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Abstract: This paper proceeds from the perspective that most strongly nonlinear oscillators of
fractional-order do not enjoy exact analytical solutions. Undoubtedly, this is a good enough reason to
employ one of the major recent approximate methods, namely an Optimal Homotopy Asymptotic
Method (OHAM), to offer approximate analytic solutions for two strongly fractional-order nonlinear
benchmark oscillatory problems, namely: the fractional-order Duffing-relativistic oscillator and
the fractional-order stretched elastic wire oscillator (with a mass attached to its midpoint). In this
work, a further modification has been proposed for such method and then carried out through
establishing an optimal auxiliary linear operator, an auxiliary function, and an auxiliary control
parameter. In view of the two aforesaid applications, it has been demonstrated that the OHAM is
a reliable approach for controlling the convergence of approximate solutions and, hence, it is an
effective tool for dealing with such problems. This assertion is completely confirmed by performing
several graphical comparisons between the OHAM and the Homotopy Analysis Method (HAM).

Keywords: strongly nonlinear oscillators; fractional-order derivatives; optimal homotopy asymp-
totic method

1. Introduction

It is common knowledge in the world of mathematical modeling that many phenom-
ena and applications in engineering and physical sciences could be excellently outlined
through using some mathematical tools that are offered by fractional calculus. For in-
stance, it has recently been conclusively demonstrated that Fractional-order Differential
Equations (FoDEs) play a vital role in affording precise descriptions for several nonlinear
phenomena [1]. From this standpoint, many efforts and endeavors have been devoted,
over a number of past decades, by lots of both physicists and mathematicians to assign
explicit solutions for nonlinear FoDEs [2]. The nonlinear fractional-order oscillators are
typically considered to be a significant exemplar of such equations. The strongly nonlinear
oscillator, which is one of the major types of these oscillators, could be dealt with by means
of three main schemes. Constructing new or using some special existent functions that re-
lies on the nature of nonlinearity is the first scheme. On the other hand, the second scheme
could be represented by appropriately rescaling the displacement, and then inserting a
small parameter into motion equation. Whereas, the third scheme can be delineated by
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introducing a further small parameter, and then transporting motion equation into a linear
oscillator perturbation [3–5].

In general terms, the nonlinear fractional-order oscillators have been examined and
explored by many researchers. In particular, Shen et al. studied the primary resonance
of fractional-order van der Pol oscillator analytically and numerically while using the
averaging method [6], and then used the incremental harmonic balance method to analyze
some dynamical properties of fractional-order nonlinear oscillator [7]. The dynamical re-
sponse of the fractional-order stochastic Duffing equation was explored by Xu et al. in [8].
Some novel dynamical features of fractional-order Duffing oscillator had been studied by
Chen et al. in [9–11]. They proposed a new powerful bifurcation control approach that
is based on the PIλDµ controller [11]. However, obtaining accurate solutions of most of
these nonlinear equations is considered to be an extremely difficult mission for lots of
researchers. For addressing this problem, several semi-analytical and numerical methods
have been widely established and implemented to solve such strongly nonlinear equations
approximately, like Piecewise Variational Iteration Method (PVIM) [12], Perturbation-
Incremental Method (PIM) [13], Generalized Averaging Method (GAM) [14], Homotopy
Analysis Method (HAM) [15], Global Residue Harmonic Balance Method (GRHBM) [16],
Improved Multiple-Scale Method (IMSM) [17], and many others. Despite the meaningful
performance of all these methods, most of them provide series solutions with a small
convergence region [18]. For example, Liao has, unfortunately, shown that the conver-
gence region and rate of approximation series cannot be constantly ensured when using
HAM [19,20]. From this point of view, there is a persistent necessity to evade all of these
weaknesses and shortcomings. The way in which they can be overcome is by utilizing
one of the most novel robust methods, called the Optimal Homotpy Asymptotic Method
(OHAM).

The OHAM was recently proposed and developed by Marinca et al. as a generaliza-
tion of the classical HAM [1,2,20–23]. Several solutions of significant nonlinear problems
within lots of studies were then, consequently, constructed based on using this method
(see [1,18,20,24–30]). In view of many of these studies, it was demonstrated that this
method is a reliable, straightforward, and effective tool for offering accurate analytical
approximate solutions to lots of strongly nonlinear problems [2,18,29]. Besides, it was
revealed that its key characteristic is its ability to optimally control the convergence of
approximate series solutions [2,18,29]. However, this work employs this method to pro-
vide approximate analytic solution for two strongly fractional-order nonlinear benchmark
oscillatory problems through establishing an optimal auxiliary linear operator, an auxiliary
function, and an auxiliary control parameter. These two nonlinear oscillators are: the
fractional-order Duffing-relativistic oscillator and the fractional-order stretched elastic
wire oscillator (with a mass attached to its midpoint). Nevertheless, the rest of this paper
is arranged, as follows: the next section exhibits, briefly, the HAM along with a further
modification of its scheme. Section 3 introduces the OHAM in order to construct approxi-
mate solutions for some strongly fractional-order nonlinear oscillatory problems. Section 4
demonstrates approximate solutions of the fractional-order Duffing-relativistic oscillator,
and the fractional-order stretched elastic wire oscillator. Finally, the last section summarizes
the main conclusions of this work.

2. The Homotopy Asymptotic Method

The HAM is a common analytical approach for solving both weakly and strongly
nonlinear problems. In pursuance of this method, approximate series solutions are ac-
curately obtained, even if these problems have fractional-order derivatives [15]. In this
part, a modified approach of HAM is presented for the purpose of handling some types of
nonlinear FoDEs that have the following general form:

Dαu(t) = N (t, u(t)), 1 < α ≤ 2, t > 0, (1)
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subject to the initial conditions

u(0) = u0, u′(0) = u1 (2)

where N is a nonlinear operator, u(t) is an unknown continuous function of the indepen-
dent variable t, and Dα is the Caputo differential operator of order α that can be defined,
as follows:

Dα f (t) = Jm−αDm f (t), (3)

where m− 1 < α ≤ m, m ∈ IN, and f ∈ Cm(0, T] . Here, Dm is the traditional integer-order
differential operator of order m, and Jµ is the Riemann–Liouville integral operator of order
µ = m− α > 0, which can be defined by:

Jµ f (t) =
1

Γ(µ)

∫ t

0
(t− η)µ−1 f (η) dη, t > 0. (4)

For more insight regarding further properties that are associated with these two
operators, Caputo and Riemann–Liouville operators, the reader may refer to [31]. However,
in view of the HAM, the following homotopy can be established:

(1− q)L[Φ(t; q)− u0] = qhH(t)
(

DαΦ(t; q)−N (t, Φ(t; q))
)
, (5)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is a non zero auxiliary parameter, u0
is an initial guess, H(t) 6= 0 is an auxiliary function, L is an auxiliary linear operator, and
Φ(t; q) is an unknown function. Observe that homotopy (5) becomes simply L[Φ(t; 0)−
u0] = 0 when q = 0, whereas it returns back to its original nonlinear form that is given
in (1) when q = 1. Therefore, as q differs from 0 up to 1, Φ(t; q) differs from the initial guess
u0 up to the exact solution u(t) = Φ(t; 1) that is constructed for (1). Regardless, Φ(t; q)
could be expanded with respect to q by using Taylor series as follows:

Φ(t; q) = u0 +
∞

∑
m=1

qmum(t). (6)

Note that, whenever the series u0 + ∑∞
m=1 qmum(t) converges at q = 1, then the

following homotopy series solution could be established:

u(t) = Φ(t; 1) = u0 +
∞

∑
m=1

um(t), (7)

which should satisfy (1). In the same vein, one can track the same procedure that was
established in [2,18,29] for the purose of identifying each term of um’s that given in series (6).
Now, substituting series (6) in homotopy (5) and then equating the coefficients of the similar
powers of q yields the following mth-order deformation equation:

L(um(t)− χmum−1(t)) = hH(t)R[um−1(t)], m ≥ 1, (8)

where

χm =

{
0, m ≤ 1,
1, m > 1,

(9)

and

R[um−1(t)] =
1

(m− 1)!
∂m−1

∂qm−1

[
DαΦ(t; q)−N (t, Φ(t; q))

]
q=0

. (10)

In light of the previous considerations, a further modification has been proposed
for the HAM that can be employed simply and directly for obtaining series solutions for
nonlinear FoDEs. It has clearly appeared that the success of this modification relies on
the favorable choice for each of the auxiliary parameter h, the auxiliary function H(t),
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and the auxiliary linear operator L. For more details regarding the proper selection of the
auxiliary function H(t), and the auxiliary control parameter h, the reader may refer to the
references [32–34]

3. An OHAM for Fractional-Order Nonlinear Oscillators

This section targets introducing the OHAM for the purpose of generally establishing
approximate solutions for the strongly fractional-order nonlinear oscillatory problems that
can be expressed by the following form [35]:

Dαu(t) + f (u(t)) = 0, (11)

subject to the following initial conditions:

u(0) = u0, u′(0) = 0, (12)

where Dα is the Caputo operator of order 1 < α ≤ 2, f is a nonlinear function, and u(t) is
an unknown continuous function of the independent variable t. First of all, we set out to
rewrite the nonlinear oscillator that is given in (11) to be in the following form:

F(Dαu(t), u(t)) = 0, (13)

where F is a nonlinear function. The idea of constructing our proposed algorithm initially
relies on choosing an optimal auxiliary linear operator by taking into account that the
nonlinear function F can be written by a Taylor series at t = 0. Therefore, making a
linearization of the function F at t = 0 yields the following linear approximation:

F(Dαu(t), u(t)) ∼= F(Dαu(0), u(0)) +
∂F

∂Dαu
(Dαu(0), u(0))Dαu(t) +

∂F
∂u

(Dαu(0), u(0))u(t). (14)

Accordingly, solving straightforwardly the algebraic equation F(Dαu(0), u(0)) = 0
for Dαu(0) leads us to design an optimal auxiliary linear operator L in the form:

L[u(t)] = Dαu(t) + k(u0)u(t), (15)

where the constant k(u0), which only depends on u0, can be computed according to the
following formula:

k(u0) =
∂F
∂u (u

α
0 , u0)

∂F
∂Dαu (u

α
0 , u0)

, (16)

where uα
0 = Dαu(0). One should observe that the designed linear operator is an optimal

operator in the sense that the approximation L[u(t)] = Dαu(t) + k(u0)u(t) is the best linear
approximation to the function F(Dαu(t), u(t)) near t = 0 [35]. In a subsequent step, the
optimal approach of HAM for the nonlinear fractional-order oscillator problem that is
given in (11) can be established by employing the linear operator given in (15), as proposed
in the following homotopy:

(1− q)
[
Dα + qk(u0)hH(t)

][
Φ(t; q)− u0

]
= qhH(t)F

(
DαΦ(t; q), Φ(t; q)

)
. (17)

It is worth noting that the proposed approach divides the linear operator L[u(t)] into
two main parts, namely Dα[u(t)] and k(u0)[u(t)], and it furthermore embeds them into the
homotopy as (Dα + qk(u0)hH(t))[u(t)]. Besides, it utilizes u0 as an initial approximation to
simplify computations. However, the last step that allows for us to successfully implement
OHAM considers that the nonlinear fractional-order oscillatory problem that is given
in (11) has an approximate solution of the form: u(t) = u0 + ∑∞

m=1 um(t). This solution
can be easily obtained, so that the solution components um’s should satisfy the following
mth-order deformation equation:

Dα
(
um(t)− χmum−1(t)

)
+ k(u0)hH(t)

(
χmum−1(t)− χm−1um−2(t)

)
= hH(t)R[um−1(t)], (18)
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where

R[um−1(t)] =
1

(m− 1)!
∂m−1

∂qm−1

[
F
(

DαΦ(t; q), Φ(t; q)
)]

q=0
, (19)

and where χm is previously defined in (9), such that m ≥ 1.

4. Test Problems

This section employs the OHAM to provide approximate analytic solutions for two
strongly fractional-order nonlinear benchmark oscillatory problems, namely: the fractional-
order Duffing-relativistic oscillator, and the fractional-order stretched elastic wire oscillator
(with a mass attached to its midpoint). All of the theoretical findings in this section have
been numerically performed using the MATLAB software package.

Example 1. Consider the following fractional-order Duffing-relativistic oscillator:

Dαu(t) + δu(t) + γu3(t) = 0, (20a)

subject to the following initial conditions:

u(0) = A, u′(0) = 0, (20b)

where 1 < α ≤ 2, δ is a constant, and γ is a positive non-dimensional coefficient of nonlinearity
that does need to be small [3]. If one selects the linear operator L to be as L = Dα, then the standard
homotopy will be established as:

(1− q)Dα
[
Φ(t; q)− A

]
= qhH(t)

(
DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)

)
. (21)

Thus, taking H(t) = 1 makes all of the components of the standard HAM solution to be gained
by collecting the terms with similar powers of q via the following equation:

(1− q)Dα
[
u0 + qu1(t) + q2u2(t) + · · ·

]
= qh

(
Dα
(
u0 + qu1(t) + q2u2(t) + · · ·

)
+ δ
(
u0 + qu1(t) + q2u2(t) + · · ·

)
+ γ

(
u0 + qu1(t) + q2u2(t) + · · ·

)3
)

.
(22)

The optimal linear operator then has the following form:

L[u(t)] = Dαu(t) + (δ + 3γA2)u(t), (23)

and, moreover, the optimal homotopy, when u0 = A, will be of the form:

(1− q)
[
Dα + q(δ + 3γA2)hH(t)

][
Φ(t; q)− A

]
= qhH(t)

(
DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)

)
. (24)

Consequently the OHAM’s solution can be obtained as u(t) = A + ∑∞
m=1 um(t), in which

all components um(t) of that solution satisfy the following mth-order deformation equation:

Dα
(
um(t)− χmum−1(t)

)
+ (δ + 3γA2)hH(t)

(
χmum−1(t)− χm−1um−2(t)

)
= hH(t)R[um−1(t)], (25)

where

R[um−1(t)] =
1

(m− 1)!
∂m−1

∂qm−1

[
DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)

]
q=0

, (26)

and where m ≥ 1.

Again, taking H(t) = 1 makes, this time, all of the components of the OHAM’s solution
to be obtained by collecting the terms with similar powers of q via other equations that could be
expressed by:
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(1− q)
[
Dα + q(δ+3γA2)h

][
u0+qu1(t) + q2u2(t) + · · ·

]
= qh

(
Dα
(
u0 + qu1(t) + q2u2(t) + · · ·

)
+ δ
(
u0 + qu1(t) + q2u2(t) + · · ·

)
+ γ

(
u0 + qu1(t) + q2u2(t) + · · ·

)3
)

,
(27)

which, consequently, implies the following recursive states:
Dαu1(t) = h(δu0 + γu3

0),
Dαu2(t) = Dαu1(t)− (δ + 3γA2)hu1(t) + h

(
Dαu1(t) + δu1(t) + 3γu2

0u1(t)
)

...
Dαuk(t) = Dαuk−1(t)− (δ + 3γA2)h(uk−1(t)− uk−2(t)) + hR[uk−1(t)]

(28)

subject to the initial conditions:

u0(0) = A, u′m(0) = 0, (29)

where m = 1, 2, · · · . Applying the operator Jα on (28) implies:
u1(t) =

hA(δ+γA2)
Γ(α+1) tα,

u2(t) =
Ah(1+h)(δ+γA2)

Γ(α+1) tα.
...

(30)

In a similar manner, we can obtain the rest of all the components using MATLAB software
code. In addition, the series solutions expression can be then written in the form:

u(t) ' u0+
N

∑
m=1

um(t) = u0 + u1(t) + u2(t) + . . . , (31)

or

u(t) ' A + Ah(2 + h)(δ + γA2)

(
tα

Γ(α + 1)

)
+ Ah(1 + h)2(δ + γA2)

(
tα

Γ(α + 1)

)
+ h(δ + 3γA2)(Ah(1 + h)(δ + γA2)

(
t2α

Γ(2α + 1)

)
+ 3γA3h2(δ + ΓA2)2

(
Γ(2α + 1)t3α

(Γ(α + 1))2Γ(3α + 1)

)
+ · · · .

(32)

In connection with the selection of the value of parameter h or the so-called the convergent-
control parameter h, in Figure 1 we draw its corresponding h-curves according to different values of
A, δ, γ and α. In view of such a figure, we deduce the convergence interval that guarantees, in turn,
a convergence of the approximate solution u(t). Here, such an interval is deduced to be as [−3, 3],
so that the value of h can be chosen within this scope. For more simplification, one may choose the
auxiliary function H(t) to be, e.g., equal 1. However, Figure 2 shows approximate solutions u(t)
for problem (20) by using the OHAM for different values of A, α, h, δ, and γ. For more effective
practice, we perform some graphical comparisons between the OHAM and the HAM, as shown
in Figure 3. Obviously, these comparisons reveal that the approximate solutions obtained by such
methods are very close to each other, which confirms the efficient and robustness of the OHAM. The
reader may refer to the references [33,34,36] to obtain a complete overview about the h-curves and
how they can be utilized to determine the admissible values of the parameter h.
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Figure 1. Plots of several h–curves according different values: (a) A = 0.75, γ = δ = 1, (b) A = 1.25,
γ = 0.3, δ = 0.5, (c) A = 2, γ = δ = 1, (d) A = 1.5, γ = δ = 1.

Figure 2. Plots of the Optimal Homotopy Asymptotic Method’s (OHAM’s) solutions u(t) according
to different values of A, δ, γ and α.
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Example 2. Consider the following nonlinear fractional-order problem that represents the motion
equation of the stretched elastic wire oscillator (with a mass that is attached to its midpoint):

Dαu(t) + u(t)− λu(t)√
1 + u2(t)

= 0, (33a)

subject to the following initial conditions:

u(0) = A, u′(0) = 0, (33b)

where 0 < λ ≤ 1 and 1 < α ≤ 2.

The optimal linear operator here is of the following form:

L[u(t)] = Dαu(t) +
(

1− λ
(

1 + A2
)− 1

2
+ λA2

(
1 + A2

)− 3
2
)

u(t). (34)

Furthermore, the optimal homotopy, when u0 = A, is then of the form:

(1− q)
(

Dα+q
(

1− λ
(

1 + A2
)− 1

2
+ λA2

(
1 + A2

)− 3
2
)

hH(t)
)
[Φ(t; q)− A]

= qhH(t)[DαΦ(t; q) + Φ(t; q)− λΦ(t; q)
(

1 + (Φ(t; q))2
)− 1

2
].

(35)

Consequently, the OHAM’s solution can be formulated as u(t) = A + ∑∞
m=1 um(t), in which

um’s hold the following mth-order deformation equation:

Dα(um(t)− χmum−1(t))+
(

1− λ
(

1 + A2
)− 1

2
+ λA2

(
1 + A2

)− 3
2
)

× hH(t)(χmum−1(t)− χm−1um−2(t)) = hH(t)R[um−1(t)],
(36)

where

R[um−1(t)] =
1

(m− 1)!
∂m−1

∂qm−1 [D
αΦ(t; q) + Φ(t; q)− λΦ(t; q)

(
1 + (Φ(t; q))2

)− 1
2
] |q=0, (37)

and where m ≥ 1.
Now, taking H(t) = 1 allows for one to gain all the components of the OHAM’s solution by

collecting the terms with similar powers of q via the following equation:

(1− q)
[

Dα + q
(

1− λ
(

1 + A2
)− 1

2
+ λA2

(
1 + A2

)− 3
2
)

h
](

u0 + qu1(t) + q2u2(t) + · · ·
)

= qhDα
(

u0 + qu1(t) + q2u2(t) + · · ·
)
+
(

u0 + qu1(t) + q2u2(t) + · · ·
)

− λ
(

u0 + qu1(t) + q2u2(t) + · · ·
)(

1 +
(

u0 + qu1(t) + q2u2(t) + · · ·
)2
)− 1

2

].

(38)

This leads us to establish the following recursive states:
Dαu1(t) = h[Dαu0 + u0 − λu0(1 + u2

0),
Dαu2(t) = (1 + h)Dαu1(t)− hku1(t) + h[u1(t)− λN1(u0, u1(t))],
...
Dαuk(t) = (1 + h)Dαuk−1(t)− hkuk−1(t) + h[uk−1(t)− λNk−1(u0, u1(t), . . . , uk−1(t))],

(39)
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where k = 1− λ
(
1 + A2)− 1

2 + λA2(1 + A2)− 3
2 , and where

Nk−1(u0, u1(t), . . . , uk−1(t)) =
1

(m− 1)!
∂m−1

∂qm−1

[
− λ

(
u0 + qu1(t) + q2u2(t) + q3u3(t) + · · ·

)
×
(

1 +
(

u0 + qu1(t) + q2u2(t) + q3u3(t) + · · ·
)2
)− 1

2
]∣∣∣∣

q=0
,

(40)

subject to the following initial conditions:

u0(0) = A, u′m(0) = 0, (41)

where m = 1, 2, ....
Now, applying Jα on (39) yields:


u1(t) = Ah(1− λ√

1+A2 )
tα

Γ(α+1) ,

u2(t) = Ah(1 + h)(1− λ√
1 + A2

)
tα

Γ(α + 1)
+

2λA3h2

(1 + A2)
3
2
(1− λ√

1 + A2
)

t2α

Γ(2α + 1)
,

...

(42)

In a similar manner, the rest of other components can be obtained, and then the series solutions
expression will be, as given before, in (31). That is;

u(t) ' A + Ah(2 + h)
(

1− λ√
1 + A2

)(
tα

Γ(α + 1)

)
+

(
2λA3h2

(1 + A2)3/2

)(
1− λ√

1 + A2

)(
t2α

Γ(2α + 1)

)
+ · · · .

(43)

Similarly to Example 1, Figure 4 illustrates several h-curves in accordance with different
values of A, λ, and α. Based on this figure, one may candidate the interval [−3, 3] to be also the
interval of convergence. The value of the parameter h can be, then, chosen from such interval. On
the other hand, the auxiliary function H(t) can be chosen once again 1. Taking the previous data
into account when carrying out the OHAM via MATLAB software code generates the results that
are shown in Figure 5, which represents the approximate solutions for problem (33) according to
different values of A, α, h, and λ. For more insight, Figure 6 shows some graphical comparisons
that are performed between the OHAM and the HAM. Such comparisons reveal the influence and
impact of the method under consideration.

Figure 4. Plots of several h–curves according different values: (a) A = 0.75, λ = 0.5, (b) A = 1.25,
λ = 0.5, (c) A = 2, λ = 0.9, and (d) A = 1.5, λ = 0.95 .
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Figure 5. Plots of the OHAM’s solutions u(t) according to different values of A, δ, γ and α.
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Figure 6. Graphical comparisons between the OHAM and HAM for different values of A, λ, α and h.

5. Conclusions

In this paper, a further modification for an Optimal Homotopy Asymptotic Method
(OHAM) has been successfully implemented to tsolvewo strongly fractional-order non-
linear benchmark oscillatory problems, namely: the fractional-order Duffing-relativistic
oscillator and the fractional-order stretched elastic wire oscillator (with a mass attached to
its midpoint). Such a modification has been performed by establishing an optimal auxiliary
linear operator, an auxiliary function, and an auxiliary control parameter. The proposed
scheme has shown its reliability in comparison with the approximate solutions that were
obtained using HAM, and its efficiency in handling the considered problems.
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