θ,q,K which is
described in Remark 3, we obtain

‖ f ‖r
(Ḃs,q

p0 ,Ḃs,q
∞ )θ,r

∼∑
u

2−urθ

∑
j

2jsq
[∫ 2up0

0

(
cj,n(τ)

)p0 dτ

] q
p0


r
q

.

(ii) For 1 < p0 < p1 < ∞, by Lemma 4, similar as we did in (i), we have

K(t, aj, Lp0 , Lp1) ∼
[∫ tα

0

(
cj,n(τ)

)p0 dτ

] 1
p0
+ t
[∫ ∞

tα

(
cj,n(τ)

)p1 dτ

] 1
p1

, (9)

where 1
α = 1

p0
− 1

p1
. Denote

bp0,p1
j,n,u, :=

(∫ 2uα

0
(cj,λ(τ))

p0 dτ

) 1
p0
+ 2u

(∫ ∞

2uα
(cj,λ(τ))

p1 dτ

) 1
p1

.

Combining (4) with (9) and using the discrete representation of the spaces (A0, A1)θ,q,K
which is described in Remark 3, we know that

‖ f ‖r
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,r

∼∑
u

2−urθ

{
∑

j
2jsq
[
bp0,p1

j,n,u

]q
} r

q

.

The proof of Theorem 1 is complete.

4. Proof of Theorem 2

Now we come to prove Theorem 2.

Proof. Applying Lemma 5, the same as we did in the proof of Theorem 1, we can also get

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,r
∼


∫ ∞

0

t−θ

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q
} 1

q
r

dt
t


1
r

,
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where f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k, aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k. As r = q, we can write

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,q
∼
{∫ ∞

0

[
t−θq ∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q
]

dt
t

} 1
q

∼
{

∑
j

2jsq
[∫ ∞

0
t−θq[K(t, aj, Lp0 , Lp1)

]q dt
t

]} 1
q

=

∑
j

2jsq

([∫ ∞

0
t−θq[K(t, aj, Lp0 , Lp1)

]q dt
t

] 1
q
)q

1
q

∼
{

∑
j

2jsq‖aj‖
q
(Lp0 ,Lp1 )θ,q

} 1
q

.

Thus,

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,q
∼
{

∑
j

2jsq‖aj‖
q
(Lp0 ,Lp1 )θ,q

} 1
q

. (10)

We will prove the theorem in two cases.

(i) For aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x) and 1
p = 1−θ

p0
+ θ

p1
, using Lemma 7, we have

‖aj‖(Lp0 ,Lp1 )θ,q
= ‖aj‖p,q =

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u


∣∣∣∣∣∣

q
p


1
q

. (11)

From (10) and (11), it follows that

‖ f ‖q
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,q

∼∑
j

2jsq

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u


∣∣∣∣∣∣

q
p
.

(ii) Applying Lemma 10, we obtain another equivalent form of ‖aj‖p,q,

‖aj‖(Lp0 ,Lp1 )θ,q
= ‖aj‖p,q =

(
∑
u

2ru|{x ∈ Rn : |Saj(x)| > 2u}|
q
p

) 1
q

=

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k) > 2u


∣∣∣∣∣∣

q
p


1
q

. (12)

Applying (10) and (12), we obtain that

‖ f ‖q
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,q

∼∑
j

2jsq

∑
u

2uq

∣∣∣∣∣∣
x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2

jx− k) > 2u


∣∣∣∣∣∣

q
p
.

We finish the proof of Theorem 2.
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