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Abstract: Magnetorheological (MR) dampers play a crucial role in various engineering systems,
and how to identify the control parameters of MR damper models without any prior knowledge
has become a burning problem. In this study, to identify the control parameters of MR damper
models more accurately, an improved manta ray foraging optimization (IMRFO) is proposed. The
new algorithm designs a searching control factor according to a weak exploration ability of MRFO,
which can effectively increase the global exploration of the algorithm. To prevent the premature
convergence of the local optima, an adaptive weight coefficient based on the Levy flight is designed.
Moreover, by introducing the Morlet wavelet mutation strategy to the algorithm, the mutation space
is adaptively adjusted to enhance the ability of the algorithm to step out of stagnation and the
convergence rate. The performance of the IMRFO is evaluated on two sets of benchmark functions
and the results confirm the competitiveness of the proposed algorithm. Additionally, the IMRFO
is applied in identifying the control parameters of MR dampers, the simulation results reveal the
effectiveness and practicality of the IMRFO in the engineering applications.

Keywords: manta ray foraging optimization; magnetorheological damper; parameter identification;
wavelet mutation; Levy flight; optimization algorithm

1. Introduction

Magnetorheological (MR) dampers are a kind of intelligent semi-active control device,
the output damping force of the damper can be controlled by controlling the current
instruction in the coil [1,2]. MR dampers are famous for their fast reaction speed, less energy
consumption and wide control range; therefore, MR dampers are widely applied in various
engineering domains, e.g., vehicle systems [3,4]. However, the mathematical models
of MR dampers are very complicated because of their special mechanical characteristic-
hysteretic property. Xu et al. [5] introduced a new single-rod MR damper with combined
volume compensator; meanwhile, the design method of the combined compensator with
independent functions of volume compensation and compensation force was proposed.
Yu et al. [6] proposed a novel compact rotary MR damper with variable damping and
stiffness and a unique structure that contains two driven disks and an active rotary disk
was designed. Boreiry et al. [7] investigated the chaotic response of a nonlinear seven-
degree-of-freedom full vehicle model equipped with an MR damper, and the equations of
motion was proposed by employing the modified Bouc–Wen model for an MR damper.
Many MR dampers have emerged with different uses and functions. Among them, the
Bouc–Wen model is a typical one, which contains numerous unknown parameters. In
addition, a range of other factors, including the current size, piston speed and excitation
factors, also affect the accuracy of the model, which makes parameter identification of the
model more difficult. Therefore, how to find an effective method to identify the control
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parameters of MR dampers is of great importance and has become a challenging task. In
addition, the possible magneto-thermal problem of the MR damper to MR fluid is also
becoming a pressing issue [8–10].

With the rapid development of computer technologies, meta-heuristic algorithms, a
suitable technology, are applied in MR dampers to establish a set of accurate and reliable
models. Many scholars at home and abroad carry out the relevant research work and
have achieved some results. Giuclea et al. [11] used a genetic algorithm (GA) to identify
the control parameters of a modified Bouc–Wen model, in which the applied currents are
determined using the curve fitting method. However, in addition to the implementation
complexity, a GA may suffer from premature convergence and its optimization perfor-
mance depends mostly on the probability election for crossover, mutation and selecting
operators [12]. Kwok et al. [13] gave a parameter identification technique for a Bouc–
Wen damper model using particle swarm optimization (PSO), and some experimental
force–velocity data under various operating conditions were employed. Although PSO is
improved by using a stop criterion in this study, it easily traps into the local optima and
suffers from premature convergence [14]. Thus, the application of PSO in MR dampers is
limited, owing to its drawbacks of nature.

Despite the shortcomings of PSO and GAs, meta-heuristic methods are particularly
popular for their randomness, easy implementation and black box treatment of prob-
lems [15,16]. An increasing number of scholars have proposed meta-heuristic algorithms
inspired from different mechanisms by studying animal behaviors and physical phenom-
ena in nature [17–19]. Some of the most popular algorithms are the bat algorithm (BA) [20],
squirrel search algorithm (SSA) [21], artificial ecosystem-based optimization [22], whale
optimization algorithm (WOA) [23], virus colony search (VCS) [24], fruit fly optimiza-
tion algorithm (FOA) [25], butterfly optimization algorithm (BOA) [26], spotted hyena
optimizer (SHO) [27], grasshopper optimization algorithm (GOA) [28], flower pollination
algorithm (FPA) [29], crow search algorithm (CSA) [30], grey wolf optimizer (GWO) [31],
water cycle algorithm (WCA) [32], gravitational search algorithm (GSA) [33], atom search
optimization (ASO) [34], henry gas solubility optimization (HGSO) [35], charged system
search (CSS) [36], water evaporation optimization (WEO) [37], equilibrium optimizer
(EO) [38] and supply–demand-based optimization (SDO) [39]. In the last ten years, a great
number of bio-inspired optimization and nature-inspired optimization algorithms have
been proposed. These algorithms are significantly distinct in their natural or biological
inspirations; therefore, one can find its category easily and without any ambiguity. In
addition, the algorithms are different with respect to their search behaviors, i.e., how
they update new candidate solutions during the iteration process [40]. Although these
meta-heuristic methods perform well in tackling some challenging real-world problems,
they have some disadvantages and their optimization performance still remains to be
improved, especially for some inherently high-nonlinear and non-convex problems, such
as the economic dispatch (ED) problem [41]. To overall the drawbacks of these algorithms,
hybridization might produce new algorithmic behaviors that are effective in improving the
optimization performance of the algorithms.

Manta ray foraging optimization (MRFO) [42,43] is a new meta-heuristic algorithm,
which simulates the foraging behavior of manta rays in nature. The local exploitation
is performed by the chain foraging and somersault foraging behaviors, while the global
exploration is performed by the cyclone foraging behavior. This algorithm shows some
optimization capabilities and is very successful in applying in some engineering domains,
such as geophysics [44], energy allocation [45–47], image processing [48] and electric
power [49]. These successful applications in the literature confirm MRFO is effective in
solving different complex real-world problems. Even though MRFO belongs to a category
of meta-heuristic algorithms, it is significantly distinct from other widely employed meta-
heuristics in terms of ideology and conception. The major difference between MRFO and
PSO is their different biology behaviors. PSO is inspired by the movement of bird flocks or
fish schools in nature, whereas MRFO is inspired by the social foraging behaviors of manta
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rays. Another distinct difference between both is the solution searching mechanism. The
solutions in PSO are produced by the combination of the global best solution found thus far
and the local best solution, as well as the movement velocity of the individuals; whereas,
in MRFO, the solutions are produced by the combination of the global best solution found
thus far and the solution in front of it by switching different movement strategies. For a
GA and MRFO, both are quite different. A GA is inspired by Darwin’s theory of evolution,
which is quite different from the social foraging behaviors of manta rays in MRFO. The
second difference is the representation of problem variables. In GAs, the problem variables
are encoded in a series of fixed-length bit strings; in MRFO, the problem variables are
used directly. Moreover, in GAs, by performing the roulette wheel selection strategy, better
solutions have a greater probability of creating new solutions, and worse solutions are
probably replaced by new better solutions [27]. While in MRFO, all the individuals in
the population have the same probability of improving their solutions. Although both
MRFO and bacterial foraging optimization (BFO) [50] are swarm-based and bio-inspired
meta-heuristic techniques, which model the biology foraging behaviors, there are still some
significant differences. The major difference between MRFO and BFO is that the concepts of
searching in the foraging behaviors are different. MRFO models three foraging behaviors of
manta rays including chain foraging, cyclone foraging and somersault foraging, while BFO
models the social foraging behaviors of Escherichia coli, such as chemotaxis, swarming,
reproduction and elimination–dispersal. The second difference is that BFO produces new
solutions by adding a random direction with a fixed-length step pace, whereas MRFO
produces new solutions with respect to the best solution and the solution in front of it.
Additionally, in BFO, when updating the solutions, half of the solutions with higher health
are reproduced and half of the solutions with lower health are discarded; MRFO accepts
new solutions that are better than current solutions. The last difference between both is
that BFO uses the health degree of the bacteria as the fitness values of solutions, while
MRFO generally uses the function values of the given problems as the fitness values of
solutions. It is obvious that BFO and MRFO follow totally different approaches when
solving optimization problems.

However, similar to other meta-heuristics, MRFO also suffers from some disad-
vantages, i.e., premature convergence, trapping into the local optima and weak explo-
ration [51,52]. There are many scholars who adopt various methods to enhance the perfor-
mance of MRFO in the literature. Turgut [51] integrated the best performing ten chaotic
maps into MRFO and proposed a novel chaotic MRFO to the thermal design problem, this
improved version can effectively escape the local optima and increase the convergence rate
of the algorithm. Calasan et al. [53] enhanced the optimization ability of the algorithm by
integrating the chaotic numbers produced by the Logistic map in MRFO, this variant was
used to estimate the transformer parameters. Houssein et al. [52] proposed an efficient
MRFO algorithm by hybridizing opposition-based learning with initialization steps of
MRFO, which was used to solve the image segmentation problem. Hassan et al. [54]
solved the economic emission dispatch problems through hybridizing the gradient-based
optimizer with MRFO, which may lead to the avoidance of local optima and accelerate
the conveyance rate. Elaziz et al. [55] utilized the heredity and non-locality properties
of the Grunwald–Letnikov fractional differ-integral operator to improve the exploitation
ability of the algorithm. Elaziz et al. [56] proposed the modified MRFO based on differen-
tial evolution as an effective feature selection approach to identify COVID-19 patients by
analyzing their chest images. Jena et al. [57] introduced a new attacking MRFO algorithm,
which was used for the maximum 3D Tsallis entropy based multilevel thresholding of
a brain MR image. Yang et al. [58] devised a hybrid Framework based on MRFO and
grey prediction theory to forecast and evaluate the influence of PM10 on public health.
Ramadan et al. [59] used MRFO to search for a feasible configuration of the distribution
network to achieve fault-tolerance and fast recovery reliable configurable DN in smart
grids. Houssein et al. [60] used MRFO to extract the PV parameters of single, double and
triple-diode models. It shows better abilities to exploit the search space for unimodal



Mathematics 2021, 9, 2230 4 of 38

problems, but the weak exploration and easily trapping into the local optima for multi-
modal problems as well as the unbalance between exploration and exploration for hybrid
problems are still a few of the major issues.

It can be obvious that it is feasible to design some improved versions of MRFO, and
the above implementations are good examples of this capability. However, it seems difficult
for these improved versions to simultaneously improve their overall optimization capabili-
ties combined with the shortcomings of the algorithm, such as exploration, exploitation,
balance between both and convergence rate. Therefore, it is necessary to conduct some
research attempts to establish a comprehensive improvement strategy for effectively track-
ing complex optimization problems. Based on the investigations mentioned above, a new
hybrid model by combining different operators and designing some search strategies to
comprehensively enhance the optimization performance of the algorithm is one of the ma-
jor research attempts. This is the main motivation of this study. An effective optimization
method can accurately obtain the parameters of the complex MR damper. These selected
parameters have large influences on the output damping force, which gives the damper
better hysteretic and dynamic characteristics. Therefore, it has a wide application value in
industry and civil fields at home and abroad.

In light of the fact mentioned above, a hybrid MR damper model based on an opti-
mization technique is proposed in this study. To obtain the optimal control parameters
of the MR damper, an improved MRFO (IMRFO) combing a searching control factor, an
adaptive weight coefficient with the Levy flight and a wavelet mutation are presented.
Firstly, based on the analysis for the exploration probability of MRFO, the weak exploration
capability of MRFO is promoted by introducing the searching control mechanism, in which
a searching control factor is proposed to adaptively adjust the search option according to
the number of iterations, promoting the exploration ability of the algorithm. Secondly, the
weight coefficient in the cyclone foraging is redefined by combining with the Levy flight;
this search mechanism can effectively promote the diversity of search individuals and
prevent the premature convergence of local optima. Finally, the Morlet wavelet mutation
strategy is employed to dynamically adjust the mutation space by calculating the energy
concentration of the wavelet function; this strategy can improve the ability of the algorithm
to step out of stagnation and the convergence rate. The effectiveness of the IMRFO is
verified on two sets of standard benchmark functions. Additionally, the proposed IMRFO
has been applied to optimally identify the control parameters of the MR dampers. The
results have been compared with those of other algorithms, demonstrating the superiority
of the IMRFO in solving the complex engineering problems.

The novelty points of this study are highlighted below.
In this study, a searching control factor, an adaptive weight coefficient and a wavelet

mutation strategy are designed and integrated into MRFO.
The searching control factor proposed is a decreasing time-dependent function with

the rand oscillation, it proved to effectively improve the exploration ability of the algorithm.
The adaptive weight coefficient is equipped with the Levy flight, which can adjust the

step pace of the individuals having a Levy distribution with the iterations; it strengthens
the diversity of search individuals.

The Morlet wavelet mutation utilizes the multi-resolution and energy concentration
characteristics of the wavelet function to step out of stagnation and increase the convergence
rate of the algorithm.

The Bouc–Wen model is established under various working conditions; the results
discover that the IMRFO is more successful than its competitors in identifying the control
parameters of the MR models.

The rest of this paper is organized as follows: Section 2 briefly introduces the basic
MRFO, and Section 3 describes the proposed IMRFO algorithm in detail. The performance
analysis of the IMRFO on benchmark functions is provided in Section 4. The experiment
results and analysis for identifying the control parameters of MR dampers are presented in
Section 5. Section 6 gives the conclusions and suggests a direction for future research.
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2. Manta Ray Foraging Optimization (MRFO)

MRFO performs the optimization process by simulating the foraging behaviors of
manta rays in nature to obtain the global optimum in the search space. MRFO has the
following three foraging behaviors: chain foraging, cyclone foraging and somersault
foraging. The chain foraging and somersault foraging behaviors contribute mainly to the
exploitation search, while the cyclone foraging focuses on the exploration search. When
solving an optimization problem using MRFO, the following update mechanisms are
employed via the three foraging behaviors.

The chain foraging strategy of manta rays is as follows [42]:

xi(t + 1) =
{

xi(t) + r · (xbest(t)− xi(t))+α · (xbest(t)− xi(t))i = 1
xi(t) + r · (xi−1(t)− xi(t))+α · (xbest(t)− xi(t))i = 2, · · · , N

(1)

α = 2 · r ·
√
|log(r)| (2)

The cyclone foraging of manta rays is as follows [42]:

xi(t + 1) =
{

xbest(t) + r · (xbest(t)− xi(t))+β · (xbest(t)− xi(t))i = 1
xbest(t) + r · (xi−1(t)− xi(t))+β · (xbest(t)− xi(t))i = 2, · · · , N

(3)

β = 2er1
T−t+1

T · sin(2πr1) (4)

and

xi(t + 1) =
{

xrand(t) + r · (xrand(t)− xi(t))+β · (xrand(t)− xi(t))i = 1
xrand(t) + r · (xi−1(t)− xi(t))+β · (xrand(t)− xi(t))i = 2, · · · , N

(5)

xrand(t) =Lb + r · (Lb−Ub) (6)

The somersault foraging of manta rays is as follows [42]:

xi(t + 1) =xi(t) + S · (r2 · xbest − r3 · xi(t)) , i = 1, · · · , N (7)

where xi(t) is the position of the ith individual at iteration t, r is a random vector in [0, 1], r1,
r2 and r3 are the random numbers in [0, 1], xbest(t) is the food with the highest concentration,
xrand(t) is a random position randomly produced in the search space, Lb and Ub are the
lower and upper boundaries of the variables, respectively and T is the maximum number
of iterations.

3. Improved Manta Ray Foraging Optimization (IMRFO)

In MRFO, in the exploitation phase, each individual updates its position with respect
to the individual with the best fitness by adjusting the values of α and β, which results in
the decrease in the population diversity and stagnation in the local optima; meanwhile,
the lack of fine-tuning ability also causes weak solution stability. To overcome these
disadvantages, an improved MRFO, named IMRFO, is proposed. In MRFO, the value
of t/T is employed to balance exploratory and exploitative searches, and the exploration
probability of 0.25 indicates the weak exploration ability of the algorithm; therefore, a
searching control factor is proposed in the IMRFO to improve the searching progress
and exploration process. To enhance the search efficiency of the algorithm, an adaptive
weight coefficient with the Levy flight is introduced in the algorithm, which can maximize
the diversification of individuals and maintain the balance between population diversity
and concentration. To avoid prematurely converging to local optima and a guaranteed
solution stability, the Morlet wavelet mutation with the fine-tuning ability is incorporated
into the algorithm.
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3.1. Searching Control Factor

In MRFO, in the whole iteration process, there is a probability of 50% to perform the
cyclone foraging in which the first half of searches contribute to exploration, according
to the value of t/T. This is, the probability of exploration is only 25% and the relatively
low probability happens in the first half of the optimization process, indicating the weak
exploration ability of MRFO. In regard to this weak exploration, the searching behavior
of MRFO is controlled by the value of t/T, which increases linearly as the iterations rise;
however, in the IMRFO algorithm, the searching ability of the algorithm is controlled by a
coefficient, ps, called the searching control factor, which not only enables the algorithm to
perform exploration with high probability in the second half of the optimization process
but also makes it possible for the algorithm to perform exploration in the second half of the
optimization process. The searching control factor ps is defined as follows:

ps(t) = (1− t
T
)

√
5
r

(8)

where r is the random number in the interval (0, 1]. Figure 1 gives the time-dependent
curve of the searching control factor. When ps > 0.5, the IMRFO performs exploration;
otherwise, the algorithm performs exploitation. Obviously, from Figure 1, the searching
control factor shows a decreasing trend with random oscillation, which also obliges the
algorithm to explore the search in the later iteration.

Figure 1. Time−dependent curve of searching control factor.

Let θ = 1− t
T , then ps(t) =

√
5
r · θ, the probability of ps > 0.5 is given by the following:

P{A(t) > 0.5} = 1−

1
2
√

5∫
0

1∫
5

( 0.5
θ

)
2

drdθ

1× 1
≈ 0.8509 (9)

Therefore, the probability of exploration in the IMRFO algorithm is 0.5 × 0.8509 = 0.4254
over the course of optimization. Figure 2 depicts the schematic diagram of the exploration
probability of the algorithm based on the searching control factor ps. Hence, the global
exploration of the algorithm can be improved from 25 to 42.54% through the searching
control factor ps.
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Figure 2. Schematic diagram of exploration probability of the algorithm based on the searching
control probability ps.

3.2. Adaptive Weight Coefficient with Levy Flight

Levy flight, as a simulation for the foraging activities of creatures, has been developed
as an efficient search mechanism for an unknown space; therefore, it is widely employed to
promote the search efficiency of various meta-heuristics [61–66]. In this part, using the fat-
tailed characteristic producing numerous short steps punctuated by a few long steps from
the Levy flight to construct a non-local random search mechanism, we can improve the
search behavior in the cyclone foraging strategy of MRFO, which can effectively promote
the diversity of search individuals and prevent the premature convergence of local optima.

The random step length of the Levy flight is offered by the following Levy distribu-
tion [66]:

L(s) ∼ t−λ (1 ≤ λ ≤ 3
)

(10)

where λ is a stability/tail index, and s is the step length. According to Mantegna’s algo-
rithm [66], the step length of the Levy flight is given as follows:

s =
u

|v|
1
β

(11)

where u and v obey the normal distribution, respectively. That is:

u ∼ N(0, σ2
u), v ∼ N(0, 1) (12)

σu =

Γ(1 + β) · sin(πβ
2 )

Γ( 1+β
2 ) · β · 2

β−2
2

 1
β

(13)

Γ is the standard Gamma function and the default value of β is set to 1.5.
Therefore, an adaptive weight coefficient with the Levy flight in the cyclone foraging

strategy is designed as follows:

βL = e
2(T−t+1)

T · u

2|v|
1
β

(14)

Observing Equation (14), on the one hand, the multiple short steps produced fre-
quently by the Levy flight promote the exploitation capacity, while the long steps produced
occasionally enhance the exploration capacity, guaranteeing the local optima avoidance

of the algorithm; on the other hand, e
2(T−t+1)

T is a decreasing function with the iterations,



Mathematics 2021, 9, 2230 8 of 38

depending on the decreasing trend of this function. A larger search scope is provided
during the early iterations, while a smaller search scope is provided in the later iterations,
this characteristic can promote the search efficiency of the algorithm and prevent the step
lengths going out of the boundaries of the variables. The behavior of βL during two runs
with 1000 iterations is demonstrated in Figure 3.

Figure 3. Value of βL during two runs with 1000 iterations.

The cyclone foraging of the IMRFO algorithm can be given as follows:

xd
i (t + 1) =

{
xbest + r · (xbest(t)− xi(t))+βL · (xbest(t)− xi(t)) i = 1

xbest + r · (xi−1(t)− xi(t))+βL · (xbest(t)− xi(t)) i = 2, · · · , N
ps < 0.5 (15)

xd
i (t + 1) =

{
xrand + r · (xrand − xi(t))+βL · (xrand − xi(t)) i = 1

xrand + r · (xi−1(t)− xi(t))+βL · (xrand − xi(t)) i = 2, · · · , N
ps ≥ 0.5 (16)

3.3. Wavelet Mutation Strategy

It is easy for MRFO to trap into local optima, which results in an ineffective search for
the global optimum and the instability of solutions. To improve the ability of the algorithm
to step out of stagnation and the convergence rate and the stability of solutions, the Morlet
wavelet mutation is incorporated into the somersault foraging strategy in the IMRFO
algorithm. The wavelet mutation indicates that a dynamic adjustment of the mutation is
implemented by combining the translations and dilations of a wavelet function [66,67].
To meet the fine-tuning purpose, the dilation parameters of the wavelet function are
controlled to reduce its amplitude, which results in a constrain on the mutation space as
the iterations increase.

Assume that pm is the mutation probability, r4 is a random number in [0, 1]. By incorpo-
rating the wavelet mutation, the somersault foraging strategy is improved by the following:

xi(t + 1) =


{

xi(t) + σw · (xi(t)− Low) σw < 0
xi(t) + σw · (Up− xi(t)) σw ≥ 0

r4 < pm

xi(t) + S · (r2 · xbest − r3 · xi(t)) r4 ≥ pm

(17)

where pm is the mutation probability that is set to 0.1, and σw is the dilation parameters of
a wavelet function, which can be given as follows:

σw =
1√
a

ψ(
ϕi
a
) (18)
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where ψ(x) is the Morlet wavelet function and it is defined as follows:

ψ(x) = e−
x2
2 cos(5x) (19)

More than 99% of the total energy of the wavelet function is contained in [−2.5, 2.5].
Thus, σw can be randomly generated from [−2.5a, 2.5a] [67]. a is the dilation parameter,
which increases from 1 to s as the number of iterations increases. To avoid missing the
global optimum, a monotonic increasing function can be given as follows [67]:

a = e− ln(g)·(1− t
T )+ln(g) (20)

where g is a constant number that is set to 100,000. The calculation of the Morlet wavelet
mutation is visualized in Figure 4. From Figure 4, the value of the dilation parameter
increases with the decrease in t, and thus, the amplitude of the Morlet wavelet function is
decreased, which gradually reduces the significance of the mutation; this merit can ensure
that the algorithm jumps out of local optima and improves the precision of the solutions.
Moreover, the overall positive and negative mutations are nearly the same during the
iteration process, and this property also ensures good solution stability.

Figure 4. Calculation of the Morlet wavelet mutation.
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3.4. The Proposed IMRFO Algorithm

In the IMRFO, the improvements for MRFO consist of the following three parts: first,
a searching control factor is designed according to a weak exploration ability of MRFO,
which can effectively increase the global exploration of the algorithm; second, to prevent
the premature convergence of the local optima, an adaptive weight coefficient based on the
Levy flight is designed to promote the search efficiency of the algorithm; three, the Morlet
wavelet mutation strategy is introduced to the algorithm, in which the mutation space is
adaptively adjusted according to the energy concentration of the wavelet function, it is
helpful for the algorithm to step out of stagnation and speed up the convergence rate. In
the IMRFO, in the somersault foraging, when the condition of r4 < pm is met, the Morlet
wavelet mutation strategy is performed. The dilation parameters of a wavelet function
σw is calculated according to the position of the individual xi via Equations (18)–(20), and
then the position of the individual is updated with respect to the upper boundary or lower
boundary of the search space, according to the sign of σw (negative or positive) based on
Equation (20). By this means, the Morlet wavelet mutation strategy is well integrated to
the algorithm.

The pseudocode of the IMRFO algorithm is given in Figure 5, and the specific steps
are as follows:

Step 1: The related parameters of the IMRFO are initialized, such as the size of
population, N, the maximum number of iterations, T and the mutation probability, pm.

Step 2: The initial population is randomly produced {x1(0), x2(0), . . . , xN(0)}, the
fitness of each individual is evaluated and the best solution x*(0) is restored.

Step 3: If t≤ T, for each individual in the population xi(t), i = 1, . . . , N, if the condition
of rand < 0.5 is met, the searching control factor ps is calculated according to Equation (8).

Step 4: All the individuals are sorted according to their fitness from small to large and
the adaptive weight coefficient is calculated according to Equations (10)–(14); if ps < 0.5,
the individual position is updated according to Equation (15), otherwise, the individual
position is updated according to Equation (16); if the condition of rand < 0.5 is not met, the
individual position is updated according to Equation (1).

Step 5: The individual that is out of the boundaries is relocated in the search space;
the fitness value for each individual is evaluated and the best solution found thus far, x*(t),
is restored.

Step 6: For each individual in the population xi(t), the dilation parameter σw is calcu-
lated according to Equations (18)–(20), and the individual position is updated according to
Equation (17).

Step 7: The individual that is out of the boundaries is relocated in the search space;
the fitness value for each individual is evaluated and the best solution found thus far, x*(t),
is restored.

Step 8: If the stop criterion is met, the best solution found thus far, x*(t), is restored;
otherwise, set t = t + 1 and go to Step 3.
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Figure 5. Pseudocode of IMRFO.

4. Experimental Analysis and Results

To analyze the performance of the IMRFO algorithm, a set of benchmark functions are
employed in this study. This function suite contains the following three types: unimodal
(UF), multimodal (MF) and composite (CF) functions. The UF functions (f1–f7) are able
to check the exploitation ability of the algorithms and the MF functions (f8–f13) are able
to reveal the exploration ability of the algorithms. The CF functions (f14–f21) are selected
from the CEC 2014 benchmark suite [68], which are often employed in many optimization
algorithms and can check the balance ability between exploration and exploitation. Details
of these benchmark problems are described in the literature [69,70]. The performance
of the IMRFO is compared with that of other optimization methods. These comparative
optimizers in this study include: PSO, as the most popular swarm-based algorithm; GSA,
as the most well-known physics-based algorithm; WOA and MRFO, as recent optimizers;
comprehensive learning particle swarm optimizer (CLPSO) [71] and evolution strategy with
covariance matrix adaptation (CMA-ES) [72], as highly effective optimizers; and PSOGSA
and improved grey wolf optimization (IGWO) [7], as recent improved meta-heuristics with
high performance.
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For all the considered optimizers, the swarm size and maximum fitness evaluations
(FEs) are set to 50 and 25,000, respectively. All the results of the algorithms are based on the
average performance of 30 independent runs. The parameter settings of all the algorithms
are given in Table 1.

Table 1. Parameter settings for each algorithm.

Algorithm Parameter Value

PSO Inertia weight; acceleration coefficients Decrease from 0.9 to 0.4; 2,2
GSA Gravitational constant; decreasing coefficient 100; 20
WOA Convergence parameter Decrease from 2 to 0

CMA-ES Expected initial distance to optimum per coordinate 5
CLPSO Inertia weight; acceleration coefficients Decrease from 0.9 to 0.4; 1.49445, 1.49445

PSOGSA Gravitational constant; decreasing coefficient; weighting factors 1; 20; 0.5, 1.5
IGWO a Decrease from 2 to 0
IMRFO Mutation probability 0.1

4.1. Exploitation Evaluation

Table 2 shows the results provided by the IMRFO and other optimizers in tackling
UF functions f1–f7 with different dimensions. Inspecting Table 2, the IMRFO is very
competitive with other optimizers on UF functions. In particular, there are significant
improvements on functions f5 and f7 for all the dimensions. For the other UF functions,
the IMRFO provides almost the same results as MRFO, followed by other algorithms.
Therefore, the present algorithm is very effective in exploiting around the optimum and,
thus, ensures a good exploitation ability.

4.2. Exploration Evaluation

The MF functions with numerous local optima are useful to evaluate the exploration
ability of the algorithms. Table 3 gives the results provided by the IMRFO and other
optimizers in tackling MF functions f8–f13 with different dimensions. From Table 3, the
IMRFO performs the best for 50 dimensions of all the MF functions, the IMRFO offers the
best results for 10 dimensions of the MF functions but functions f12 and f13, and the IMRFO
outperforms all the other methods for 30 dimensions of the MF functions but function f13.
Therefore, the IMRFO provides excellent results on these MF functions and its performance
remains consistently superior for different dimensions of 10, 30 and 50. Obviously, these
superior results benefit significantly from the high exploration ability of the IMRFO. This
is due to the fact that the searching control factor increases the number of exploring the
search space and the Morlet wavelet mutation strategy improves the exploration ability of
the algorithm.
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Table 2. Results provided algorithms for UF functions.

Fun. Dim. Index PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

f1

10
Mean 1.38 × 10−13 3.26 × 10−18 2.07 × 10−215 9.62 × 10−91 2.31 × 10−14 1.12 × 10−42 2.28 × 10−20 1.50 × 10−34 7.22 × 10−208

STD 2.81 × 10−13 1.50 × 10−18 0 3.46 × 10−90 1.50 × 10−4 1.41 × 10−42 7.27 × 10−21 4.35 × 10−34 0

30
Mean 2.63 3.44 × 10−17 4.08 × 10−207 1.08 × 10−83 1.74 × 102 7.93 × 10−10 1.00 × 103 2.73 × 10−15 8.50 × 10−199

STD 2.90 1.03 × 10−17 0 5.38 × 10−83 51.7 5.42 × 10−10 3.05 × 103 3.07 × 10−15 0

50
Mean 4.45 × 102 27.1 3.23 × 10−209 2.01 × 10−80 3.03 × 103 3.48 × 10−5 5.14 × 103 3.61 × 10−10 2.90 × 10−199

STD 1.61 × 102 32.2 0 1.10 × 10−79 4.55 × 102 1.82 × 10−5 6.62 × 103 2.51 × 10−10 0

f2

10
Mean 6.70 × 10−9 5.37 × 10−9 1.47 × 10−110 7.45 × 10−56 1.46 × 10−3 3.58 × 10−21 3.18 × 10−10 2.93 × 10−21 2.18 × 10−104

STD 8.09 × 10−9 1.21 × 10−9 4.19 × 10−110 3.86 × 10−55 5.51 × 10−4 1.54 × 10−21 5.22 × 10−11 4.00 × 10−21 6.59 × 10−104

30
Mean 1.21 × 10−1 3.35 × 10−8 1.05 × 10−106 6.52 × 10−55 4.19 5.49 × 10−5 11.2 8.18 × 10−10 4.01 × 10−101

STD 5.44 × 10−2 5.85 × 10−9 4.48 × 10−106 2.09 × 10−54 5.56 × 10−1 1.77 × 10−5 25.7 4.24 × 10−10 2.15 × 10−100

50
Mean 4.15 1.32 × 10−1 3.83 × 10−107 1.17 × 10−51 30.1 9.99 × 10−3 51.2 7.55 × 10−7 1.15 × 10−101

STD 1.09 2.74 × 10−1 1.58 × 10−106 6.12 × 10−51 3.19 2.16 × 10−3 47.1 4.33 × 10−7 3.81 × 10−101

f3

10
Mean 5.23 × 10−3 4.30 1.08 × 10−209 45.8 1.22 × 102 2.31 × 10−33 1.67 × 102 3.39 × 10−15 1.89 × 10−198

STD 8.29 × 10−3 6.81 0 69.3 65.5 4.30 × 10−33 9.13 × 102 1.13 × 10−14 0

30
Mean 8.72 × 103 5.28 × 102 1.56 × 10−202 2.78 × 104 1.75 × 104 3.64 × 10−1 1.32 × 104 3.06 × 10−1 9.86 × 10−191

STD 4.34 × 103 2.29 × 102 0 1.00 × 104 2.84 × 103 3.83 × 10−1 5.97 × 103 4.21 × 10−1 0

50
Mean 3.83 × 104 1.82 × 103 4.00 × 10−203 1.47 × 105 6.55 × 104 5.23 × 102 3.91 × 104 2.15 × 102 2.94 × 10−186

STD 1.15 × 104 5.36 × 102 0 2.90 × 104 7.82 × 103 1.95 × 103 1.34 × 104 2.32 × 102 0

f4

10
Mean 5.58 × 10−4 1.19 × 10−9 5.31 × 10−109 1.96 8.83 2.21 × 10−19 3.15 × 10−1 3.81 × 10−11 5.49 × 10−102

STD 4.43 × 10−4 2.51 × 10−10 1.20 × 10−108 5.81 1.51 9.91 × 10−20 1.19 4.35 × 10−11 2.78 × 10−101

30
Mean 25.2 3.73 1.34 × 10−105 27.8 39.5 6.68 × 10−4 53 2.98 × 10−3 2.60 × 10−99

STD 5.12 1.33 3.60 × 10−105 28.8 2.48 2.05 × 10−4 23.8 1.75 × 10−3 9.43 × 10−99

50
Mean 47.7 8.54 4.71 × 10−104 53.8 53.5 9.07 × 10−2 77.5 2.11 × 10−1 4.93 × 10−98

STD 5.38 1.82 2.15 × 10−103 33.0 2.95 4.18 × 10−2 14.9 1.07 × 10−1 1.30 × 10−97
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Table 2. Cont.

Fun. Dim. Index PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

f5

10
Mean 5.92 18.1 2.18 6.30 27.5 3.04 × 10−2 3.02 × 103 3.86 4.49 × 10−2

STD 1.00 32.8 3.87 × 10−1 3.43 × 10−1 12 1.15 × 10−2 1.64 × 104 6.57 × 10−1 1.77 × 10−1

30
Mean 8.81 × 102 39.0 24.1 27.3 4.22 × 104 20.0 73.8 25.1 4.12 × 10−5

STD 7.60 × 102 32.7 4.77 × 10−1 4.54 × 10−1 1.52 × 104 7.11 × 10−1 66.7 7.94 × 10−1 7.76 × 10−13

50
Mean 3.11 × 105 2.92 × 102 44.7 47.9 9.66 × 105 57.3 5.37 × 106 46.5 1.27 × 10−3

STD 2.35 × 105 1.66 × 102 4.11 × 10−1 5.04 × 10−1 2.33 × 105 37.1 2.03 × 107 1.46 2.40 × 10−3

f6

10
Mean 0 0 0 0 0 0 6.33 × 10−1 0 0
STD 0 0 0 0 0 0 8.09 × 10−1 0 0

30
Mean 6.93 1.67 × 10−1 0 0 1.50 × 102 0 1.84 × 103 0 0
STD 3.53 3.79 × 10−1 0 0 31.3 0 3.30 × 103 0 0

50
Mean 4.98 × 102 1.40 × 102 0 0 2.68 × 103 0 9.03 × 103 0 0
STD 2.89 × 102 84.9 0 0 4.25 × 102 0 7.13 × 103 0 0

f7

10
Mean 4.52 × 103 5.92 × 10−3 1.73 × 10−4 1.28 × 103 6.87 × 10−3 1.78 × 10−3 1.31 × 10−2 7.56 × 10−4 1.46 × 10−4

STD 2.14 × 10−3 3.03 × 10−3 1.62 × 10−4 1.06 × 10−3 3.30 × 10−3 8.04 × 10−4 8.82 × 10−3 5.87 × 10−4 1.34 × 10−4

30
Mean 1.23 × 10−1 2.91 × 10−2 1.97 × 10−4 2.36 × 10−3 1.61 × 10−1 7.23 × 10−3 1.14 × 10−1 3.86 × 10−3 1.75 × 10−4

STD 4.94 × 10−2 1.01 × 10−2 1.43 × 10−4 3.18 × 10−3 3.76 × 10−2 2.52 × 10−3 4.72 × 10−2 1.47 × 10−3 1.95 × 10−4

50
Mean 1.23 1.15 × 10−1 2.28 × 10−4 2.60 × 10−3 1.11 1.20 × 10−2 4.33 × 10−1 6.79 × 10−3 1.73 × 10−4

STD 4.13 × 10−1 4.92 × 10−2 1.39 × 10−4 3.08 × 10−3 2.86 × 10−1 3.30 × 10−3 1.48 × 10−1 2.07 × 10−3 1.80 × 10−4
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Table 3. Results provided algorithms for MF functions.

Fun. Dim. Index PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

f8

10
Mean −2.87 × 103 −1.70 × 103 −3.63 × 103 −3.36 × 103 −3.94 × 103 −2.50 × 103 −3.00 × 103 −3.96 × 103 −4.17 × 103

STD 2.44 × 102 3.40 × 102 2.60 × 102 5.83 × 102 7.97 × 102 1.86 × 102 2.83 × 102 2.70 × 102 3.55 × 102

30
Mean −5.00 × 103 −2.76 × 103 −8.58 × 103 −1.09 × 104 −1.07 × 104 −4.39 × 103 −7.75 × 103 −7.86 × 103 −1.11 × 104

STD 6.35 × 102 4.32 × 102 6.28 × 102 1.47 × 103 2.94 × 102 3.07 × 102 1.16 × 103 1.79 × 103 1.70 × 103

50
Mean −6.11 × 103 −3.66 × 103 −1.29 × 104 −1.79 × 104 −1.44 × 104 −5.74 × 103 −1.19 × 104 −9.28 × 103 −1.89 × 104

STD 4.83 × 102 6.84 × 102 8.46 × 102 2.85 × 103 5.03 × 102 3.42 × 102 1.04 × 103 3.47 × 103 2.79 × 103

f9

10
Mean 4.02 3.32 0 1.67 1.99 × 10−1 13.5 35.1 5.73 0
STD 1.89 13.7 0 6.45 1.82 × 10−1 9.12 15.0 5.71 0

30
Mean 56.1 17.0 0 5.68 × 10−15 60.9 1.64 × 102 1.37 × 102 45.7 0
STD 17.4 4.27 0 2.29 × 10−14 8.65 9.17 29.0 47.1 0

50
Mean 1.34 × 102 33.4 0 0 2.01 × 102 2.67 × 102 2.47 × 102 64.2 0
STD 23.5 80.7 0 0 17.3 1.04 × 102 61.8 24.8 0

f10

10
Mean 1.73 × 10−7 2.47 × 10−9 8.88 × 10−16 4.20 × 10−15 1.42 × 10−2 1.01 × 10−15 1.99 × 10−1 9.53 × 10−15 8.88 × 10−16

STD 2.44 × 10−7 5.15 × 10−10 0 2.07 × 10−15 5.39 × 10−3 6.49 × 10−16 5.33 × 10−1 3.32 × 10−15 0

30
Mean 1.35 4.91 × 10−9 8.88 × 10−16 4.68 × 10−15 6.57 9.11 × 10−6 12.9 1.04 × 10−8 8.88 × 10−16

STD 6.57 × 10−1 9.60 × 10−10 0 1.60 × 10−15 5.50 × 10−1 2.59 × 10−16 5.08 5.84 × 10−9 0

50
Mean 5.57 1.52 × 10−1 8.88 × 10−16 3.61 × 10−15 11.4 1.31 × 10−3 17.6 2.91 × 10−6 8.88 × 10−16

STD 7.47 × 10−1 3.25 × 10−1 0 2.59 × 10−15 4.45 × 10−1 3.18 × 10−4 1.49 1.12 × 10−6 0

f11

10
Mean 9.67 × 10−2 1.68 0 6.48 × 10−2 5.47 × 10−2 0 1.69 × 10−1 3.33 × 10−2 0
STD 5.16 × 10−2 1.20 0 1.08 × 10−1 2.54 × 10−2 0 8.21 × 10−2 2.32 × 10−2 0

30
Mean 9.03 × 10−1 16.3 0 0 2.72 5.16 × 10−9 12.8 4.28 × 10−3 0
STD 2.14 × 10−1 3.84 0 0 5.36 × 10−1 2.98 × 10−9 31.1 8.30 × 10−3 0

50
Mean 5.21 1.02 × 102 0 3.70 × 10−18 26.9 2.63 × 10−4 79.6 2.47 × 10−3 0
STD 2.30 13.4 0 2.03 × 10−17 5.06 9.54 × 10−5 74.5 4.74 × 10−3 0
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Table 3. Cont.

Fun. Dim. Index PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

f12

10
Mean 1.22 × 10−14 5.58 × 10−20 1.04 × 10−2 2.00 × 10−3 2.75 × 10−5 4.71 × 10−32 4.88 × 10−1 1.89 × 10−6 1.46 × 10−27

STD 1.84 × 10−14 2.55 × 10−20 5.68 × 10−2 5.91 × 10−3 1.82 × 10−5 1.67 × 10−47 1.13 5.29 × 10−7 7.04 × 10−27

30
Mean 6.35 4.70 × 10−1 2.83 × 10−8 7.01 × 10−3 8.70 6.00 × 10−11 8.94 1.14 × 10−2 4.10 × 10−11

STD 3.56 4.28 × 10−1 2.94 × 10−8 4.61 × 10−3 2.11 5.93 × 10−11 4.98 2.03 × 10−2 5.56 × 10−11

50
Mean 1.19 × 105 1.79 3.31 1.23 × 10−2 1.85 × 104 9.57 × 10−7 2.56 × 107 5.96 × 10−2 1.21 × 10−7

STD 2.30 × 105 6.28 × 10−1 1.93 × 10−5 9.72 × 10−3 1.93 × 104 4.03 × 10−7 7.81 × 107 3.37 × 10−2 1.51 × 10−7

f13

10
Mean 1.11 × 10−13 2.87 × 10−19 2.03 × 10−2 2.80 × 10−3 2.44 × 10−4 1.35 × 10−32 7.32 × 10−4 9.87 × 10−6 1.46 × 10−3

STD 2.25 × 10−13 1.02 × 10−13 4.07 × 10−2 3.92 × 10−3 1.96 × 10−4 5.57 × 10−48 2.79 × 10−3 3.69 × 10−6 3.80 × 10−3

30
Mean 25.1 2.07 2.47 1.74 × 10−1 1.36 × 102 4.20 × 10−10 38.1 2.24 × 10−1 7.32 × 10−4

STD 21.4 2.97 1.11 1.35 × 10−1 1.77 × 102 3.37 × 10−10 9.54 1.23 × 10−1 2.79 × 10−3

50
Mean 4.62 × 105 28.8 4.92 5.12 × 10−1 6.18 × 105 2.30 × 10−5 5.47 × 107 1.41 5.10 × 10−6

STD 5.08 × 105 10.3 1.26 × 10−1 2.32 × 10−1 2.84 × 105 1.03 × 10−5 1.42 × 108 3.08 × 10−1 1.89 × 10−5
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4.3. Evaluation of Local Optima Avoidance

Composite functions are the most challenging test suite; therefore, they are specifically
used for evaluating the local optima avoidance of algorithms, which results from a proper
balance between exploration and exploitation [73]. The results provided by the IMRFO
and other optimizers in tackling CF functions f14–f21 are presented in Table 4. Based on
Table 4, the results from the IMRFO are not inferior to those from other algorithms except
function f17. For function f17, the results from the IMRFO are second only to those of
IGWO. The IMRFO can considerably outperform other algorithms and provide the best
results for 87.5% of f14–f21 problems. It can be seen that the results of the IMRFO are again
significantly better than other optimizers. Therefore, the results from Table 4 confirm that
the IMRFO benefits from a good balance between exploratory and exploitative searches
that assist the optimizer to effectively avoid local optima.

4.4. Convergence Evaluation

The convergence curves by the IMRFO and other optimizers in tackling the UF and
MF functions are depicted in Figures 6–10 to observe the convergence performance of the
optimizers. The convergence curves provided in these figures are based on the mean of
the best-so-far solutions in each iteration over 30 runs. It can be found that these curves
share common characteristics: in the early stage of iterations, there are high fluctuations
in the curves; the convergence rate tends to be accelerated as the iterations increase; in
the later phase of iterations, the curves exhibit low variations. From the figure, compared
to other algorithms, the convergence rate of the IMRFO tends to be speeded up with
the increase in the iterations. This is owing to the Morlet wavelet mutation strategy for
MRFO that enables the algorithm to search for the promising regions of the search space
in the initial iterations and converge towards the global optimum more rapidly in the
subsequent iterations. Overall, these convergence characteristics are attributed to the
improved strategies in the IMRFO, by which the individuals of the population are able
to effectively search the variable space and update their positions towards the global
optimum solution. Thus, the excellent convergence performance of the IMRFO reveals that
the algorithm achieves a better balance between exploitation and exploration than other
algorithms in the optimization process.

Figure 6. Convergence curves of algorithms for UF functions f1–f4 with different dimensions.
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Table 4. The results provided algorithms for CF functions.

Fun. Index PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

f14
Mean 2647.81 2578.60 2500.00 2681.93 2638.70 2706.03 2634.00 2617.82 2500.00
STD 9.03 117.43 0 18.63 4.64 148.00 8.61 0.82 0

f15
Mean 2633.48 2620.13 2600.00 2608.33 2654.29 2617.53 2669.75 2600.26 2600.00
STD 7.73 1.73 0 8.38 2.32 51.64 20.49 0.20 0

f16
Mean 2727.81 2706.18 2700.00 2725.71 2723.21 2713.20 2717.14 2707.26 2700.00
STD 10.95 2.13 0 20.59 3.46 0.99 9.14 1.98 0

f17
Mean 2702.91 2795.25 2700.57 2710.46 2703.67 2704.87 2771.20 2700.50 2700.52
STD 0.97 15.31 0.12 31.58 0.68 0.87 48.48 0.09 0.09

f18
Mean 3508.11 4624.61 2900.01 3740.09 3331.54 3680.23 3708.63 3195.69 2900.00
STD 229.02 216.01 0.04 424.55 80.25 90.59 125.38 84.77 0

f19
Mean 7322.83 5455.38 3000.00 5693.72 5155.90 7452.47 4669.26 3849.98 3000.00
STD 622.89 751.15 0 623.81 370.96 707.92 526.87 132.40 0

f20
Mean 3.07 × 107 2.77 × 106 3614.61 1.14 × 107 3.34 × 106 1.59 × 108 7.15 × 106 2.18 × 104 3586.18
STD 2.91 × 107 6.45 × 106 718.74 9.34 × 106 1.77 × 106 6.19 × 107 6.62 × 106 8529.33 635.79

f21
Mean 1.43 × 105 2.06 × 106 9110.49 3.46 × 105 1.22 × 105 985,119.84 31,366.18 1.30 × 104 6905.11
STD 1.81 × 105 8.58 × 105 2684.13 1.92 × 105 3.86 × 104 6.26 × 105 2.70 × 104 3389.18 1818.54
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Figure 7. Convergence curves of algorithms for UF functions f5–f7 with different dimensions.

Figure 8. Convergence curves of algorithms for MF functions f8–f10 with different dimensions.
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Figure 9. Convergence curves of algorithms for MF functions f11–f13 with different dimensions.

Figure 10. Convergence curves of algorithms for CF functions f14–f21 with 30 dimensions.

4.5. CEC 2017 Benchmarking

To further comprehensively investigate the performance of the IMRFO, a set of chal-
lenging functions CEC 2017 [74] is employed in this experiment. The comparative optimiz-
ers are the same as in the previous experiment and their parameters are set to be the same
as mentioned in Table 1. The results are based on 30 independent runs of each algorithm
with the population size of 50 and FEs of 50,000.

To investigate the significance difference of the performance of the IMRFO versus
other algorithms and whether the IMRFO statistically outperforms other algorithms when
solving optimization tasks, a Wilcoxon Signed-Rank Test (WSRT) is used. In this experi-
ment, the WSRT is performed at 5% level of significance [75]. The WSRT results between
the IMRFO and other optimizers are listed in Table 5. In Tables 5 and 6, ‘=’ signifies that
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there is no significant difference between the IMRFO and other algorithms, ‘+’ signifies
that the null hypothesis is rejected and the IMRFO outperforms other ones and ‘−’ vice
versa. The statistical results of ‘=’, ‘−’ and ‘+’ for all the algorithms are given in the last row
of each table. From Tables 5 and 6, it can be observed that there is a statistical significance
difference between the IMRFO and other optimizers and the performance of the IMRFO is
superior to the other eight competitive optimizers on the majority of test tasks.

To further evaluate the difference between the IMRFO and its counterparts and rank
them statistically, another statistical test, the Friedman Test (FT), is employed based on
the average performance of the algorithms in this study. The performance ranks of the
FT for each of the 29 functions among all the considered algorithms are given in Table 7
and their ranks, on average, are depicted in Figure 11, in which the lower rank denotes the
better algorithm. Regarding the results in Table 7, the IMRFO can achieve the best results
on 12 functions; a WOA can achieve the best results on 3 functions; and an IGWO can
achieve the best results on 14 functions. Observing Figure 11, the IMRFO offers the lowest
rank of all the comparative algorithms, indicating that the IMRFO can achieve the best
performance, followed by IGWO, MRFO and CLPSO. Consequently, this statistical test
proves the effectiveness and superiority of the combination of those strategies proposed in
the IMRFO.

Figure 11. Average ranks of algorithms based on FT on 29 functions.
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Table 5. WSRT results between IMRFO and PSO, GSA, MRFO and WOA.

Fun.
PSO vs. IMRFO GSA vs. IMRFO MRFO vs. IMRFO WOA vs. IMRFO

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 1.73 × 10−6 0 465 + 2.83 × 10−4 56 409 + 3.72 × 10−5 433 32 − 1.73 × 10−6 0 465 +
F2 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F3 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 8.94 × 10−4 71 394 + 1.73 × 10−6 0 465 +
F4 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 2.61 × 10−4 55 410 + 1.73 × 10−6 0 465 +
F5 4.28 × 10−1 194 271 = 2.13 × 10−6 2 463 + 3.29 × 10−1 280 185 = 1.73 × 10−6 0 465 +
F6 9.59 × 10−1 230 235 = 1.92 × 10−6 1 464 + 8.19 × 10−5 41 424 + 1.73 × 10−6 0 465 +
F7 3.72 × 10−5 433 32 − 3.39 × 10−1 279 186 = 6.16 × 10−4 399 66 − 1.92 × 10−6 1 464 +
F8 3.71 × 10−1 276 189 = 1.06 × 10−1 154 311 = 3.49 × 10−1 278 187 = 4.29 × 10−6 9 456 +
F9 2.99 × 10−1 283 182 = 6.32 × 10−5 38 427 + 7.51 × 10−5 40 425 + 1.73 × 10−6 0 465 +
F10 2.60 × 10−6 4 461 + 4.72 × 10−2 136 329 + 2.37 × 10−5 27 438 + 1.73 × 10−6 0 465 +
F11 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.59 × 10−3 386 79 − 1.73 × 10−6 0 465 +
F12 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F13 7.04 × 10−1 214 251 = 7.71 × 10−4 69 396 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F14 9.32 × 10−6 17 448 + 1.73 × 10−6 0 465 + 1.74 × 10−4 50 415 + 1.73 × 10−6 0 465 +
F15 4.99 × 10−3 96 369 + 6.16 × 10−3 66 399 + 6.34 × 10−6 13 452 + 1.92 × 10−6 1 464 +
F16 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.85 × 10−2 118 347 + 1.73 × 10−6 0 465 +
F17 1.65 × 10−1 165 300 = 1.73 × 10−6 0 465 + 2.37 × 10−5 27 438 + 2.88 × 10−6 5 460 +
F18 2.88 × 10−6 5 460 + 3.16 × 10−3 89 376 + 5.98 × 10−2 141 324 = 2.88 × 10−6 5 460 +
F19 3.82 × 10−1 190 275 = 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F20 1.85 × 10−2 347 118 − 1.73 × 10−6 0 465 + 5.44 × 10−1 203 262 = 2.60 × 10−6 4 461 +
F21 2.37 × 10−5 27 438 + 1.73 × 10−6 0 465 + 3.39 × 10−1 186 279 = 1.73 × 10−6 0 465 +
F22 2.84 × 10−5 29 436 + 1. × 10−6 0 465 + 1.04 × 10−3 73 392 + 1.73 × 10−6 0 465 +
F23 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 4.20 × 10−4 61 404 + 2.35 × 10−6 3 462 +
F24 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 3.11 × 10−5 30 435 + 1.73 × 10−6 0 465 +
F25 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.74 × 10−4 50 415 + 1.73 × 10−6 0 465 +
F26 2.37 × 10−5 27 438 + 1.73 × 10−6 0 465 + 2.11 × 10−3 382 83 − 4.29 × 10−6 9 456 +
F27 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 3.71 × 10−1 189 276 = 2.35 × 10−6 3 462 +
F28 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 3.88 × 10−6 8 457 + 1.73 × 10−6 0 465 +
F29 8.47 × 10−6 16 449 + 1.73 × 10−6 0 465 + 5.29 × 10−4 64 401 + 1.73 × 10−6 0 465 +

+/=/− 20/7/2 27/2/0 19/6/4 29/0/0
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Table 6. WSRT results between IMRFO and CLPSO, CMA-ES, PSOGSA and IGWO.

Fun.
CLPSO vs. IMRFO CMA-ES vs. IMRFO PSOGSA vs. IMRFO IGWO vs. IMRFO

p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner p-Value T+ T− Winner

F1 1.73 × 10−6 0 465 + 8.94 × 10−4 71 394 + 2.16 × 10−5 26 439 + 1.73 × 10−6 0 465 +
F2 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 +
F3 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 2.05 × 10−4 52 413 +
F4 1.73 × 10−6 0 465 + 1.74 × 10−4 50 415 + 6.98 × 10−6 14 451 + 3.33 × 10−2 129 336 +
F5 1.41 × 10−1 304 161 = 7.51 × 10−5 40 425 + 1.92 × 10−6 1 464 + 1.59 × 10−3 386 79 −
F6 1.73 × 10−6 465 0 − 5.32 × 10−3 97 368 + 3.52 × 10−6 7 458 + 1.73 × 10−6 465 0 −
F7 3.72 × 10−5 433 32 − 4.07 × 10−5 432 33 − 9.32 × 10−6 17 448 + 3.88 × 10−6 457 8 −
F8 1.41 × 10−1 304 161 = 1.04 × 10−3 73 392 + 1.24 × 10−5 20 445 + 1.36 × 10−5 444 21 −
F9 3.39 × 10−1 279 186 = 3.72 × 10−5 433 32 − 1.73 × 10−6 0 465 + 1.73 × 10−6 465 0 −

F10 1.24 × 10−5 20 445 + 1.73 × 10−6 0 465 + 1.96 × 10−3 82 383 + 9.71 × 10−5 43 422 +
F11 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.38 × 10−3 77 388 +
F12 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.13 × 10−5 19 446 + 2.13 × 10−6 2 463 +
F13 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 6.32 × 10−5 38 427 + 1.92 × 10−6 1 464 +
F14 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 1.92 × 10−6 1 464 + 3.11 × 10−6 30 435 +
F15 2.88 × 10−6 5 460 + 1.73 × 10−6 0 465 + 1.83 × 10−3 81 384 + 1.02 × 10−5 18 447 +
F16 9.10 × 10−1 227 238 = 2.60 × 10−6 4 461 + 1.97 × 10−5 25 440 + 1.36 × 10−1 305 160 =
F17 2.26 × 10−3 381 84 − 1.32 × 10−2 112 353 + 3.18 × 10−6 6 459 + 1.49 × 10−5 443 22 −
F18 3.11 × 10−5 30 435 + 2.60 × 10−6 4 461 + 5.29 × 10−4 64 401 + 5.71 × 10−4 65 400 +
F19 2.60 × 10−6 4 461 + 1.73 × 10−6 0 465 + 4.20 × 10−4 61 404 + 1.32 × 10−2 112 353 +
F20 8.94 × 10−4 394 71 − 3.88 × 10−6 8 457 + 2.88 × 10−6 5 460 + 6.34 × 10−6 452 13 −
F21 1.83 × 10−3 81 384 + 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 2.77 × 10−3 378 87 −
F22 2.16 × 10−5 26 439 + 9.59 × 10−1 235 230 = 4.29 × 10−6 9 456 + 1.97 × 10−5 25 440 +
F23 2.89 × 10−1 181 284 = 1.73 × 10−6 0 465 + 1.73 × 10−6 0 465 + 2.41 × 10−4 411 54 −
F24 5.71 × 10−4 65 400 + 1.73 × 10−6 0 465 + 4.29 × 10−6 9 456 + 1.80 × 10−5 441 24 −
F25 1.73 × 10−6 0 465 + 2.71 × 10−1 286 179 = 9.71 × 10−6 43 422 + 1.96 × 10−3 82 383 +
F26 2.21 × 10−1 292 173 = 4.29 × 10−6 9 456 + 1.74 × 10−4 50 415 + 1.29 × 10−3 389 76 −
F27 2.77 × 10−3 378 87 − 1.73 × 10−6 0 465 + 5.58 × 10−1 204 261 = 1.73 × 10−6 465 0 −
F28 1.73 × 10−6 0 465 + 4.99 × 10−3 96 369 + 1.73 × 10−6 0 465 + 2.35 × 10−6 3 462 +
F29 4.65 × 10−1 197 268 = 1.53 × 10−1 163 302 = 1.13 × 10−5 19 446 + 6.89 × 10−5 426 39 −

+/=/− 17/7/5 24/3/2 28/1/0 15/1/13
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Table 7. Performance rank of algorithms for each function.

Fun. IMRFO PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO

F1 2 6 5 1 7 4 9 8 3
F2 1 6 7 2 4 5 8 9 3
F3 1 4 6 2 9 7 8 5 3
F4 1 8 5 2 6 4 9 7 3
F5 2 4 6 5 9 3 7 8 1
F6 3 5 7 4 9 2 6 8 1
F7 6 2 5 7 8 3 4 9 1
F8 2 4 6 5 8 3 9 7 1
F9 5 4 7 6 9 3 2 8 1

F10 1 8 3 2 7 5 9 4 6
F11 2 4 8 1 9 5 7 6 3
F12 1 6 5 2 7 4 9 8 3
F13 1 7 3 2 5 6 9 8 4
F14 1 5 8 3 9 6 7 4 2
F15 1 6 3 2 8 7 9 4 5
F16 2 7 6 3 8 4 9 5 1
F17 3 5 9 4 7 2 6 8 1
F18 1 6 4 2 8 5 7 9 3
F19 2 3 6 1 9 5 7 8 4
F20 4 3 9 5 7 2 6 8 1
F21 2 5 8 3 7 4 9 6 1
F22 1 3 8 2 9 6 4 7 5
F23 2 7 9 4 6 3 8 5 1
F24 2 7 9 3 6 4 8 5 1
F25 1 8 6 3 7 4 5 9 2
F26 3 5 7 4 8 2 9 6 1
F27 4 7 9 3 6 2 8 5 1
F28 1 8 7 2 5 4 9 6 3
F29 2 6 9 4 8 3 5 7 1

5. Optimal Parameter Identification of MR Damper
5.1. Principle of Operation

The MR damper is a kind of intelligent semi-active control device; controlling the
size of the coil in the current instructions can change the strength of the magnetic field,
which directly affects the viscosity coefficient of magnetorheological fluids, thus working
to control the outputs of the damper. The general structure of the MR damper is plotted in
Figure 12 [76]. The MR fluid is enclosed in a cylinder and flows through a small orifice;
meanwhile, a magnetizing coil is enclosed in the piston. When a current is fed to the coil,
the particles suspended in the MR fluid are aligned, this enables the fluid to change from
the liquid state to the semisolid state within milliseconds, thus generating a controllable
damping force.

Figure 12. Structure of the MR damper.
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The mechanical performance test of the MR damper is carried out on the tensile test
bed. The experimental platform uses the amplitude signals of different frequencies from
the exciter and the current provided by the MR shimmy damper, which are employed to
generate some data signals, i.e., the damping force and cylinder rod displacement. The
sinusoidal signals are used to generate the excitation in the MR damper, which can be
expressed as follows:

x = A sin(2π f t) (21)

where x is the displacement of the damper piston, A is the amplitude of signals, f is the
frequency of signals and t is the time. When the amplitude and frequency of the signals are
constant, the displacements versus time for the different loading currents can be generated.
Therefore, the dynamic responses of the MR damper, i.e., damping force–displacement and
damping force–velocity, can be obtained by test data processing under various operating
conditions. Figure 13 shows the typical damping force–displacement and damping force–
velocity test curves for the amplitude A = 10 mm and frequency f = 0.5 Hz [76].

Figure 13. (a) Damping force−displacement test curves, (b) and damping force–velocity test curves.

5.2. Bouc–Wen Model

Various MR models had been proposed to reproduce the dynamic responses of the MR
damper, among which the Bouc–Wen model is one of the most commonly employed models
owing to its good hysteretic characteristics and strong universality [77]; the Bouc–Wen
model is depicted in Figure 14.

Figure 14. Bouc−Wen model of a MR damper.
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The mechanical behavior of the Bouc–Wen model is described as follows:

F = c0
.
x + k0(x− x0) + αz (22)

.
z = −γ

∣∣ .
x
∣∣z∣∣z∣∣n−1 − β

.
xz
∣∣z∣∣n + A

.
x (23)

where x is the damper displacement, c0 is the damping coefficient of a dashpot, x0 is the
initial deflection of spring with the stiffness k0, z is the hysteretic variable and, α, β, γ and n
are the model parameters of the MR damper, which are given as follows [76]:

α = αα I + αb (24)

c0 = c0αec0b I (25)

β = βαeβb I (26)

A = Aα I2 + Ab I + Ac (27)

The following 15 parameters need to be determined in our study:

αb, c0α, c0b, k0, c1, k1, γ, βα, βb, Aα, Ab, Ac, n, and x0

When these parameters are determined, the output damping force needs to be cal-
culated using the Bouc–Wen model. Therefore, the Bouc–Wen model is established using
SIMULINK.

5.3. Simulation Results and Analysis

After the establishment of the model, a fitness function should be defined that can
evaluate the quality of the model with the given parameters. Thus, in this study, the mean
error rate (MER) between the simulation data and experimental data is employed as the
following fitness function [76]:

f j
ER =

√√√√√√√√
m
∑

i=1
(Fj

i − F∗j
i )

2

m
∑

i=1
(Fj

i −
1
m

m
∑

i=1
Fj

i )
2 (28)

fMER =
1
c

c

∑
j=1

f j (29)

where m is the number of damping forces, c is the number of the constant loading currents,
Fj

i and F∗j
i are the ith experimental force and the ith simulation force from the model

under the jth loading current, respectively and f j
ER is the error rate under a loading current.

Therefore, to find the optimal model parameters, the proposed IMRFO algorithm is adopted,
and the results are compared with those from the other optimizers.

The experimental data, i.e., the damper amplitude, velocity and the outputted damper
force, are obtained under a wide range of operating conditions. Table 8 gives the test
operating conditions. In Table 8, the working frequencies are set to 0.5, 1 and 1.5 Hz, while
the amplitude is set 10 mm, respectively; moreover, the loading current is set from 0 to
3 A with the step length 0.5 A. Thus, there are three combination cases of frequency and
displacement, and there are seven current types for each of the combination cases. For
each case, the results offered by the IMRFO are compared with those offered by some other
algorithms. For all the algorithms, the population size and the maximum FEs are set to 30
and 6000, respectively. For different loading currents, the search space of each parameter
will be slightly different. For example, when I = 0.5 A, the search space of the 15 parameters
is given as follows:
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Lb = [104, 104, 103, 10−2, 100, 106, 102, 102, 103, −1, −10, −100, 100, 0.1, 10−4];
Ub = [105, 105, 104, 1, 103, 107, 103, 104, 104, −0.1, −1, −1, 103, 1, 1].

Table 8. Test operating conditions of Bouc–Wen model.

Frequency (Hz) Amplitude (mm) Loading Current (A)

Case1 0.5 10
0 0.5 1 1.5 2 2.5 3Case2 1 10

Case3 1.5 10

Table 9 lists the experimental results provided by the IMRFO and its competitors for
three different cases. From Table 9, the IMRFO yields the most favorable performance in
case one, in terms of ‘Mean’ and ‘Std’ followed by WOA, IGWO and CMA-ES; in case two,
the IMRFO achieves the most reliable performance with comparison to other algorithms,
followed by IGWO, PSOGSA and CLPSO; in case three, the IMRFO also offers better results
than the other optimizers, followed by IGWO, WOA and CMA-EA. Therefore, Table 9
manifests that the IMRFO obtains more stable high-quality solutions than its counterparts
when solving the Bouc–Wen model with different operating conditions. The 15 parameters
of the Bouc–Wen are provided in Table 10 using different algorithms for the loading
current = 0.5 A.

The convergence curves of all the algorithms for the three cases are depicted in
Figure 15. It can be observed that the IMRFO displays the highest convergence rate during
the entire optimization process for cases one and two. For case three, the convergence
rate of the IMRFO is significantly superior to the other competitors at the later optimiza-
tion process. Moreover, the IMRFO offers the final solutions with the highest precision
in the three cases, demonstrating its superior convergence performance for finding the
optimum solution.

Figure 15. Convergence curves of algorithms for three cases.

The comparisons between the experimental data and simulated results from the Bouc–
Wen model using the parameters identified provided by the IMRFO are shown in Figure 16,
in which the damping forces obtained from the experiment are plotted in solid lines, while
the damping forces from the model are plotted in dots. From Figure 16, the damping force
from the experimental data increases with the increase in the loading currents, and the
increasing amplitude decreases gradually. Observing the damping force–displacement test
curves and damping force–velocity test curves in Figure 16, for each of the different loading
currents, the simulated data from the IMRFO-based Bouc–Wen model can agree well with
the experimental data; these results show the effectiveness of the proposed method in
identifying the damping parameters of the MR damper.
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Table 9. Results provided using different algorithms for three cases.

Fun. Index
Objective Function (fMER)

PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

Case 1
Mean 1.091 × 10−1 2.343 × 10−1 1.345 × 10−1 7.345 × 10−2 1.877 × 10−1 7.896 × 10−2 1.478 × 10−1 7.402 × 10−2 6.706 × 10−2

STD 9.035 × 10−2 1.145 × 10−2 2.290 × 10−3 3.010 × 10−3 6.465 × 10−3 2.185 × 10−3 3.800 × 10−3 5.897 × 10−4 2.238 × 10−4

Case 2
Mean 2.325 × 10−1 6.219 × 10−1 2.667 × 10−1 1.930 × 10−1 2.380 × 10−1 2.092 × 10−1 2.935 × 10−1 2.277 × 10−1 1.773 × 10−1

STD 1.952 × 10−2 1.658 × 10−1 3.179 × 10−3 3.036 × 10−2 1.061 × 10−2 1.048 × 10−3 5.771 × 10−3 2.516 × 10−3 1.717 × 10−3

Case 3
Mean 2.655 × 10−1 7.154 × 10−1 2.667 × 10−1 2.387 × 10−1 2.380 × 10−1 2.535 × 10−1 2.935 × 10−1 2.277 × 10−1 2.275 × 10−1

STD 6.687 × 10−2 4.544 × 10−2 2.850 × 10−2 6.458 × 10−2 8.677 × 10−2 5.653 × 10−2 3.634 × 10−2 3.596 × 10−2 1.004 × 10−2

Table 10. Parameters of Bouc–Wen model for loading current = 0.5 A.

Parameters PSO GSA MRFO WOA CLPSO CMA-ES PSOGSA IGWO IMRFO

αα 3.59 × 104 9.17 × 104 2.58 × 104 3.71 × 104 3.19 × 104 5.33 × 104 8.01 × 104 2.29 × 104 4.43 × 104

αb 7.11 × 104 4.78 × 104 1.29 × 104 3.08 × 104 2.02 × 104 2.11 × 104 6.11 × 104 1.25 × 104 4.18 × 104

c0α 2.81 × 103 5.01 × 103 3.89 × 103 3.07 × 103 3.55 × 103 5.67 × 103 7.05 × 103 2.78 × 103 2.61 × 103

c0b 6.19 × 10−1 4.95 × 10−1 1.77 × 10−1 6.87 × 10−1 4.36 × 10−1 1.90 × 10−1 3.26 × 10−1 3.37 × 10−1 4.83 × 10−1

k0 8.45 × 102 2.46 × 102 2.10 × 102 2.38 × 102 2.87 × 102 5.84 × 102 1.77 × 102 7.76 × 102 8.70 × 102

c1 6.21 × 106 9.60 × 106 5.16 × 106 6.67 × 106 3.86 × 106 7.31 × 106 1.00 × 106 5.64 × 106 4.61 × 106

k1 6.55 × 102 2.05 × 102 2.82 × 102 3.38 × 102 1.05 × 102 2.77 × 102 1.33 × 102 1.59 × 102 1.26 × 102

γ 6.36 × 103 7.42 × 102 4.50 × 102 6.72 × 102 7.15 × 102 6.36 × 103 7.09 × 103 7.48 × 103 1.94 × 103

βα 8.30 × 103 7.10 × 103 7.60 × 103 6.34 × 103 9.91 × 103 4.21 × 103 6.81 × 103 5.15 × 103 8.43 × 103

βb −7.24 × 10−1 −2.25 × 10−1 −2.93 × 10−1 −8.85 × 10−1 −7.26 × 10−1 −4.29 × 10−1 −8.85 × 10−1 −3.63 × 10−1 −3.91 × 10−1

Aα −4.90 −1.31 −8.03 −3.21 −4.99 −1.05 −5.54 −2.98 −9.26
Ab −47.8 −26.7 −17.8 −88.5 −35.9 −61.3 −86.0 −24.5 −34.2
Ac 4.55 × 102 2.13 × 102 3.92 × 102 6.91 × 102 3.50 × 102 5.22 × 102 9.35 × 102 4.08 × 102 3.89 × 102

n 5.49 × 10−1 7.67 × 10−1 7.66 × 10−1 5.52 × 10−1 7.81 × 10−1 6.02 × 10−1 4.20 × 10−1 7.96 × 10−1 6.02 × 10−1

x0 9.86 × 10−3 3.24 × 10−1 2.35 × 10−2 7.01 × 10−2 1.63 × 10−2 2.09 × 10−2 1.00 × 10−4 7.83 × 10−3 1.42 × 10−2



Mathematics 2021, 9, 2230 29 of 38

Figure 16. Comparison between experimental data and simulated results for case 1 using proposed
algorithm, (a) damping force–velocity test curves, (b) and damping force–displacement test curves.

Figures 17 and 18 show the comparison of the damping force–velocity and damp-
ing force–displacement test curves between the experimental data and the simulated
results for case one using the other different algorithms, respectively. It can be seen from
Figures 17 and 18 that the matching contains some big discrepancies between the experi-
mental data and the simulated data from the Bouc–Wen models provided by PSO, GSA,
WOA, CLPSO, CMA-ES and PSOGSA. Although it is difficult to visually identify the
matching quality among the IMRFO, MRFO and IGWO from these figures, the IMRFO is
more competitive than the other methods from Table 9.

Figure 17. Comparison of damping force–velocity test curves between experimental data and simulated results for case 1
using different algorithms.
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Figure 18. Comparison of damping force–displacement test curves between experimental data and simulated results for
case 1 using different algorithms.

To verify whether the IMRFO-based Bouc–Wen model can reflect the mechanical prop-
erties of the MR damper, two extensive simulations, i.e., cases two and three, are performed
by changing the frequency of the model. The comparisons between the experimental data
and simulated data from the Bouc–Wen model using the parameters identified by the IM-
RFO for cases two and three are shown in Figures 19 and 20, respectively; Figures 21 and 22
show the comparison of the damping force–velocity test curves between the experimental
data and the simulated data from the Bouc–Wen model using the parameters identified by
the other different algorithms for cases two and three, respectively; and Figures 23 and 24
show the comparison of the damping force–displacement test curves between the exper-
imental data and the simulated data from the Bouc–Wen model using the parameters
identified by the other different algorithms for cases two and three, respectively. These re-
sults reveal that the simulated data from the IMRFO-based model show better coincidence
with the experimental data compared to its competitors, and the IMRFO-based model can
accurately describe the dynamic performance of the MR damper with different frequencies.

Figure 19. Comparison between experimental data and simulated results for case 2 using proposed
algorithm, (a) damping force–velocity test curves, (b) and damping force–displacement test curves.
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Figure 20. Comparison between experimental data and simulated results for case 3 using proposed
algorithm, (a) damping force–velocity test curves, (b) and damping force–displacement test curves.

Figure 21. Comparison of damping force–velocity test curves between experimental data and simulated results for case 2
using other different algorithms.

To evaluate the matching performance of the MR damper models from different
algorithms, an indicator named the mean Nash–Sutcliffe efficiency (MNSE) is employed;
the MNSE is formulated as follows:

f j
NSE = 1−

m
∑

i=1
(Fj

i − F∗j
i )

2

m
∑

i=1
(Fj

i −
1
m

m
∑

i=1
Fj

i )
2 (30)

fMNSE =
1
c

c

∑
j=1

f j
NSE (31)

where f j
NSE is a single Nash–Sutcliffe efficiency (NSE) value under a given loading current.

In general, the closer the value of the NSE is to one, the better the matching between the
experimental data and simulated data from the model will be.
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Figure 22. Comparison of damping force–velocity test curves between experimental data and simulated results for case 3
using other different algorithms.

Figure 23. Comparison of damping force–displacement test curves between experimental data and
simulated results for case 2 using other different algorithms.

Figures 25–27 show the matching comparison of the models based on different algo-
rithms for cases 1–3 using the NSE, respectively. In these figures, the NSE of the models
based on different algorithms under each of all the considered loading currents is depicted
for each case, and the MNSE of the models based on each algorithm under all the considered
loading currents is provided for each case. From Figure 25 (case one), the IMRFO-based
model obtains the biggest NSE for each loading current and the MNSE compared to other
competitors, demonstrating the superior matching performance of the model from our
optimizer. Thus, the results of the NSE in Figure 25 show that the IMRFO-based model
provides the best simulated results when tackling case one. From Figure 26, it can be
found that the IMRFO-based model obtains the best matching performance measured
using the NSE; the MRFO-based model is the second best, followed by the IGWO-based,
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CLPSO-based and PSOGSA-based models. Note that the model from GSA yields the
worst matching performance in terms of the NSE, manifesting the model provides the
unfavorable simulated data for case two. From Figure 27, for case three, the IMRFO-based
model offers the most favorable matching performance that is almost the same as that
offered by the IGWO-based model, followed by the PSOGSA-based, MRFO-based and
CLPSO-based models.

Figure 24. Comparison of damping force–displacement test curves between experimental data and
simulated results for case 3 using other different algorithms.

Figure 25. Matching comparison of models based on different algorithms for case 1 using NSE.

Table 11 summarizes the matching results of the models from different algorithms for
cases 1–3. From Table 11, the IMRFO-based model attains the results that are significantly
better than, or almost the same as, the results of the models from the other eight peer
algorithms for cases 1–3. Additionally, the average MNSE of the three cases from the
IMRFO-based model outperforms that from the models based on the other algorithms,
indicating the best overall performance of the IMRFO-based model. Based on the above
analysis, the proposed IMRFO can provide superior and very competitive optimization
performance in identifying the control parameters of the MR damper model.
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Figure 26. Matching comparison of models based on different algorithms for case 2 using NSE.

Figure 27. Matching comparison of models based on different algorithms for case 3 using NSE.

Table 11. Matching results of models from different algorithms for cases 1–3.

Mean Nash–Sutcliffe Efficiency (fMNSE)

PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

Case 1 0.987 0.933 0.981 0.993 0.963 0.993 0.975 0.994 0.995
Case 2 0.944 0.709 0.95 0.962 0.954 0.955 0.927 0.959 0.968
Case 3 0.926 0.477 0.928 0.942 0.942 0.935 0.909 0.947 0.947

Average of fMNSE 0.952 0.706 0.953 0.966 0.953 0.961 0.937 0.967 0.970

In order to better evaluate the performance of the algorithm, we need to study not
only the solution quality, but also the computational burden. Therefore, the running time of
the IMRFO and its competitor are compared under identical conditions. The mean running
time of the algorithms for cases 1–3 is given in Table 12. From Table 12, each algorithm
spends most of the time in executing SIMULINK. The mean running time of the IMRFO is
very close to that of the other algorithms; there was no significant difference between the
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IMRFO and others in terms of running time; however, the solution quality of the IMRFO is
significantly improved compared to the other methods.

Table 12. Mean running time of different algorithms for cases 1–3.

Fun.
Mean Running Time (s)

PSO GSA MRFO WOA CLPSO CMA-EA PSOGSA IGWO IMRFO

Case 1 1754 1820 1839 1815 1787 1893 1829 1838 1825
Case 2 1685 1730 1730 1716 1680 1746 1743 1774 1728
Case 3 1778 1946 1868 1847 1814 1879 1879 2003 1862

6. Conclusions

In this study, a new hybrid MRFO is proposed for solving the global optimization and
parameter identification of the MR damper models. In this improvement, the searching
control factor is introduced to the algorithm to alleviate the weak exploration ability, and the
adaptive weight coefficient is employed to promote the search efficiency of the algorithm.
Additionally, the Morlet wavelet mutation strategy is integrated into the algorithm to
enhance the ability of the algorithm to step out of stagnation and the convergence rate.
Two sets of the challenging benchmarks, i.e., CEC 2014 and CEC 2017, are used to estimate
the optimization performance of the IMRFO and the results demonstrate that the IMRFO is
superior to the other algorithms. A comprehensive simulation based on the MR damper
models is established, including three different test working conditions, in which 15 control
parameters need to be identified using the proposed IMRFO algorithm. According to these
identified parameters, the damping force–velocity and damping force–displacement test
curves can be obtained, which show a highly satisfactory coincidence with the experimental
data. Meanwhile, the comparison analysis shows that the IMRFO-based MR damper model
can provide the best simulation results.

Eventually, the results of the benchmark functions and the optimal parameter iden-
tification of the MR damper model discover that the proposed optimizer has significant
potential when solving engineering optimization problems. The Bouc–Wen damper model
identified by the IMRFO is not only consistent with the experimental data involved in
the simulation, but it can also accurately express the dynamic response of the Bouc–Wen
damper model with different amplitudes and frequencies under sinusoidal excitation.

The IMRFO introduced improved strategies that achieve competitive performance
verified by the benchmark experiments and the MR damper model. However, we have
found out that there are two open problems that need to be further investigated in our
future work. One issue is how to design an efficient adaptive strategy to adjust the
movement step of individuals according to their neighborhoods’ solutions. Another issue
is how to establish an information sharing mechanism to promote the searching efficiency.
Moreover, in future work, it would be interesting to further extend the IMRFO to other
complex MR damper models in which more different control parameters of the models
need to be identified.

Author Contributions: Conceptualization, Y.L. and W.Z.; methodology, Y.L., W.Z. and L.W.; valida-
tion, L.W; writing—original draft preparation, Y.L.; writing—review and editing, Y.L., W.Z. and L.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grants 11972144, 12072098, 11790282, 12072208 and 52072249, the One Hundred Outstanding
Innovative Scholars of Colleges and Universities in Hebei Province under grant SLRC2019022 and
the Opening Foundation of State Key Laboratory of Shijiazhuang Tiedao University Province under
grant ZZ2021-13.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Mathematics 2021, 9, 2230 36 of 38

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tse, T.; Chang, C.C. Shear-mode rotary magnetorheological damper for small-scale structural control experiments. J. Struct. Eng.

2004, 130, 904–911. [CrossRef]
2. Liu, Y.Q.; Yang, S.P.; Liao, Y.Y. Simulation analysis on lateral semi-active control of suspension system for high-speed emus. J. Vib.

Shock 2010, 29, 51–54.
3. Atabay, E.; Ozkol, I. Application of a magnetorheological damper modeled using the current–dependent bouc–wen model for

shimmy suppression in a torsional nose landing gear with and without freeplay. J. Vib. Control 2014, 20, 1622–1644. [CrossRef]
4. Yang, S.; Li, S.; Wang, X.; Gordaninejad, F.; Hitchcock, G. A hysteresis model for magneto-rheological damper. Int. J. Nonlinear Sci.

Numer. Simul. 2005, 6, 139–144. [CrossRef]
5. Xu, Z.D.; Xu, Y.W.; Wang, C.; Zhao, Y.L.; Ji, B.H.; Du, Y.L. Force tracking model and experimental verification on a novel

magnetorheological damper with combined compensator for stay cables of bridge. Structures 2021, 32, 1971–1985. [CrossRef]
6. Yu, J.; Dong, X.; Su, X.; Qi, S. Development and characterization of a novel rotary magnetorheological fluid damper with variable

damping and stiffness. Mech. Syst. Signal Process. 2022, 165, 108320. [CrossRef]
7. Boreiry, M.; Ebrahimi-Nejad, S.; Marzbanrad, J. Sensitivity analysis of chaotic vibrations of a full vehicle model with magnetorhe-

ological damper. Chaos Solitons Fractals 2019, 127, 428–442. [CrossRef]
8. Patel, D.M.; Upadhyay, R.V. Predicting the thermal sensitivity of MR damper performance based on thermo-rheological properties.

Mater. Res. Express 2018, 6, 015707. [CrossRef]
9. Gołdasz, J.; Sapinski, B. Influence of Temperature on the MR Squeeze-Mode Damper. In Proceedings of the 2019 20th International

Carpathian Control Conference (ICCC); IEEE: Krakow-Wieliczka, Poland, 2019; pp. 1–6.
10. Versaci, M.; Cutrupi, A.; Palumbo, A. A magneto-thermo-static study of a magneto-rheological fluid damper: A finite element

analysis. IEEE Trans. Magn. 2020, 57, 1–10. [CrossRef]
11. Giuclea, M.; Sireteanu, T.; Stancioiu, D.; Stammers, C.W. Model parameter identification for vehicle vibration control with

magnetorheological dampers using computational intelligence methods. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2004,
218, 569–581. [CrossRef]

12. Gogna, A.; Tayal, A. Etaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
13. Kwok, N.M.; Ha, Q.P.; Nguyen, T.H.; Li, J.; Samali, B. A novel hysteretic model for magnetorheological fluid dampers and

parameter identification using particle swarm optimization. Sens. Actuators A Phys. 2006, 132, 441–451. [CrossRef]
14. Gou, J.; Lei, Y.X.; Guo, W.P.; Wang, C.; Cai, Y.Q.; Luo, W. A novel improved particle swarm optimization algorithm based on

individual difference evolution. Appl. Soft Comput. 2017, 57, 468–481. [CrossRef]
15. Zhao, W.; Shi, T.; Wang, L.; Cao, Q.; Zhang, H. An adaptive hybrid atom search optimization with particle swarm optimization

and its application to optimal no-load PID design of hydro-turbine governor. J. Comput. Des. Eng. 2021, 8, 1204–1233.
16. Caselli, N.; Soto, R.; Crawford, B.; Valdivia, S.; Olivares, R. A self-adaptive cuckoo search algorithm using a machine learning

technique. Mathematics 2021, 9, 1840. [CrossRef]
17. Zhao, W.; Wang, L.; Zhang, Z. A novel atom search optimization for dispersion coefficient estimation in groundwater. Future

Gener. Comput. Syst. 2019, 91, 601–610. [CrossRef]
18. Soleimani Amiri, M.; Ramli, R.; Ibrahim, M.F.; Abd Wahab, D.; Aliman, N. Adaptive particle swarm optimization of PID gain

tuning for lower-limb human exoskeleton in virtual environment. Mathematics 2020, 8, 2040. [CrossRef]
19. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
20. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.

[CrossRef]
21. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput.

2019, 44, 148–175. [CrossRef]
22. Zhao, W.; Wang, L.; Zhang, Z. Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm. Neural

Comput. Appl. 2019, 32, 1–43. [CrossRef]
23. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
24. Li, M.D.; Zhao, H.; Weng, X.W.; Han, T. A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw.

2016, 92, 65–88. [CrossRef]
25. Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26,

69–74. [CrossRef]
26. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Appl. Soft Comput. 2019, 23,

715–734. [CrossRef]
27. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based meta-heuristic technique for engineering applications.

Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
28. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]

http://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(904)
http://doi.org/10.1177/1077546312468925
http://doi.org/10.1515/IJNSNS.2005.6.2.139
http://doi.org/10.1016/j.istruc.2021.04.010
http://doi.org/10.1016/j.ymssp.2021.108320
http://doi.org/10.1016/j.chaos.2019.07.005
http://doi.org/10.1088/2053-1591/aae91a
http://doi.org/10.1109/TMAG.2020.3032892
http://doi.org/10.1177/095965180421800705
http://doi.org/10.1080/0952813X.2013.782347
http://doi.org/10.1016/j.sna.2006.03.015
http://doi.org/10.1016/j.asoc.2017.04.025
http://doi.org/10.3390/math9161840
http://doi.org/10.1016/j.future.2018.05.037
http://doi.org/10.3390/math8112040
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1108/02644401211235834
http://doi.org/10.1016/j.swevo.2018.02.013
http://doi.org/10.1007/s00521-019-04452-x
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.advengsoft.2015.11.004
http://doi.org/10.1016/j.knosys.2011.07.001
http://doi.org/10.1007/s00500-018-3102-4
http://doi.org/10.1016/j.advengsoft.2017.05.014
http://doi.org/10.1016/j.advengsoft.2017.01.004


Mathematics 2021, 9, 2230 37 of 38

29. Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional
Computing and Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.

30. Askarzadeh, A. A novel meta-heuristic method for solving constrained engineering optimization problems: Crow search
algorithm. Comput. Struct. 2016, 169, 1–12. [CrossRef]

31. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
32. EskandaR, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm-A novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]
33. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. J. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
34. Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation

problem. Knowl.-Based Syst. 2019, 163, 283–304. [CrossRef]
35. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-

based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]
36. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [CrossRef]
37. Kaveh, A.; Bakhshpoori, T. Water evaporation optimization: A novel physically inspired optimization algorithm. Comput. Struct.

2016, 167, 69–85. [CrossRef]
38. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based

Syst. 2020, 191, 105190. [CrossRef]
39. Zhao, W.; Wang, L.; Zhang, Z. Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization.

IEEE Access 2019, 7, 73182–73206. [CrossRef]
40. Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired

optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939.
[CrossRef]
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