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Abstract: A torqued vector field ξ is a torse-forming vector field on a Riemannian manifold that is

orthogonal to the dual vector field of the 1-form in the definition of torse-forming vector field. In

this paper, we introduce an anti-torqued vector field which is opposite to torqued vector field in

the sense it is parallel to the dual vector field to the 1-form in the definition of torse-forming vector

fields. It is interesting to note that anti-torqued vector fields do not reduce to concircular vector

fields nor to Killing vector fields and thus, give a unique class among the classes of special vector

fields on Riemannian manifolds. These vector fields do not exist on compact and simply connected

Riemannian manifolds. We use anti-torqued vector fields to find two characterizations of Euclidean

spaces. Furthermore, a characterization of an Einstein manifold is obtained using the combination

of a torqued vector field and Fischer–Marsden equation. We also find a condition under which

the scalar curvature of a compact Riemannian manifold admitting an anti-torqued vector field is

strictly negative.

Keywords: torse-forming vector fields; concircular vector fields; torqued vector fields; Einstein

manifolds; scalar curvature; Fischer–Marsden equation

1. Introduction

A concircular vector field w on a Riemannian manifold (M, g) is defined by the equation

∇Ew = f E, E ∈ X(M), (1)

where ∇ denotes the Riemannian connection of (M, g), f is a smooth function, and X(M)

is the Lie algebra of smooth vector fields on M. The function f in Equation (1) is called
the potential function of w (cf. [1–5]). Concircular vector fields are well known for their
applications in physics (cf. [6–10])

Yano generalized concircular vector fields by torse-forming vector fields (cf. [11]). A
vector field w on (M, g) is a torse-forming vector field if

∇Ew = f E + ω(E)w, E ∈ X(M), (2)

for a 1-form ω on M. Torse-forming vector fields play a role in physics (cf. [9,12–18]). Chen,
in [19], considered a specific torse-forming vector field called a torqued vector field. A
vector field ξ on (M, g) is said to be a torqued vector field if

∇Eξ = ρE + ω(E)ξ, and ω(ξ) = 0, E ∈ X(M). (3)
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The 1-form ω and the function ρ in Equation (3) are called the torqued form and torqued
function of the torqued vector field ξ (cf. [19]). If ω = 0, then a torqued vector field
becomes a concircular vector field. It is interesting to note that the twisted product I × f N
of an interval I and N an (m− 1)-dimensional Riemannian manifold has a torqued vector
field it is not a concircular vector field (cf. [20]). Torqued vector fields severely restrict the
geometry of a manifold on which they are defined (cf. [21]).

In present paper, we study a torse-forming vector field on a Riemannian manifold
(M, g) for which the vector field v dual to ω (ω(E) = g(v, E)) is parallel to w (see
Equation (2)) as opposed to torqued vector fields (where v is orthogonal to w). In partic-
ular, we are interested in a unit torse-forming w on (M, g) with dual 1-form η satisfying
f η(E) = −ω(E), that is, v = − f w (w is parallel to v ) and call this torse-forming vec-
tor field an anti-torqued vector field on the Riemannian manifold (M, g). Thus, for an
anti-torqued vector field w, we have

∇Ew = f (E− η(E)w), E ∈ X(M), (4)

where η is dual to unit anti-torqued vector field w and f is a nonzero smooth function
defined on M. We call f the potential function of the anti-torqued vector field w. Note
that f is nonzero does not mean it is nowhere zero, in fact there is no open subset of M
on which potential function f is zero. We require potential function to be nonzero so that
the anti-torqued vector field is not parallel. From the definition of an anti-torqued vector
field, it follows that, it is that torse-forming vector field, which under no condition is a
concircular vector field nor a Killing vector field. Thus, an anti-torqued vector field will
have a unique status among the special vector fields.

Note that if V is a nowhere vanishing vector field on a Riemannian manifold (M, g)
that satisfies

∇EV = σ(E− β(E)V), E ∈ X(M), (5)

where β(E) = g(V, E) the dual to V, then defining w = ‖V‖−1V, we get the unit vector
field w satisfying

∇Ew =− 1

‖V‖2 E(‖V‖)V +
σ

‖V‖ (E− β(E)V)

=− 1

2‖V‖3 E(g(V, V))V +
σ

‖V‖ (E− β(E)V)

=− 1

‖V‖3 (g(∇EV, V))V +
σ

‖V‖ (E− β(E)V)

=
σ

‖V‖

(
E− g

(
E,

V
‖V‖

)
V
‖V‖

)
= f (E− η(E)w),

where σ = f ‖V‖ and η(E) = g(E, w) and we have used Equation (5). Thus, nowhere zero
torse-forming V satisfying (5) reduces to an anti-torqued vector field w on (M, g) with
f = σ‖V‖−1.

It is observed that on a compact and simply connected Riemannian manifold there is
no anti-torqued vector field (see Example 1, in next section). Furthermore, unlike torqued
vector fields, an anti-torqued vector field under no circumstances can be reduced to a
concircular vector field or a Killing vector field. Thus, anti-torqued vector fields form an
independent sub-class of torse-forming vector fields among the classes of special vector
fields. It is a known fact that torse-forming vector fields have immense applications
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in physics—an anti-torqued vector field being a particular form of torse-forming vector
fields will have many applications to physical sciences. In present paper, we use an anti-
torqued vector field to find two characterizations of Euclidean spaces (see Corollary 1
and Theorem 2). One of most important spaces in geometry is an Einstein manifold and
therefore the most interesting question in geometry is to find different characterizations
of Einstein manifolds. We use an anti-torqued vector field in finding a characterization
of an Einstein manifold (see Theorem 3). We also find a condition under which the scalar
curvature of a compact Riemannian manifold admitting an anti-torqued vector field is
strictly negative (see Theorem 4).

2. Preliminaries

Given a smooth function ϕ on a Riemannian manifold (M, g), the Hessian operator
Hϕ of ϕ is

Hϕ(E) = ∇Egrad ϕ, E ∈ X(M), (6)

where grad ϕ is the gradient of ϕ and the Hessian of ϕ is

Hess(ϕ)(E, F) = g(Hϕ(E), F), E, F ∈ X(M).

The Laplace operator ∆ on (M, g) is given by

∆ϕ = div (grad ϕ),

and we also have
∆ϕ = trHϕ. (7)

Let ∇ the Levi–Civita connection on an m-dimensional Riemannian manifold (M, g).
The curvature tensor field R is given by

R(E1, E2)E3 =
[
∇E1 ,∇E2

]
E3 −∇[E1,E2]E3, E1, E2, E3 ∈ X(M).

The Ricci tensor Ric of (M, g) is

Ric(E1, E2) =
m

∑
i=1

g(R(ei, E1)E2, ei),

where {e1, . . . , em} is a local frame on M. The Ricci tensor gives the Ricci operator Q
defined by

Ric(E1, E2) = g(QE, F), E1, E2 ∈ X(M).

The scalar curvature S of the Riemannian manifold (M, g) is defined by

S = trQ,

and it satisfies
1
2

grad S =
m

∑
i=1

(∇Q)(ei, ei), (8)

where we are using the notation (∇Q)(E1, E2) = ∇E1 QE2 − Q∇E1 E2. Now, using the
definition of curvature tensor field and the Hessian operator Hϕ it follows that

R(E1, E2)grad ϕ = (∇Hϕ)(E1, E2)− (∇Hϕ)(E2, E1), E1, E2 ∈ X(M). (9)
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Next, we wish to compute the gradient of the function ∆ϕ and to achieve it we use
Equations (7) and (9), a local frame in neighborhood of normal coordinates and proceed
as follows

E(∆ϕ) = E

(
m

∑
i=1

g(Hϕei, ei)

)
=

m

∑
i=1

g((∇Hϕ)(E, ei), ei)

=
m

∑
i=1

g((∇Hϕ)(ei, E) + R(E, ei)grad ϕ, ei)

=
m

∑
i=1

g(E, (∇Hϕ)(ei, ei))− Ric(E, grad ϕ), E ∈ X(M),

where the symmetry of the operator Hϕ is used. Thus, we have

grad (∆ϕ) = −Q(grad ϕ) +
m

∑
i=1

(∇Hϕ)(ei, ei). (10)

Let w be an anti-torqued vector field on a (M, g). Using the defining Equation (4), we get
the following equations

R(E1, E2)w = E1( f )(E2 − η(E2)w)− E2( f )(E1 − η(E1)w)− f 2(η(E2)E1 − η(E1)E2),

where E1, E2 ∈ X(M), and the above equation implies

Ric(E, w) = −(m− 2)E( f )−
(

w( f ) + (m− 1) f 2
)

η(E),

that is,
Q(w) = −(m− 2)grad f −

(
w( f ) + (m− 1) f 2

)
w. (11)

Furthermore, by Equation (4), we see that div w = (m− 1) f and that div ( f w) = w( f ) +
(m− 1) f 2. Thus, if the anti-torqued w is defined on a compact (M, g), then∫

M

f = 0,
∫
M

w( f ) = −(m− 1)
∫
M

f 2. (12)

Now, we discuss some examples of anti-torqued vector fields as well as about mani-
folds on which anti-torqued vector fields do not exist.

Example 1. Let (M, g) be a compact and simply connected Riemannian manifold and w be an
anti-torqued vector field on (M, g). Using Equation (4), we observe that dη = 0 and M being
simply connected, η = dϕ for a function ϕ, which implies, w = grad ϕ. However, M being
compact, the function ϕ has a critical point x ∈ M, where w(x) = 0 and this contradicts the fact
‖w‖ = 1. Thus, (M, g) does not admit an anit-torqued vector field. In particular, spheres Sm(c),
m > 1, does not admit an anti-torqued vector field.

Example 2. Let w be the globally defined unit vector field on the unit circle S1 and ϕ be a
positive function on S1. Consider the warped product M = S1 ×ϕ N, with warped product metric
g = dθ2 + ϕ2g, where (N, g) is an (m− 1)-dimensional Riemannian manifold. Then taking
E = hw + U, h a smooth function on S1 and U ∈ X(N), we get (cf. [22]))

∇Ew =
w(ϕ)

ϕ
U =

w(ϕ)

ϕ
(E− hw) =

w(ϕ)

ϕ
(E− g(E, w)w).
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Hence, w is an anti-torqued vector field on (M, g). In particular the compact warped product space
S1 ×ϕ Sm−1 admits an anti-torqued vector field.

Example 3. Consider the Euclidean space Em. There is a smooth function ϕ on Em satisfying
‖grad ϕ‖ = 1 and ϕ∆ϕ = m− 1 (cf. [23]). We denote by g the Euclidean metric and by ∇ the
Euclidean connection on Em. We have a unit vector field w on Em given by w = grad ϕ and a
nonzero smooth function f given by

ϕ =
1
f

.

Thus, f w = −ϕgrad f , that is,

w = −grad f
f 2

and we get
g(grad f , grad ϕ) = − f 2. (13)

Now, for E ∈ X(Em) using ‖grad ϕ‖ = 1, we get g(Hϕ(E), grad ϕ) = 0. Thus, we have

Hϕ(grad ϕ) = 0. (14)

Differentiating above equation with respect to E, we get

(∇Hϕ)(E, grad ϕ) + Hϕ2(E) = 0.

Using a local frame {e1, . . . , em} and choosing E = ei and on taking the inner product with ei in
above equation, on summing, we arrive at

g

(
grad ϕ,

m

∑
i=1

(∇Hϕ)(ei, ei)

)
+ ‖Hϕ‖2 = 0.

Now, using Equation (10), with Q = 0 for the Euclidean space Em, in above equation we have

g(grad ϕ, grad (∆ϕ)) + ‖Hϕ‖2 = 0. (15)

We compute

‖Hϕ − f I + f η ⊗w‖2 = ‖Hϕ‖2 + m f 2 + f 2 − 2 f ∆ϕ + 2 f g(Hϕ(w), w)− 2 f 2.

Using (14) in the form Hϕ(w) = 0 and Equation (15) with above equation, we get

‖Hϕ − f I + f η ⊗w‖2 = −g(grad ϕ, grad (∆ϕ)) + (m− 1) f 2 − 2 f ∆ϕ. (16)

Note that grad ∆ϕ = grad (m− 1) f = (m− 1)grad f , and using Equation (13), we get

g(grad ϕ, grad (∆ϕ)) = (m− 1)g(grad ϕ, grad f ) = −(m− 1) f 2.

Furthermore, we have f ∆ϕ = (m− 1) f 2. Combining these two outcomes in Equation (16), we
conclude

‖Hϕ − f I + f η ⊗w‖2 = (m− 1) f 2 + (m− 1) f 2 − 2(m− 1) f 2 = 0.

Hence, Hϕ − f I + f η ⊗w = 0, that is,

∇Ew = f (E− η(E)w), E ∈ X(Em),
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proving that w is an anti-torqued vector field.

Example 4. Let (M, φ, ξ, η, g) be a (2m + 1)-dimensional β-Kenmotsu manifold (cf. [13,24]).
Then ξ is a unit vector field that satisfies

∇Eξ = β(E− η(E)ξ), E ∈ X(M)

for a smooth function β. Thus, ξ is an anti-torqued vector field.

Example 5. Consider the connected Riemannian manifold (M, g), where M = Em − {0} and g
is Euclidean metric. Define w on M by

w =
u
‖u‖ ,

where u is position vector on Em. We have

∇Ew = − 1

‖u‖2 E(‖u‖)u +
1
‖u‖E = − 1

‖u‖3 g(E, u)u +
1
‖u‖E

=
1
‖u‖ (E− g(E, w)w), E ∈ X(M).

Thus, w is an anti-torqued vector field on (M, g).

3. Characterizing Euclidean Spaces via Anti-Torqued Vector Fields

In Example 3, we have seen that a smooth function ϕ on the Euclidean space Em

satisfying ‖grad ϕ‖ = 1 and ϕ∆ϕ = m− 1 gives anti-torqued vector field w = grad ϕ. In
this section, we shall show that the converse too holds. Indeed we prove

Theorem 1. If an m-dimensional complete and connected Riemannian manifold (M, g) admits
a smooth function ϕ satisfying ‖grad ϕ‖ = 1 and ϕ∆ϕ = m− 1 such that the unit vector field
w = grad ϕ is an anti-torqued vector field, then (M, g) is isometric to the Euclidean space Em.

Proof. Let w = grad ϕ be an anti-torqued vector field on (M, g). Using Equation (4),
we get

Hϕ(E) = f (E− η(E)w), E ∈ X(M),

that is, ∆ϕ = (m− 1) f , which in view of ϕ∆ϕ = m− 1 implies f ϕ = 1. Define h = ϕ2,
which gives gradh = 2ϕw. Using Equation (4), we get

Hh(E) = 2E(ϕ)w + 2ϕ f (E− η(E)w) = 2E(ϕ)w + 2(E− η(E)w).

Using the fact η(E) = g(E, w) = g(E, grad ϕ) = E(ϕ) in above equation, we conclude

Hh(E) = 2E, E ∈ X(M).

Thus,
Hess(h) = 2g,

where h is a non-constant function (as ϕ is). Hence, by above equation, we conclude that
(M, g) is isometric to the Euclidean space Em (cf. [25])

Combining Example 3 with above result, we get the following:
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Corollary 1. An m-dimensional complete and connected Riemannian manifold (M, g) admits a
smooth function ϕ satisfying ‖grad ϕ‖ = 1, ϕ∆ϕ = m− 1 and the unit vector field w = grad ϕ

is an anti-torqued vector field if and only if (M, g) is isometric to the Euclidean space Em.

Note that the Ricci operator Q = 0 on an Euclidean space Em and Em is simply
connected space that admits an anti-torqued vector field. One naturally is inclined to know
whether a simply connected Ricci flat Riemannian manifold that admits an anti-torqued
vector field is necessarily isometric to the Euclidean space. We show that this assertion
is true with Ricci flatness replaced by the weaker condition, i.e., the Ricci operator is
annihilated by w.

Theorem 2. An m-dimensional simply connected Riemannian manifold (M, g), (m > 2), admits
an anti-torqued vector field w with potential function f and that w annihilates the Ricci operator if
and only if (M, g) is isometric to the Euclidean space Em.

Proof. Let w be an anti-torqued vector field on a simply connected Riemannian manifold
(M, g), (m > 2), such that Q(w) = 0. Then Equation (11) implies

(m− 2)grad f + (w( f ) + (m− 1) f 2)w = 0. (17)

Equation (17) on taking the inner product with w, gives

w( f ) = − f 2 (18)

and combining it with Equation (17), in view of m > 2, we arrive at

grad f = w( f )w. (19)

Using the definition of anti-torqued vector field, that is, Equation (4), we see that dη = 0
and M being simply connected the closed form η is exact. Therefore, there is a function ϕ

satisfying η = dϕ. Consequently, we have w = grad ϕ and combining it with (18) and (19),
we conclude

grad ϕ = −grad f
f 2 = grad

(
1
f

)
.

The above equation implies

ϕ =
1
f
+ c,

for a constant c. Taking ϕ = ϕ− c, we have grad ϕ = w and ∆ϕ = div w = (m− 1) f
(outcome of Equation (4)). Thus, we have ϕ∆ϕ = (m− 1). This proves that the smooth
function ϕ on M satisfies ‖grad ϕ‖ = 1, ϕ∆ϕ = (m − 1) and grad ϕ is an anti-torqued
vector field. Hence, by previous result, we get that (M, g) is isometric to Em. Converse
is trivial.

4. A Characterization of Einstein Manifolds

In this last section, first we use an anti-torqued vector field w on a Riemannian
manifold (M, g) and seek the conditions under which (M, g) is an Einstein manifold. Here
we wish to use the Fischer–Marsden differential equation on a Riemannian manifold
(cf. [26]). They considered the following differential equation

(∆ϕ)g + ϕRic = Hess(ϕ) (20)
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on a connected Riemannian manifold (M, g) and have shown that the Riemannian manifold
possessing a non-trivial solution of Equation (20) equation must have a constant scalar
curvature. They also conjectured that a compact Riemannian admitting a non-trivial
solution of differential Equation (20) must be an Einstein manifold. It is an interesting
question to find conditions on a non-compact Riemannian manifold possessing non-trivial
solution of Equation (20) to be an Einstein manifold.

Theorem 3. Let w be an anti-torqued vector field on an m-dimensional connected Riemannian
manifold (M, g), (m > 2) with potential function f such that H f (w) = f w( f )w. Then, (M, g)
is an Einstein manifold of constant scalar curvature −m(m − 1)w( f ) if and only if w is an
eigenvector of the Ricci operator and the potential function f is a non-trivial solution of the Fischer–
Marsden equation.

Proof. Suppose w is an anti-torqued vector field on a connected Riemannian manifold
(M, g) satisfying

H f (w) = f w( f )w

and Q(w) = δw for some smooth function δ. Then using Equation (11), we have

δw = −(m− 2)grad f −
(

w( f ) + (m− 1) f 2
)

w. (21)

The above equation implies

δ = −(m− 1)
(

w( f ) + f 2
)

and inserting this value of δ in Equation (21), in view of m > 2, we get

grad f = w( f )w. (22)

Differentiating Equation (22) with respect to E and using Equation (4), we have

H f (E) = E(w( f ))w + f w( f )(E− η(E)w). (23)

Note that owing to Equation (4), we see ∇ww = 0 and therefore,

Hess( f )(w, w) = ww( f ).

Now, taking E = w in Equation (23) we have

H f (w) = Hess( f )(w, w)w. (24)

Furthermore, using Equations (21) and (24), we have

Hess( f )(w, w) = f w( f ), H f (w) = f w( f )w. (25)

We compute ∆ f using Equations (23) and (25) to arrive at

∆ f = (m− 1) f w( f ) + Hess( f )(w, w) = m f w( f ). (26)

We write the Equation (23) as H f (E) = f w( f )E + (Ew( f )− f w( f )η(E))w and compute∥∥∥H f
∥∥∥2

= m f 2w( f )2 + ‖grad w( f )‖2 + f 2w( f )2 − 2 f w( f )ww( f ) + 2 f w( f )(ww( f )− f w( f )),



Mathematics 2021, 9, 2201 9 of 12

that is, ∥∥∥H f
∥∥∥2

= (m− 1) f 2w( f )2 + ‖grad w( f )‖2.

Using this equation and Equation (26) we have∥∥∥H f
∥∥∥2
− 1

m
(∆ f )2 = ‖grad w( f )‖2 − f 2w( f )2. (27)

Using Equation (23), we get E(w( f )) = g
(

H f (E), w
)

and it implies grad w( f ) = H f (w).
Equation (25), implies grad w( f ) = f w( f )w, that is,

‖grad w( f )‖2 = f 2w( f )2. (28)

Using Equations (27) and (28), we conclude∥∥∥H f
∥∥∥2

=
1
m
(∆ f )2.

The Schwarz’s inequality implies
∥∥∥H f

∥∥∥2
≥ 1

m (∆ f )2, and for the equality to hold H f = ∆ f
m I.

Therefore, in view of Equation (26), we get

H f = f w( f )I and Hess( f ) = f w( f )g. (29)

Now, the potential function f satisfies Equation (20), that is,

(∆ f )g + f Ric = Hess( f )

and above equation together with Equations (26) and (29) implies

f [w( f )(m− 1)g + Ric] = 0.

Since, f is a non-trivial solution of Equation (20), f 6= 0 and on connected M above equation
yields

Ric = −w( f )(m− 1)g.

Hence, as m ≥ 3, (M, g) is an Einstein manifold of constant scalar curvature

S = −m(m− 1)w( f ).

Conversely, suppose (M, g) is an Einstein manifold of constant scalar curvature−m(m− 1)w( f )
that admits an anti-torqued vector field w that satisfies H f (w) = f w( f )w. Since (M, g)
is Einstein, we have Qw = δw for a constant δ, and following argument similar to before
Equation (22), we see Equation (22) holds. Thus, Equations (22)–(26) hold. Thus, on taking the
inner product with E1 ∈ X(M) in (23), we get

Hess( f )(E, E1) = E(w( f ))η(E1) + f w( f )g(E, E1)− f w( f )η(E)η(E1). (30)

Using symmetry of Hess( f ) in (30), we have E(w( f ))η(E1) = E1(w( f ))η(E) and us-
ing E1 = w, we obtain E(w( f )) = w(w( f ))η(E) = Hess( f )(w, w)η(E). Inserting
Equation (25) in this last equation, we arrive at

E(w( f )) = f w( f )η(E).
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Consequently, Equation (30) implies

Hess( f )(E, E1) = f w( f )g(E, E1), E, E1 ∈ X(M). (31)

Finally, using Equation (26) and Ric = −(m− 1)w( f )g, we have

(∆ f )g + f Ric = m f w( f )− (m− 1) f w( f ) = f w( f )

and using (31) with above equation, we conclude that function f satisfies the equation

(∆ f )g + f Ric = Hess( f ),

which is Fischer–Marsden equation.

Since, we did not discuss the role of an anti-torqued vector field on a compact mani-
folds (except in Example 2), we shall now describe the relationship between the support
function f of an anti-torqued vector field w on a compact Riemannian manifold and the
scalar curvature S as well as the Ricci curvature along the anti-torqued vector field. We
prove that if the scalar curvature satisfies some pinching condition, then S is negative.

Theorem 4. Let w be an anti-torqued vector field with potential function f on an m-dimensional
compact and connected Riemannian manifold (M, g), m > 3. If the scalar curvature S of (M, g)
satisfies f S + (m− 1) f 3 ≤ 0, then the scalar curvature is given by S = −(m− 1) f 2.

Proof. Note that using Equation (4), we have

div (Sw) = w(S) + (m− 1) f S. (32)

Choosing a local orthonormal frame {e1, . . . , em}, we compute

div Q(w) =
m

∑
i=1

[g((∇Q)(ei, w) + Q(∇ei w), ei)],

which on using equation symmetry of Q and Equations (4) and (8), gives

div Q(w) =
1
2

w(S) + f S− f Ric(w, w). (33)

Using (32) in the integral of the above equation, we have

∫
M

[
1
2
(m− 3) f S + f Ric(w, w)

]
= 0. (34)

Using Equation (11), we have Ric(w, w) = −(m− 1)
(
w( f ) + f 2). Inserting this value in

Equation (34), we get

∫
M

[
1
2
(m− 3) f S− (m− 1)

2
w
(

f 2
)
− (m− 1) f 3

]
= 0.

Note that div
(

f 2w
)
= w

(
f 2)+ (m− 1) f 3 and using this expression in above integral, we

arrive at
(m− 3)

∫
M

[
f S + (m− 1) f 3

]
= 0.
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As, m > 3 and f S + (m− 1) f 3 ≤ 0 above integral implies f
(
S + (m− 1) f 2) = 0. However,

as the potential function f 6= 0 and M is connected, we get S is given by S = −(m− 1) f 2.

An anti-torqued vector field restricts the behavior of the potential function and the
Ricci curvature of a 3-dimensional compact Riemannian manifold as seen the following:

Corollary 2. Let w be an anti-torqued vector field with potential function f on a 3-dimensional
compact and connected Riemannian manifold (M, g). Then the potential function f and the Ricci
curvature Ric(w, w) do not have same sign throughout M.

Proof. Suppose that f and Ric(w, w) have same sign throughout M. Then we have
f Ric(w, w) ≥ 0. Using this information and m = 3 in Equation (34), we conclude

f Ric(w, w) = 0.

However, the potential function f 6= 0 and M is connected, we get Ric(w, w) = 0. Thus,
using Equation (11), we have w( f ) = − f 2. Inserting this equation in (12) with m = 3,
we conclude ∫

M

f 2 = 0,

that is, f = 0 a contradiction.
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