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Abstract: This paper is concerned with the stability of a SEIR (susceptible-exposed-infectious-
recovered) model with the age of infection and vaccination. Firstly, we prove the positivity, bound-
edness, and asymptotic smoothness of the solutions. Next, the existence and local stability of
disease-free and endemic steady states are shown. The basic reproduction number Ry is introduced.
Furthermore, the global stability of the disease-free and endemic steady states is derived. Numerical
simulations are shown to illustrate our theoretical results.
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1. Introduction

Epidemic models are important tools for helping people fight against infectious
diseases. Epidemic models that are constructed under reasonable assumptions can help
people. For example, it was predicted that only a limited number of people would be
infected by the Severe Acute Respiratory Syndrome (SARS) in 2003 before it disappeared.
Epidemic models can also help people to prevent and control an infectious disease by
analyzing the variables and the basic reproduction numbers. They are important tools in
the ongoing fight against COVID-19.

A large number of models, such as susceptible-infectious-recovered (SIR) models
(see [1]), SIS models, SIRS models (see [2—4]), SEI models (see [5]), SEIR models, and other
models (see [6]) were recently studied. Rost and Wu [7] constructed a SEIR model that
took consideration of the impact of infection age. As (chronological or infection) age is an
important factor in population dynamics, many researchers investigated models with age
(see [8-18]), thus addressing the stability of steady states, and even bifurcation analyses
(see [19]).

Although vaccines were successfully produced to fight against many diseases, such as
COVID-19, it is still unclear whether or not the diseases will disappear. In [20], Posny et
al. presented an epidemiological model of cholera and used the variable V (¢) to denote
vaccinated individuals. In [14], Lin et al. extended the model in [20] to the following
differential equations:

$() = 4~ (u +9)s(6) — ()| ‘fﬁm o [TEDERD @), )
V() = ¢S(t) — uV(t) — V(¢ / pr(@)i(a,t)da + | de), (1b)
al(;t'” + 20D p@yian, 9

R() = [T y(@i(a,f)da—uR(), ()
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with the boundary conditions

* B1(a)i(a, t) B2(b)p(b, t)
; 7114_“1,(11/00111—# A k+p(b, ) PRUBZ ), t>0, (2a)

p(0,) = /0 &(a)i(a,t)da, t >0,  (2b)

i(0,t) = (S(t) + oV (t))(

where S(t), V(t), R(t) are the densities of susceptible, vaccinated, and recovered individu-
als at time ¢, respectively. i(a, t) is the density of infected individuals with infection age

a at time t. p(b, t) is the concentration of V. Cholera with biological age b at time t. The

B1(a)i(at)
1]+ i(at) "
Based on the above motivations, in the present paper, we extend the model in [14,20]

by considering exposed individuals and taking a general incidence rate with f(S)g(I) to
make our model applicable to more cases. We propose the following SEIR model with the
age of infection and vaccination:

saturation infection rate is Other parameters are listed in Table 1 in [14].

$() = A~ (u+9)S(5) — F(5(1)) [ la)g(iCa, ))da (3a)

V(t) = 9S(0) ~ nV ()~ V(D) [ Bla)glila, ))da (3b)

E(t) = (F(S(1) + V() [ pla)gila, 1)da - uE(E) - wE(t), (30)
LG ) = () @i, Gd)

R() = [~ (@ita,Hda — (u+8R(), (3e)

with the boundary condition
i(0,t) = wE(t) + 6R(t). 4)
We denote its initial condition as

Xo: = (5(0),v(0),E(0),i(-,0),R(0))
= (So,Vo,Eo,io(+),Rg) € RT x Rt x R x L (0,00) x R, (5)

where S(t), V(t), E(t), and R(t) denote the numbers of susceptible, vaccinated, exposed,
and recovered individuals at time ; i(a,t) is the number of infected individuals with
infection age a at time t. L1 (0,0) represents the set of all integrable functions from
(0,00) to R = [0,00). Parameter A is the recruitment rate of susceptible individuals.
Individuals in each compartment die at rate . Susceptible individuals are infected by
infected individuals with age of infection a at rate f(a). Exposed individuals are transferred
into the infected group at a constant rate of w. Infected individuals with age of infection a
are recovered at rate y(a) and revert to the infected group at a constant rate J. p(a) is the
disease-induced death rate of infectious individuals. ¢ is the vaccination rate of susceptible
individuals. The vaccinated individuals revert to the susceptible group at a constant rate o
due to the imperfect efficiency of vaccination. The state space of the model (3a—e) is

XT=R" xR" x RT x L1 (0,00) x RT
with the norm

| S V,ELR) =S|+ |V I+ E |+ [ i(a,)da+ | R].

We make the following assumptions for the functions B(-), y(-), p(+).
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Assumption 1. B(-), v(+), and p(-) satisfy the following properties:
(i) B(-) is Lipschitz continuous on R™ with the Lipschitz coefficient Lg.

@ B(-), v(), p() € LL(0,00).
(iii) We denote B, ¥, and p as the essential supremums of B(-), y(-), and p(-), respectively.

Assumption 2. Assume that

i) f(x)=0,g(x) > 0.

(i)  f(x) =0o0rg(x) = 0ifand onlyif x = 0.

(iii) f(x) >0, g (x)>0and f'(x) <0, g (x) <0.

Our model (3a—e) extends and generalizes several recent works. These revisions
bring challenges in the analysis, such as in the analysis of the well-posedness and in
the construction of suitable Lyapunov functionals. Therefore, our work is meaningful
and useful for people who study these kinds of models. The obtained results may lead
to better understanding of the transmission of infectious diseases with consideration of
vaccination. This paper is organized as follows: in Section 2, we identify the dissipativeness,
positivity, and asymptotic smoothness of the solutions of the model; Section 3 is devoted
to the existence and local stability of the disease-free and endemic steady states, and
the calculation of the basic reproduction number; in Section 4, we establish the global
stability of the equilibrium by constructing suitable Lyapunov functionals; next, numerical
simulations are performed to verify the validity of our main theoretical results, and finally,
the paper ends with a brief conclusion.

2. Preliminaries

Let (S(t), V(¢), E(t), i(a,t), R(t)) be a solution of system (3a—e) satisfying the bound-
ary condition (4) and the initial condition (5). For convenience, we denote

pa) =e Jo Gty () +p(u))du ©)
Solving Equation (3c) by integrating it along the characteristic lines t — a = const,
we have
(@8 { (WE(t—a)+6R(t—a))yp(a), 0<a<t,
i(at) =

io(a— )45, 0<t<a @

2.1. Positivity and Boundedness of Solutions

From Equation (7), i(a, t) remains positive for all t > 0. From Equation (3a), S(t)
remains positive for all t > 0, since S(t*) = A > 0 for all t* satisfying S(+*) = 0. Similarly,
V(t), R(t), and E(t) remain positive for all ¢ > 0.

We denote

A
O={(x,vyz9)eX|(xovyzyl< max{ﬁ, IIxo [13-

Using the standard theory in [21], the system (3a—e) with (4) and (5) has a unique
non-negative solution on R*. We define a continuous semiflow, which is denoted as
d: Rt x Xt — X+,

D(t, xo) = (S(t), V(t), E(t), i(-, t), R(t)), teR", xpe€Xt.

Then, we have

1 Dt x0) [|=l (S,V,E,i,R) ||= S(£) + V() + E(t) + /Ow i(a,da+R(D). ()

Proposition 1. For system (3a—e)—(5), the following statements hold true.
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(a) Qs positively invariant for @, i.e., (t, xg) € Qforallt >0, xo € )
(b) @ is point dissipative, and Q) attracts all points in X .

Proof. From Equation (8), we have

d
S, xo) |

_as), ave) | 4R ()
T dt + dt dt dt/ dt
_dS(H) . dv(t) | dE(D) az(a,t) dR ()
= a T a T a +/o T

It follows from system (3a—e) that

et ) |
ds(t) | av() | dE() | dR()

dt dt dt dt
. di(a,t
[Tt @) + pla))ita, ) — 20D
B dS dV() dE(t) dR(t)
o dt + dt + dt + dt

— [+ (@) + p(a))ita, e ifa, 5

0
= A—uS(t)—uV(t) — puE(t) — wE(t) — /Ooop(u)i(a, t)da

—/O i, da — (j + 6)R(t) — i(a, ).
Substituting Equation (4) into Equation (10), we have
d
Sl %) |
= A—pS(t) —pV(t) — pE(t) — uR(t)

_/0 yi(a,t)da—/o p(a)i(a,t)da
< A-pl e, xo) |-

Solving Equation (11), we have
(0 1< 5 e (G120 ),
which implies
(e x0) 1< max{ 2, [ 30 [}
for all t > 0. This completes the proof. [
From Proposition 1, we have the following results.

Proposition 2. There exists some constant M > % such that

S <M, V() <M, E(l)<M,
[y i(a,t)da <M, R(t)<M

hold true forall t > 0if xo € X+ and || xo ||[< M.

©)

(10)

(11)

(12)



Mathematics 2021, 9, 2195

50f23

Proposition 3. Define a bounded set C € X . Then,

(i)  ®4(C) is bounded;
(ii) Py is eventually bounded on C.

2.2. Asymptotic Smoothness

The asymptotic smoothness of the semiflow & is considered in this section to show
the existence of an attractor.

Proposition 4. Define
= | B@gita,)da,  J(t) = [ A(@ila,1)da.
Then, the functions L(t) and ] (t) are Lipschitz continuous on R™.

Proof. For a fixedt > 0 and & > 0, we have
L+ L) | = | [ plaglila,t+m)da /Owﬁ(a)g(i(a,t))dal
= |/ B(a)g(i(a, t+h)) da+/ B(a)g(i(a, t+h))da
/ Bla)g(ila,1))da |
|/ B(a)g(i(a,t+ 1) da—/ B(a)g(i(a,t))da |
+|/ B(a)g(i(a,t +1))da | (13)

IN

From Assumption 2, we have

| gli(at+h)) |< g (0) [i(at+h) |= g (0)i(a t+h).

Then,
| L(t+h) — < |/ B(a)g(i(a, t +h)) da—/ B(a)g(i(a,t))da |
+|/ B(a )i(a,t +h)da | (14)
Substituting Equation (7) into Equation (14), we obtain
/ B(a)g (0)i(a,t + h)da (15)
/ B(a e~ Jo (VS T00)AS (WE (4 b — a) + 6R(t+ h — a) )da.

By Assumption 1 and Proposition 2, Equation (15) can be rewritten as

/ B(a (a,t + h)da < ¢ (0)BM(w + 5)h.
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Then, it follows from Equation (14) that

|L(t+h) L] < |/ pl@)gila,t+m)da— [~ pla)gita,1)da |
+5 (0)AM(w + o)1
. |/°oﬁa+h )g(i(c+ It + h))dor
- | Bla)gtita,)da | +5 ©)pM(w +8)h
|/ B(a+h)(g(i(a+ht+h) —g(i(at))da |

+|/ (a-+h) = B(@))gli(a,1))da |
( )BM(w + 6)h.

IN

By Assumption 2 and Equation (7), we have

| g(i(a+ht+h)) —g(i(a,t)) [< g'(0) [i(a+ht+h)—i(at)].
From Equation (7),
i@ ht+h) = i(a,f)e Ja ") +e(s)ds

foralla >0, t >0, h > 0. Hence, we have

IN

¢ (0)i(a, ) (1—e la" " (uty(s) +o(s))ds)
’ a-+h
3 (Oﬁ(“/f)/a (1 +(s) +p(s))ds

g (0)i(a,t) (s +4 + p)h.

| glila+ht+h)) —g(i(at)) |

IN

IN

From Equation (19), the first term in Equation (16) can be rewritten as

|/ B(a+h)(g(i(atht+h) —g(i(at)))da |
< B (O)M(p+ 4+ p)h.

(16)

(17)

(18)

(19)

(20)

By Assumption 1, | B(a+h) — B(a) |< Lgh. From Assumption 2, g(i(a,t)) < g (0)i(a,t).

Therefore, the second term in Equation (16) can be rewritten as

| [ (Ba 1)~ Bl@)gita, )da | < Lyg (0) M.
From Equations (20) and (21), Equation (16) can be rewritten as
[ L(t+h) = L(t) |< (Bl +7+5) + Lp + Bl +0))g (0) M.
We denote My = (B(p+ 4+ p) + Lg+ Blw + (5))g/ (0)M. Then,

| L(t+h) — L(t) |< Mph.

(21)

Similarly, we can find that J(t) is Lipschitz continuous on R*. Then, there exists

Ly > 0 such that
| J(t+h) = J(t) |[< Mjh.

This completes the proof. [
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Lemma 1 (Theorem 2.46 [22]). The semiflow ® : R x Xy — X is asymptotically smooth
if there are maps ©, ¥ : Rt x Xy — X4 such that ®(t,X) = O(t, X) + ¥ (¢, X) and the
following conditions hold for any bounded closed set C C Xy that is forward invariant under ® :
(1) limy—s4eodiam®(t,C) = 0;

(2)  There exists tc > 0 such that ¥ (t,C) has compact closure for each t > t.

Lemma 2 (Theorem B.2 [22]). Aset C € LY (0, c0) has compact closure if and only if the following
conditions hold:

(i) suppee fo | f(a) |da < oo

(i) limyeo [; | f(a) | da — O uniformly in f € C;

(iii) limy,_o+ [y | f(a+h) — f(a) | da = O uniformly in f € C;

(iv) limy,_,q+ fohf(a)da = 0 uniformly in f € C.

With the above preparations, we can show the asymptotic smoothness of the semiflow
@ generated by system (3a—e)—(5).

Theorem 1. The semiflow ® generated by system (3a—e)—(5) is asymptotically smooth.

Proof. We first decompose the semiflow ® = ¥ + © into two maps: ¥ (¢, xg) := (S(t), V(t),
E(t),i(-,t),R(t)) and O(t, xq) := (0,0,0,;(-,t),0), where

i) — | (WE(t—a)+oR(t- a))e~ o rrrt@+e@)ddn g < g <y
’ 0 0<t<ag,
5 0 0<a<t,
(Pi (a’ t) - iO (a — t)e_ fauft(ﬂ""Y(”)"'P(a))d“ 0 S t S a. (22)

Let C C X4 be a closed and bounded subset with bound K. To verify that the
conditions of Lemma 1 are satisfied, we take two steps. Firstly, condition (1) of Lemma 1 is
verified in the following. Let xo = (Sp, Vo, Eo, i0(+), Ro) € C.

| ®(t x0) || = /0 | ¢i(a,t) | da
= /°° ig(a —t)e” j:—t(P‘*'Y(“)JFP(ﬂ))dﬂda
t

- / " io(o)e I k@) tp(a)da gy
0

e | xo ||
e MK. (23)

IN A

Hence, || ©(t, xg) ||[— 0ast — oo and || O(t,xg) || approaches 0 with uniform expo-
nential speed. Therefore, lim;_;  odiam®(t,C) = 0, and condition (1) holds in Lemma 1.
Next, we will show that conditions (i)—(iv) in Lemma 2 hold. From Proposition 2,

0<i(at) < (w+d5)Me oM

Hence, conditions (i), (ii), and (iv) of Lemma 2 are satisfied. In the following, we
will show that condition (iii) holds. Assume a sufficiently small & € (0,t). Through
computation, we have
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/O°°|Z(a+h,t)—f(a,t)|da
t=h a+h

= [ @Bt —a =)+ 6R(t—a — e BT (o6
0

—(WE(t — a) + 6R(t — a))e™ Jo (1) +0()ds | g4
t a
+ h(wE(t — ) + 6R(t — a))e~ Jo (rr(s)+p(s)ds g
t7

_h .
/t w|E(t—a—h)—E(t—a) | e Jorr)+p()dsg,
0

IN

+ /Oth 5| R(t—a—h)—R(t—a) | e~ Jotrtr(s)te(s)dsgg

+ /tih(wE(t —a) + OR(t — a))e” K 00Dy

+ /Ot_h(wE(t —a—h)+6R(t—a—h))

K(1—e fa”+h(;¢+'y(s)+p(s))ds) o= Jo (r(s)+p())ds 7,4 (24)
From Propositions 2, 4 and Equation (3a—e), we have

| E(t—a—h) —E(t—a) |< (f (0)g (0)MP + g (0)MB + pt + w) M, (252)
| R(t —a—h) — R(t —a) |< (M + uM + SM)h. (25b)

From Equation (25a,b) and 1 — e™ < x for all x > 0, Equation (24) can be rewritten as

/0°° | Fa+1,t) —(a ) | da

< (F O OMB+g OM-+ )02 + (1M M +5M) ]
(w4 8)Mh + /Ot_h(wE(t —a— )+ SR(t—a—h))e "da
a+h
[ () + p)is
/ / ~ / P wMh N oh
< (f(0)g (0)Mp+og (O)Mﬁ+ﬂ+w)7 +(7M+VM+5M)7

M

+Hw+IMh+ (w+06)(n+5+p) ”

(26)
Therefore, condition (iii) of Lemma 2 holds true. Using Lemma 1, the semiflow & of
system (3a—e)—(5) is asymptotically smooth. This completes the proof. O

From Propositions 1 and 3 and Theorem 1 together with Theorem 2.33 from [22], we
have the following result.

Theorem 2. The semiflow ®(t) generated by system (3a—e)—(5) has a global attractor A in X+.

3. Steady States and Their Local Stability
3.1. Steady States and the Basic Reproduction Number

Clearly, system (3a—e)—(5) always has a disease-free steady state E; = (ﬁ, m (;?f ) 0,0,0).
An endemic steady state E, = (S*, V*, E*,i*(a), R*) satisfies
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(h+9)8"+ £(5") /0 Bla)g(i* (a)da = @7a)
/ Bla ))da = ¢S* — uV*, (27b)
(f(S*) + V) / B(a)g(i*(a))da = uE* + wE*, 27¢)
di*(a )
di L= —(ut20) + pla))i*(a), @7d)
| v@it@da = (u+ o), (27)
i*(0) = wE* + 6R*. (27f)
Solving Equation (27c) gives
i*(a) =i"(0)y(a). (28)
Substituting Equation (28) into Equation (27d) gives
R'= 2500 [ r(@ya)dn 29)
From Equations (29) and (27e), we have
B = )0 [ @) 60)
T w u+6Jo r(@)y ’
From Equation (27a,b), it follows that
. 2f(s7)s*
* J *) '
— (n+9)5*+5£(57)
Using Equation (27a—c), we obtain
g* + O’f( ) - _ é H + w / (0)’
—(+)S +5f(87) » pw V+(5
that is,
(A _gr— ___cf8S )
"(0) = A(pbe)S g /() FT (31)
1= 5 [y (@)p(a)da
From Equation (28),
¢ *\ Q*
A _cx _ cf(57)S
i* (ﬂ) _ (V 5 (F‘+4’)S*+}lf S* ).”'H’JIIJ( ) (32)
1- pt+z5 fO w(a)da
It follows from Equations (27¢,f) and (29) that
£(8*) +UV* ) ©
}4 ) / B(a ))da + Ty y(a)yp(a)da = 1. (33)
Proposition 5. System (3a—e)—(5) has one unique endemic equilibrium Ej if
w A A¢po
Ro: = /
0 V+w£f(y+¢)+ y+¢ pla
y(a)yp(a)da > 1. (34)

+
u+4.Jo
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System (3a—e)—(5) has no endemic equilibrium if Ry < 1.

Proof. Substituting Equation (32) into Equation (27a), if S* exists, it should be a zero root
of the function H in (0, (p%), where
M
¢
A ;f (5)s
G =5~ aGigsi e 1@

d
(=25 r@pada) (it o))

H(S) = A= (¢ +mS—f(5) | Blas(
Through direct calculation, we have

Lf(s)s
(5 =5~ args e PO @)
(=36 I v payinps )

(S)S
T W)VWP( )
)d

0 (1= 25 Jy (@) pla)da) (1 + w)
o F (S)S(A— (j+9)S) + AF(S) + LAA(S)
v (A—(u+9)S+ LF(5))?

da (35)

H(S) = —p-u-f©) [ gl )do

)

and

%f<s>s
_ / Bla - (u+¢> f( ey (a)
+5 fo da)(p + w)

e (E—S—W)#wlp() ih(a)p (a)da
0

¥ = I @ p(oal i+ 1—%&;’" (a)p(aya

1 OFS)SA— (i +9)S) + AF(S) + EF2(S)
Uty (A= (it 9)5+Lf(5)) 1), @

A L£(5)S
R )23 G A ira?(0)

(1= 7% Jo v(@p(a)da)(u + ))( — 35 Jo v(@)w(a)da
+ff( )S(A—(n+9)S)+Af(S) + 5f2(5) 2
o (A= (u+9)s+5f(5))?

)da +2f (S)

.g”( )2dﬂ

2. (36)

From Assumption 2, H' (S) > 0 for S € (0, M+¢)
Selo, 14+¢] increases. From Equation (35), H' (0) < 0. If Ry < 1, H( 5) < 0. Then,
H'(S) < 0forall S € (0, So, H(S) is decreased as S increases in [0, A } AsH(0) >0

V+¢) (X3
and H( e <P) = 0, there is no zero of H(S) in (0, -4-). Hence, system (3a—e)—(5) has no
endemic equ111br1um if Rp < 1.

ute
If Ry > 1, H (ﬂ+¢) > 0. There exists an Sy € (0
S € (0,S)and H'(S) > 0forall S € (SO,W‘%P).

in [0, Sp], and H(S) is increasing as S increases in |

Therefore, H' (S) is increasing as

, ﬁ) such that H' (S) < 0 for all
Therefore, H(S) is decreasing as S increases

So, Hi ¢] There must exist only one zero
of the function H(S) in (0, yfgb) since H(0) > 0 and H(
has one unique endemic equilibrium E; if Ry > 1. O

T ¢) = 0. Hence, system (3a—e)—(5)
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Through calculation, we get the basic reproduction number /R of system (3a—e)—(5)
by using the method in [23-25].

3.2. Local Stability

In the following, we consider the local stability of E; ( el (:f ) ,0,0,0) and E,. First,

we consider the local stability of the disease-free equilibrium E1

Theorem 3. The equilibrium E; is unstable if Rg > 1. The equilibrium E; is locally asymptotically
stable if Ry < 1.

Proof. Let
A A
x1(t) =S(t) — ——, x(t)=V(¢t
(D=8t o mb) =V -
x3(t) = E(t), x4(a,t)=1i(at), x5(t) =R(t). (37)
Linearizing system (3a—e)—(5) at equilibrium E; and setting xi(f) = ylem,

(1) = yaeM, x3(t) = yzeM, x4(a,t) = ya(a)eM, and xs5(t) = yseM, we obtain the fol-
lowing linear eigenvalue equation:

wlf (745) + 7555518 (0)

¢ Jo (ut(s)+p(s)+2)ds
A+y+6/ aje da Atpu+w

< [ Blage B0 g =1, (39)

We define
- e~ Jo (t(s)+p(s)+A)ds
F) Atu+o / ' da
A A(pa /
w[f(}““f\) P“FfP / B(a o= Jo (ut(s)+p(s)+A)ds 7,
+utw

Since F(A) is decreased as A is increased and F(A) — 0as A — 400, F(A) = 1 hasa
unique positive root if F(0) > 1. So, the equilibrium E; is unstable if F(0) > 1.

Suppose that F(0) < 1 and the equilibrium E; is unstable. Then, equation F(A) =1
has at least one root Ay = a; + iby, where a; > 0. Clearly,

) o a
-7 = Jo (utr(s)+p(s))ds ,—ara
F(A1)] < m+y+54 (a)e k e~ "7dg
Wlf (75) + 76518 (0) oo ,
= Jo (ut(s)+p(s))ds ,—ara
+ ot ptw /o Blaje” e da
= F(ay) < F(0) < 1, (39)

which leads to a contradiction. Therefore, the equilibrium E; is stable if g < 1. O

Next, we consider the local stability of Ej.
Theorem 4. The equilibrium Ej is locally asymptotically stable if Ro > 1.

Proof. We define the following perturbation variables:

2() =S-S5, )=V -V, z(t)=E(t) - E,
24(a,t) = i(a, )*MM,ZAﬂZMﬂfW- (40)

Linearizing system (3a—e)—(5) at equilibrium E,, we have
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a() = —f(s)al / Ba)g(i* (a))da — £(57)
/ Bla)g (" (@))zs(a, )da — (u+ )z (1),
) = gu(t) - pa() - onl / Bla)s(i*(a))da
—UV*/ B(a ))z4(a, t)da
() = (f(S)z1(t) + ozt / B(a a))da+ (f(S*)+oV™)
/ Bla ))za(a, t)da — (4 + w)z3(t),
i UL &ﬁj”:»4u+vw»+mwn4mw, )
() = [ r(@z0da— (e +0)zs(t),
z4(0,t) = wz3(t) + dz5(t).
Setting z1(t) = meM, z(t) = maeM, z3(t) = mzeM, zy(a,t) = my(a)eM,
z5(t) = mseM, we obtain the following linear eigenvalue problem:
A+pu+o+f( 5* fo B(a)g(i*(a))da)my = —£(S*) fo* B(a)g (i*(a))ma(a)da,
(A +pto [y Ba)g(i*(a))daym; = 4>m1 oV* [o Bla)g (i*(a))my(a)da,
(%) fo ﬁ(a (a))damy + o [;° B(a)g(i* (a))damy + (f(S*) + oV*)
X fo )) s(@)da = (p+w + /\)ma (42)

my(a )_ m4( ) = Jo (et (s)+p(s)+A)ds
(A+p+08)ms = [~ y(a)my(a)da,
my(0) = wmg + dms.

By computing Equation (42), we have the characteristic equation of system (3a—e)—(5)
at the equilibrium Ej:
G(A) =1, (43)

where

WA+ ) 5 Bla)g (i (a) e B 100 0 g

A+pt+w)A+p+o+f(5*) fg Bla)g(i*(a))da)

< (f(S*)+0V*)(A+ﬂ+</>) L a(f(S*) + V*f(S"))
Adp+a [57Bla)g(i*(a ))da A+z¢+0f0°°ﬁ(a)g(i*(a))da
o0 “( f o= Jo (- (s)+p(s)+A)ds 4,

X/ Bla)g(i*(a ) Ad+u+d ’

G(A) =

(44)

By the method of contradiction, we assume that Equation (43) has one eigenvalue
Ay = ap + byi satisfying ap > 0. Then, we have

| G(A2) |

wlay+byi+p || f5 Bla)g (i (a))e” I tp)tmattaildsgy |

[+ boi+p+w |- [ay+boi+p+¢+f(S*) [5 Bla)g(i*(a))da |
) +aV )@ tboitp+g)  o(f(8)+VF(SY))

ay +byi+pu+o [ Bla)g(i*(a))da  ay+bai+p+0 [5 Bla)g(i*(a))da

® " S| [ y(a)e Jo () tpls) tartbaiids g |
[ Bl@)g(i (a))dal + e

(45)
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Through direct computation,
| ap + byi + U | <1
| a2 +bai+ p+ 0 [y Ba)g(i*(a))da |
and
|a2+b2i—l—y+¢| <1
| a2 +bai+p+ ¢+ f(S) fy Bla)g(i*(a))da|
Equation (45) can be written as
oy |« CUE) V) 7 @) @)y 0 7 vy
pt+w u+o
From Assumption 2, we have
g(i*(a)) = g(i*(a)) — g(0) > g (i* (a))i*(a). (47)
It follows from Equations (47) and (28) that
0 , [ee] < d
[ B@)g @ ptayaa < o POSELNE 48)
From Equation (48), Equation (46) can be written as
w(f(8*) +0V*) Jy Bla)g(i*(a))da & [" v(a)yp(a)da
| G(A2) |< F0) (i T @) + T . (49)
It follows from Equation (33) that
G < UV [ B@SE @)da 8T ap@de

*(0)(u + w) u+o
which is a contradiction of Equation (43). O

4. Global Stability

In this section, we show the global asymptotic stability of steady states E; and E, with
the technique of Lyapunov functionals.

Theorem 5. The disease-free equilibrium E; is globally asymptotically stable if Ry < 1.

Proof. Let (S(t), V(t), E(t), i(a,t), R(t)) be any trajectory of model (3a—e)—(5). We will
prove that S(t) — ﬁ when t — +o0. As all of the solutions remain positive with positive
initial conditions, together with Equation (3a), we have

das(t)

T < A—(u+¢)S(t). (51)

Using the comparison theorem, we have

A
limsup S(t) < ——. (52)
m sup () o
From Equation (3b), we obtain
dv(t
T < gs(6) v o) 3

dt
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Since all of the solutions are bounded, from Equation (53), we have

. : PS(t) A¢p
limsup V(t) < limsu < . (54)
t—>+oop ®) t—>+oop H u(p+ )

From Equation (3c), it follows that

limsupE(t) = limsup—-""——+ f(5()) + oVt / da
t——4o0 t—4o00 ,” + w
Amp
fGts
lim sup i) ) a,t)da

t—+o00 U+ w

IN

Amp

fGAs) +

— limsup 1 KEH) //3
t—+400 ptw

+(5R(t—a))¢(a)da+./t‘°°ﬁ(a)io(a,t) 1/;(a) da)

FG) + gy o [

timsup ~— LG 0)([ pla)y(a)da

(wlimsup E(t) + dlimsup R(t)) + MBe ) (55)
t—+oo t—+oo
A /
(FGAg) + i )8 (0) Jo B
pt+w
X (wlimsup E(t) + élimsup R(t))

t—+o0 t—+o00

IN

IN

Similarly, by Equation (3e), it follows that

* y(a)i(a,t)d
limsup R(t) = limsup M
t—+oo t——+o0 ,'I/l + 0

1
= limsu / atda—l—/ i(a,t)da)
t%Jroop .u+5(
limsup

fteo M 5(/t 7(a)(WE(t —a) + OR(t —a))y(a)da

(a)
—|—/ ola—t) (a—t)da)

t
lim sup L (/ v(a)(wlimsup E(t) + dlimsup R(t))
t—te0 K0 J0

t—+oc0 t—+o0c0

IN

IN

P(a)da + Mge M)

J v @O sup E(E) + Slim sup R(E). (56)
u+o t—r-oo f=00
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From Equations (55) and (56), we have

wlimsup E(t) + dlimsup R(t) < Rp(w limsup E(t) + J limsup R(t)). (57)

t—+oo t—+o0 t—+o0 t—+o0

When 53y < 1, to make Equation (57) hold true, the following equation must hold true:

wlimsup E(t) + dlimsup R(t) =0, (58)
t—+o0 t—+o0
which implies that
tETw E(t) = tEIIIooR(t) (59)

By Equations (52) and (3a), we obtain

dfiiit) > A—(u+¢)S(t) —limsup f(S / B(a

t—+-o00

> A=t 9)sh—f >/ § (0)B(a)i(a, )da

iz +‘P
= A= (e 0S0) — 528 O plai
+/ B(a)i(a,t)da)
= A= (9SO ~ 8 O e
x (wlimsup E(t) + dlimsup R(t)) + MpBe ). (60)
t—+o00 t—+o0

By Equation (58), Equation (60) can be rewritten as

e > _
mints) > o imintA - g O Bl
x (wlimsup E(t) + dlimsup R(t)) + MpBe™ Vt)]
t— o0 t—+o00
A
- = (61)
ut+e
Therefore, lim;_, yo S(t) = m + e Similarly, we have lim; 1 V(t) = (V + ¢) Clearly,

lim¢_, o0 i(a,t) = 0 holds by Equation (7). [

Next, we investigate the global stability of the infectious steady state E, under the
following assumption.

Assumption 3. Assume that

< SR <1 0<4(000) <507 (0)
LR N, o<zt

Theorem 6. The endemic equilibrium E; is globally asymptotically stable if Rg > 1 and Assumption 3
holds true.
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Proof. We show that E; is globally asymptotically stable by constructing suitable Lyapunov
functionals. Let (S(t), V(t), E(t), i(a,t), R(t)) be any trajectory of model (3a—e)—(5). We
define the function i(x) = x —1 —Inx > 0 for all x > 0. We define a Lyapunov functional

L) = s v S e EY), (62a)
L) = RH(2Y), (62b)
() = [ F@it@h(aD) (620)

L(t) = Ll(t) + lez(t) + kng( ,

—~
~—

(62d)

where F(a), k1, ky will be defined later.
We calculate the time derivatives of L with respect to t.

dLq(t)
dt
= A=) -1 [ ﬁ(a)g(fw))d”](l*%’

+Hos(0) = V() =V (0) [ plaglita,)del(1 - 55)

HAS0) + V@) [ plargtita o= (u+-w)EW]1 - 75)

(S(t) — 5*)? SSHVE V() ST
S(t B [S*V(t)+ v +S(t)

(5) [ Blas i @)=h(gry) ~ IR

)

f(5(t))g(i(a,t))S* . . S*

Coseir s Ma+ eV / B@)s( (@) -h(ggs)
)

a)
S(HV i V(t)g(i(a,
V*g(i*

(a
+ov?) [ plagti@nin L,

() +oV(t)E
(f(8) +oVF)E(t)g(i(
S

— 3]da

p
+f
h

Jr

7h(S*V(t

IN
=
V5]

*
=
2
Py
%
=
=

~n ~

—(p+w)(E(t) — E) (63)
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Ash'(x) = % > 0 for all x > 0, it follows that

(S*) (f(S( )8 (i(a, f))) oV h(V(f)g(i(ﬂ,t)))
f(S*) +ove f(5)g(i*(a)) ~  f(S*) +oVF " Vig(i*(a))
(f(S(8) +V(t))g(i(a, t))
= s evisEa) “
From Assumption 3 and Proposition A.1 in [11], h( (ll(”(;)))) ) < h(iSfE; ;),we have
f(5(t))8(i(a, t))S* g(i(a 1)) i(a,t)
"rsiansm’ = @) =) ©
From Equations (64) and (65), Equation (63) can be written as
MO < s+ ov) [ gt @) —1n Ea
—(u+w)(E(t) - E7). (66)
By calculating the time derivatives of L, along the solutions of model (3a—e)—(5),
we have
T [T r@ita 0 (4 OROI - )
_ o i i(at),  i(at)R* N R* .
= @i @dalh(G7) — G Rrs) ~In gl
—(u+0)(R(t) = RY)
00 . i(a,t) R*
< @i @) ~In g lde
—(u+0)(R(t) = RY) (67)

We calculate the time derivatives of L3 with respect to t; then, it follows that

From Equation (3d), we have

dL3(t) — /OOO F(a)(l _ l*(ﬂ) )

dt i(a,t)
[ (@) + pla))iCa, ) — 0D g ©9)
Clearly,
() i (a i(a
T e U b+ () + p(ain 1)+ ) 70)




Mathematics 2021, 9, 2195

18 of 23

From Equation (70), Equation (69) can be rewritten as

0 on(ied)
dL;t(t) = _/o F(a)i*(a) aa() da
— —F@r @ I
+ [T HEEDE @00+ Fla)i @)
B B z(a,t) z(a,t
- Fla)i*(a)h z*(a) )1 +/ 1*(a)
[F'(a) = (4 +7(a) + p(a)) F(a)]i* (a)da. (71)
Let
Ry = CLEEEE) [T gt )i
+#‘5+5 " (e S et (s) ro(s)ds gy, (72)

From Equation (33), we have
F(0)=1. (73)
From direct calculations, it follows that

lim F(a) = 0. (74)

a— 00

Substituting Equation (72) into Equation (71), it follows that

dLst(t) — (0,8 —i7(0) = i*(0)In ii(f)('ot))
w(f(S*) +¢TV*) " i(a,t)
[ s @) da
- [T @i @n e 75
We define k1 = i}%ﬁ:‘;g, ko = MT“’ From Equations (66), (67), and (75), we have
dL(t) \ E* (ptw)
R C CORA / B()3(i" (a))daln - £ wln
/O +(a)i*(a)daln R()+”+w“’ (O)IHiI(O(,Ot))
_ e B d(ptw) ., R
= —(p+w)E'ln 0 w R*In 0
y+w N N wE* 4+ 6R*
(WE™+ R ) In e T oR (D)
_ (pt—l-w)(a)E*+(5R*)[ wE* i E(t)
- w WE* +oR* ' E*
n OR* In R(t) m wE(t)+(5R(t)] 76)

wE* 4+ §R* R* wE* 4+ §R*
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As (Inx)" = —% <Oforallx >0, plnx+ (1 —p)Iny <In(px+ (1 — p)y) holds for
allx >0, y>0,1>p>0. Equality holdsif and only if x = y. Let p = M‘fi_%, X = EE(i),
R(t)

y = &+, then, we have

dL(t)
— < 0.
i =Y

Clearly, “E — 0if and only if S(f) = S*, V(t) = V*, E(t) = E*, i(a,t) = i*(a),
R(t) = R*. As Ej is locally asymptotically stable if %y > 1, from LaSalle’s invariance
principle, E; is globally asymptotically stable. [

5. Numerical Simulations

In this section, we illustrate the theoretical results for system (3a—e)—(5) through
numerical simulations. By the Euler Method, Theorems 5 and 6 hold true.

(i) Anexample when Ry > 1

In this section, we provide an example and numerical results to support our theoretical
results. We set model (3a—e) with a saturation incidence rate of f(S(t)) = S(t) and
g(i(at)) =i(a,t). Let y = g3%s, 6 = 0.125, 7 = 0.8, p = 0.022, w = 0.4, and o = 0.15. The
initial condition is set as (2.5,0.0002,0.2,0.2,0.3). We assume that the maximum age for the
upper bound of infection age is 100 days, that people are more likely to be infected when
a € (3, 8], and that people will be cured or sent to the hospital for isolation and treated
when a > 20. So, the transmission coefficient f(a) is chosen as

0.15 a<3,
0.25 3<a<s,
Bla) =<¢015 8<a<14, (77)
01 14<a<?20,
0 a > 20.

First, we set A = 0.006, ¢ = 11@. By calculating Equations (27a—f), model (3a)-
(5) has the disease-free equilibrium E;(0.49, 2.21, 0, 0, 0) and the endemic equilibrium
E»(0.19, 0.41, 0.0116, 0.1e=%827, 0.7647). From Theorem 6, E, is globally asymptotically
stable because Ry > 1, as shown in Figure 1.

(i) Anexample when %Ry < 1

Next, let A = 0.003, ¢ = 0.1. Other parameters and initial conditions are the same
as those in the above example. Model (3a—e)—(5) has only one disease-free equilibrium
A _Ap

(557 Gty
in Figure 2.

0, 0, 0), which is globally asymptotically stable because %Ry < 1, as shown

(iii) Effect of parameters A and ¢ on Ry

As shown in Equation (34), the values of parameters A and ¢ affect ip. Will Ry < 1
hold if ¢ is large? From Figure 3, Ry < 1 holds only when A is small and ¢ is large. Clearly,
Ny < 1 cannot hold for large values of A.
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Figure 1. The red dashed lines display the estimate of the endemic steady state
E»(0.19, 0.41, 0.0116, 0.1e7982%, 0.7647) of model (3a—e)—(5), while other color lines show so-
lutions with initial conditions (2.5,0.0002,0.2,0.2,0.3) and parameters A = 0.006, y = %,
¢ = ﬁ, 6 =0125, v =08, p = 0.022, w = 04, ¢ = 0.15 from the direct simulation. The
values of S(t), E(t), R(t), V() with respect to t are shown in (a,b,e,f), respectively. i(a,t) with
respect of 4 and t is shown in (c). The value of i(a, t) with respect to a at t = 3000 is shown in (d).
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Figure 2. The red dashed lines display the estimate of the disease-free equilibrium

A . . . . .
El(ﬁ, WL’)’ 0, 0, 0) of model (3a—e)—(5), while other color lines lines show solutions with

A =0.003, ¢ = 0.1 from the direct simulation. The initial conditions and other parameters are the
same as those in Figure 1. Similar to Figure 1, (a) 5(¢), (b) E(t), (e) R(t) and (f) V (¢) with respect to
t are shown. (c) i(a,t) with respect to a and ¢ is displayed. (d) i(a, f) with respect to 4 at = 3000
is shown.
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Figure 3. The yellow area corresponds to 9ig > 1, while the blue area is Ry < 1 of model (3a—e)—(5)
with the same initial conditions and parameters as those in Figure 1.

6. Conclusions

In this paper, we investigated a SEIR model that considers age of infection and
vaccination. Through an analysis, we obtained a basic reproduction number /R, which is
the threshold of the dynamics of the model. The positivity, boundedness, and asymptotic
smoothness of the solutions are shown. There exists only one disease-free equilibrium
that is locally and globally asymptotically stable when 93y < 1. There exists one unstable
disease-free equilibrium and a unique locally stable endemic equilibrium for %y > 1.
Furthermore, the endemic equilibrium is globally stable if functions f(-) and g(-) satisfy
Assumption 3 and %3y > 1.

According to our analysis, the recruitment rate of susceptible individuals A has
an important effect on the spread of infectious diseases. Therefore, measures such as
restrictions on travel and public gatherings should still be taken for a long time to keep the
recruitment rate of susceptible individuals A low, even when we have vaccinations. Our
work may be helpful in predicting and eliminating infectious diseases. It does not consider
many factors, such as variations in parameters over time or control strategies; hence, our
future work will consider the dynamic behaviors of models with parameters that vary with
time and control strategies for eliminating the occurrence of infectious diseases.
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