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Abstract: Intuitionistic fuzzy logic is the main tool in the recently developed step-wise “cross-
evaluation” procedure that aims at the assessment of different optimization algorithms. In this
investigation, the procedure previously applied to compare the effectiveness of two or three algo-
rithms has been significantly upgraded to evaluate the performance of a set of four algorithms. For
the first time, the procedure applied here has been tested in the evaluation of the effectiveness of ge-
netic algorithms (GAs), which are proven as very promising and successful optimization techniques
for solving hard non-linear optimization tasks. As a case study exemplified with the parameter iden-
tification of a S. cerevisiae fed-batch fermentation process model, the cross-evaluation procedure has
been executed to compare four different types of GAs, and more specifically, multi-population genetic
algorithms (MGAs), which differ in the order of application of the three genetic operators: Selection,
crossover and mutation. The results obtained from the implementation of the upgraded intuitionistic
fuzzy logic-based procedure for MGA performance assessment have been analyzed, and the standard
MGA has been outlined as the fastest and most reliable one among the four investigated algorithms.

Keywords: intuitionistic fuzzy logic; genetic algorithms; modelling; optimization; fed-batch cultivation

1. Introduction

Model parameter identification of non-linear fermentation processes (FP) is an impor-
tant step for adequate modeling. Frequently, conventional optimization methods fail and
do not lead to a satisfactory solution [1]. Then, stochastic algorithms appear as a reliable
alternative. Genetic algorithms (GAs) [2], based on Darwin’s theory of evolution and
“survival of the fittest” concept, are a stochastic technique for global optimization broadly
applied to various complicated problems in different areas [3]. GAs find the global optimal
solution by simultaneously evaluating multiple points in the parameter search space. Prop-
erties of GAs like noise tolerance, easy interface interaction and hybridization make them a
suitable and reliable tool to handle hard problems like FP parameter identification [3–5].

The standard simple genetic algorithm (SGA) [2] searches a global optimal solution
applying the main genetic operators in the following order: Selection (denoted by S in the
abbreviated algorithms’ names), crossover (denoted by C in the abbreviated algorithms’
names) and mutation (denoted by M in the abbreviated algorithms’ names). SGA starts with
a choice of chromosomes representing better possible solutions according to a preferred
selection method. Afterwards, the crossover operator proceeds to form new offspring. Then
mutation is applied with a determinate probability. SGA in which many sub-populations
proceed independently from each other is known as a multi-population genetic algorithm
(MGA). The standard MGA as originally presented in [2] is here denoted as MGA_SCM.
Given that the underlying idea of GA is to imitate the mechanics of natural selection and
genetics, and since our aim is to simulate processes occurring in the nature, we can note
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that the probability of mutation occurring before crossover is comparable to the probability
of both processes taking place in the reverse order, or comparable to the probability of
having the selection performed after crossover and mutation, regardless of their order. In
this line of reasoning, eight modified SGAs and eight modified MGAs have been developed
to improve the accuracy and the convergence time of the algorithms applied for parameter
identification of a S. cerevisiae fed-batch cultivation process [5]. All modified GAs follow the
algorithm’s logic, where in two out of eight algorithms, the mutation operator is omitted,
while the rest six only differ from one another in the order of execution of the three basic
genetic operators.

From both an engineering and a mathematical perspective, among the significant
criteria for assessing the algorithms’ performance quality, the most representative ones are
the objective function value (J) and the time for the algorithm’s convergence (CPU time).
Intuitionistic fuzzy logic (IFL) acts as an alternative when the quality of different algorithms
is being assessed for various purposes. For the very first time, in [6], the procedure to
assess the algorithm quality performance (AAQP) implementing IFL has been proposed
and successfully applied for comparison of the performance of standard SGA before and
after the application of the procedure for purposeful model parameters genesis (PMPG) [7]
as well as for three different values of generation gap (GGAP) that has been determined
as the most sensitive GA parameter. Similarly, the AAQP procedure has been applied for
the standard MGA, again before and after PMPG procedure and again at three values of
GGAP [8]. In [9], two kinds of SGA, namely SGA_SCM and SGA_MCS, have been assessed
applying AAQP before and after PMPG procedure at three values of GGAP. Later on,
in [10], AAQP was implemented aiming to derive intuitionistic fuzzy estimations in order to
compare the standard SGA and standard MGA, again before and after the PMPG procedure
and for three values of GGAP. The promising results obtained provoked searching for
other applications of the elaborated AAQP procedure, as well as its further developing.
Thus, in [11], SGA and MGA as well as their modifications have been examined, again
before and after the PMPG procedure implementation, while the procedure for AAQP has
been successfully applied to assess the performance of three modified SGAs, two modified
MGAs, SGA towards MGA in their standard implementations, as well as to assess the
performance of SGA at three values of GGAP. In addition, the step-wise AAQP procedure
implementing IFL has been successfully applied to assess the quality performance of three
kinds of MGA, namely MGA_SCM, MGA_CMS and MGA_MCS [12] and, respectively, of
MGA_SCM, MGA_SMC and MGA_SC [13]. As noted above, all of these applications of
SGA and MGA and their modifications had been executed for the parameter identification
of a fed-batch fermentation process model of S. cerevisiae.

The AAQP implementing IFL has instigated many improvements in both theoretical
and practical aspects of the IFL. In [14], the authors reported on the orders of intuitionistic
fuzzy numbers, while in [15], type-2 fuzzy sets and intuitionistic fuzzy sets were used
to construct the fuzzy logic rules aiming to reflect the complexity and uncertainty of an
urban rail system, thus to provide theoretical support for the urban rail transit security
region decision and control. In [16], the authors developed a new operator for real-coded
evolutionary algorithms, while in [17], a self-tuning linear adaptive-genetic algorithm
for feature selection. A mathematical programming model and an enhanced simulated
annealing algorithm for the school timetabling problem were elaborated in [18]. In [19], the
authors presented optimization under uncertainty using an intuitionistic fuzzy expected
value model, while in [20], the authors used MGA for automatic generation of test cases.

The PMPG procedure itself attracts the interest of the researchers in the field of
development of different optimization techniques as well as their application to a vast
variety of objects. In recent years, PMPG has provoked the authors of [21] to develop and
present an efficient hybrid of continuous ant colony optimization and weighted crossover
GA, the authors of [22] to construct a new compound arithmetic crossover-based GA and
the authors of [23] to elaborate an early warning system framework based on structured
analytical techniques and a fuzzy expert system. From an application point of view, PMPG
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has given an impetus for structural optimization of a bespoke single-layer cable-net [24],
for small enterprises’ default prediction with empirical evidence [25], for non-deterministic
polynomial problems solved by an improved hybrid ant colony optimization algorithm [26],
for the evaluation of GA as learning system in rigid space interpretation [27] and to analyze
mutation vectors of the selection mechanism in differential evolution [28].

In the present leg of this ongoing research, we are assessing the three modified
MGA_SCM algorithms, in which the crossover and mutation operators—or only the
crossover—are performed prior to the selection operator. In particular, our investigation
focuses on the MGA_CMS, MGA_MCS and MGA_CS algorithm variants, since they have
not been yet assessed by AAQP by now. All the three modifications are compared to the
standard algorithm MGA_SCM. As a result, an upgraded procedure for the algorithms’
performance assessment using IFL will be implemented for the first time for quality
assessment of four algorithms, namely MGA_MCS, MGA_CMS and MGA_CS versus
MGA_SCM.

2. Materials and Methods
2.1. Intuitionistic Fuzzy Estimations

IFL, proposed by Atanassov [29,30], provides another degree of freedom compared
to fuzzy logic, rendering an account of both the membership and non-membership of an
element to a set, thus allowing better handling of uncertainty. In IFL, the truth-value of the
variable p is the ordered couple

V(p) = 〈M(p), N(p)〉, (1)

where M(p) is a degree of validity of p, N(p) is a degree of non-validity of p, M(p) ∈ [0, 1],
N(p) ∈ [0, 1], M(p) + N(p) ∈ [0, 1]. These values might be obtained using different formula
considering the problem specificity. Following the previous author’s investigations, in this
research, the degrees of validity and non-validity are determined using the following formulas:

M(p) = m/u (2)

and
N(p) = 1− n/u, (3)

where m is the lower boundary of the so-called narrow range; u is the upper boundary
of the so-called broad range; n is the upper boundary of the so-called narrow range. The
broad range of the model parameters is based on referent data, while the narrow one is
based on the preliminary evaluations of the algorithm. The manner of determination of the
“narrow” range and the “broad” range is to be explained in the next section.

If there is a collected database with elements in the form 〈p, M(p), N(p)〉, a number of
new values for the variables can be obtained. In the case of 2 records in the database, 3 new
values can be defined, e.g., optimistic (opt), average (aver) and pessimistic (pes). In the case of
3 records in the database, 5 new values can be defined, e.g., strong optimistic (strong_opt),
optimistic (opt), average (aver), pessimistic (pes) and strong pessimistic (strong_pes), as shown in
most of the previous implementations of the AAQP procedure [6,8–13].

In the present study, the significant improvement of the proposed AAQP procedure is
in its upgrade in such a way to allow the comparison of four different algorithms. For that
purpose, the following seven new values are introduced in the case of four records in the
database, namely:

• strong optimistic

Vstrong_opt = 〈min(1, (M1(p) + M2(p) + M3(p) + M4(p))),
max(0, (N1(p) + N2(p) + N3(p) + N4(p) − 3)))〉, (4)
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• optimistic

Vopt = 〈M1(p) + M2(p) + M3(p) + M4(p) −M1(p)M2(p) −M1(p)M3(p) −M1(p)M4(p) −
−M2(p)M3(p) −M2(p)M4(p) −M3(p)M4(p) + M1(p)M2(p)M3(p) +
+ M1(p)M2(p)M4(p) + M1(p)M3(p)M4(p) + M2(p)M3(p)M4(p) −
−M1(p)M2(p)M3(p)M4(p), N1(p)N2(p)N3(p)N4(p)〉,

(5)

• less optimistic

Vless_opt = 〈max(M1(p), M2(p), M3(p), M4(p)), min(N1(p), N2(p), N3(p), N4(p))〉, (6)

• average

Vaver = 〈(M1(p) + M2(p) + M3(p) + M4(p))/4, (N1(p) + N2(p) + N3(p) + N4(p))/4)〉, (7)

• less pessimistic

Vless_pes = 〈min(M1(p), M2(p), M3(p), M4(p)), max(N1(p), N2(p), N3(p), N4(p))〉, (8)

• pessimistic

Vpes = 〈M1(p)M2(p)M3(p)M4(p), N1(p) + N2(p) + N3(p) + N4(p) −
−N1(p)N2(p) − N1(p)N3(p) − N1(p)N4(p) − N2(p)N3(p) − N2(p)N4(p) −
−N3(p)N4(p) + N1(p)N2(p)N3(p) + N1(p)N2(p)N4(p) + N1(p)N3(p)N4(p) +
+ N2(p)N3(p)N4(p) − N1(p)N2(p)N3(p)N4(p)〉,

(9)

• strong pessimistic

Vstrong_pes = 〈max(0, (M1(p) + M2(p) + M3(p) + M4(p) − 3)),
min(1, (N1(p) + N2(p) + N3(p) + N4(p)))〉. (10)

Therefore, for each p

Vstrong_pes(p) ≤ Vpes(p) ≤ Vless_pes(p) ≤ Vaver(p) ≤ Vless_opt(p) ≤ Vopt(p) ≤ Vstrong_opt(p).

The second, third, fourth and fifth inequalities from the above chain of inequalities are
obvious, while the validity of the first and the sixth inequalities follow from the inequality

max(0,
n

∑
i=1

ai − n + 1) ≤
n

∏
i=1

ai

for every a1, a2, . . . , an ∈ [0, 1], which is proved by induction.

2.2. Procedure for Assessment of Algorithms Quality Performance Implementing IFL

Introducing IFL in the assessment of the quality of GA performance requires that the
degrees of validity and non-validity are defined within two distinct intervals of model
parameter variation. One of these intervals, determined here as the “broad” range, is
based on referent data, available in the literature [31]. The other interval might be defined
applying certain criteria for range shrinking, for instance, using some evaluations of model
parameters based on the algorithms’ performance in the past, or might be obtained using
the PMPG procedure, developed by previous authors [7]. The IFL-based AAQP procedure,
used so far for the evaluation of a maximum of three GA/values of a GA parameter, is here
upgraded to handle the assessment of the quality performance of four different algorithms:

Step 1. For each of the investigated algorithms, performance of the number of runs in the
“broad” and “narrow” ranges of model parameters.

Step 2. For each of the investigated algorithms, evaluation of the average values of J, CPU
time and model parameters in the “broad” and “narrow” ranges.
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Step 3. For each of the investigated algorithms, evaluation of the degrees of validity and
non-validity, applying Formulas (2) and (3).

Step 4. For all model parameters, evaluation of strong optimistic (strong_opt), optimistic (opt),
less optimistic (less_opt), average (aver), less pessimistic (less_pes), pessimistic (pes) and
strong pessimistic (strong_pes) values for each of the four algorithms, applying the
developed for that aim Formulas (4)–(10).

Step 5. For each of the model parameters, assignment of the aforementioned values of
considered algorithms in “broad” and “narrow” ranges.

Step 6. Assessment of the quality of performance of considered algorithms on the basis of
the values, obtained in Step 5.

The stepwise procedure consistently performs all of the above listed six steps, with no
cycles or skipping any of the steps.

2.3. Multipopulation Genetic Algorithms

MGA is more natural than SGA since within MGA, a number of populations (also
subpopulations) evolve independently from one another over time. After a fixed number
of generations, a period called isolation time, some of the individuals migrate between the
subpopulations. The working principle of the standard MGA, namely MGA_SCM, can be
found in detail in [2,32].

Three modifications of MGA are the focus of this investigation. In all of them, the selection
is the last-performed operator. In two of modifications, crossover and mutation are performed
interchangeably, while in the third modification, the mutation operator is skipped. Thus the
resultant algorithms are denoted as MGA_CMS, MGA_MCS and MGA_CS.

3. Case Study of AAQP over Four MGA

The AAQP procedure is applied to parameter identification of S. cerevisiae fed-batch
cultivation using four types of MGA altogether. The experimental data of S. cerevisiae fed-
batch cultivation are obtained from the Institute of Technical Chemistry at the University
of Hannover, Germany, and the detailed description of process conditions is given in [1].

The mathematical model of a fed-batch cultivation of S. cerevisiae is commonly de-
scribed according to the mass balance [1], as follows:

dX
dt

=

(
µ2S

S
S + kS

+ µ2E
E

E + kE

)
X− F

V
X (11)

dS
dt

= − µ2S
YSX

S
S + kS

X +
F
V
(Sin − S) (12)

dE
dt

= − µ2E
YEX

E
E + kE

X− F
V

E (13)

dO2

dt
=

(
µ2E
YEX

E
E + kE

YOE −
µ2S
YSX

S
S + kS

YOS

)
X + kO2

L a(O∗2 −O2) (14)

dV
dt

= F (15)

where X is the biomass concentration, [g/L]; S is the substrate (glucose) concentration, [g/L];
E is the ethanol concentration, [g/L]; O2 is the dissolved oxygen concentration, [%]; O∗2 is
the saturation concentration of dissolved oxygen, [%]; F is the rate of feeding, [l/h]; V is the
volume of the bioreactor, [L]; kO2

L a is the volumetric oxygen transfer coefficient, [1/h]; Sin
is the initial glucose concentration, [g/L]; µ2S and µ2E are the maximum growth rates, of
substrate and ethanol, respectively [1/h]; kS and kE are the saturation constants, of substrate
and ethanol, respectively [g/L]; Yij is the yield coefficients, [g/g]; and all model parameters
fulfill the non-zero division requirement. The functions are continuous and differentiable.
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Mean square deviation between the experimental data Y = [X, S, E, O2] and the model
output Y* has been used as an optimization criterion:

J = ∑(Y−Y∗)2 → min (16)

Following the S. cerevisiae fed-batch cultivation model (11)–(16), 9 model parameters
were estimated, while consequently applying MGA_SCM, MGA_CMS, MGA_MCS and
MGA_CS. The parameter identification of the model was conducted in the Matlab 7 envi-
ronment utilizing the Genetic Algorithm Toolbox [33]. All computations were performed
using a PC Intel Pentium 4 (2.4 GHz).

Again, it is worth noting that this is the first time the procedure for quality assess-
ment of genetic algorithms’ performance has been performed over a total number of four
algorithms. Three modifications of MGA_SCM will be evaluated, in which the selection
is the last operator. As such, MGA_CMS, MGA_MCS and MGA_CS are the object of
investigation, together with the standard MGA_SCM.

The values of MGA parameters and operators have been thoroughly discussed and ac-
cepted according to previous authors’ investigations [5,11]. The quality of the performance
of the considered MGA has been evaluated before after applying the PMPG procedure [7].
For each of the algorithms considered here, 30 runs have been performed. Table 1 presents
the objective functions and levels of performance of the four types considered here of MGA
with respect to the PMPG procedure.

Table 2 presents the minimum, maximum and average values of each model parameter
only for the top levels, according to Table 1.

Following the PMPG procedure, the new boundaries of the model parameters for the
so-called “narrow” range are obtained in the following manner: The new minimum is lower
but still closer to the TL lowest value, and the new maximum is higher but still closest to
the TL highest value. Table 3 presents the “broad” boundaries according to [31] and new
boundaries proposed following the PMPG procedure for the investigated MGA. In addition,
IFL estimations, obtained by applying Formulas (2) and (3), are presented in Table 3.

Table 1. Performance of the four investigated types of MGA.

MGA J Performance Levels Average CPU Time, s

MGA_SCM
min J 0.0221

TL_LB 0.0221

98.96
TL_UB 0.0221

max J 0.0222
LL_LB 0.0222
LL_UB 0.0222

MGA_CMS
min J 0.0221

TL_LB 0.0221

281.56
TL_UB 0.0221

max J 0.0222
LL_LB 0.0222
LL_UB 0.0222

MGA_MCS
min J 0.0221

TL_LB 0.0221

272.22
TL_UB 0.0221

max J 0.0222
LL_LB 0.0222
LL_UB 0.0222

MGA_CS

min J 0.0221
TL_LB 0.0221

283.08

TL_UB 0.0223

aver J 0.224
ML_LB 0.0223
ML_UB 0.0225

max J 0.0227
LL_LB 0.0225
LL_UB 0.0227

Note: TL is the top level, ML—middle level, LL—low level, LB—lower boundary, UB—upper boundary.
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Table 2. Values of the model parameters for the top levels of investigated MGA.

MGA µ2S µ2E kS kE YSX YEX kO2
L a YOS YOE

MGA_SCM

min 0.90 0.12 0.13 0.79 0.39 1.54 61.13 473.49 228.87

max 0.94 0.14 0.15 0.80 0.42 1.93 118.42 921.28 809.90

avrg 0.92 0.13 0.15 0.79 0.41 1.72 92.78 656.60 508.50

MGA_CMS

min 0.91 0.12 0.14 0.79 0.40 1.57 76.66 604.33 95.68

max 0.94 0.14 0.15 0.8 0.42 1.87 126.22 995.81 752.84

avrg 0.93 0.13 0.15 0.79 0.41 1.71 93.65 743.07 383.28

MGA_MCS

min 0.90 0.12 0.14 0.79 0.40 1.65 54.21 435.15 272.44

max 0.94 0.14 0.15 0.80 0.41 1.81 90.71 717.83 768.38

avrg 0.92 0.13 0.15 0.79 0.41 1.74 72.83 574.48 509.14

MGA_CS

min 0.93 0.09 0.13 0.78 0.40 1.23 45.48 356.19 228.11

max 0.97 0.13 0.13 0.79 0.42 1.76 78.17 628.82 864.93

avrg 0.94 0.11 0.13 0.79 0.41 1.54 64.81 517.23 565.17

Table 3. Boundaries of model parameters for investigated MGA.

MGA µ2S µ2E kS kE YSX YEX kO2
L a YOS YOE

M
G

A
_S

C
M before PMPG

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001
UB 1 0.15 0.15 0.8 10 10 300 1000 1000

after PMPG
LB 0.9 0.12 0.14 0.7 0.35 1.5 80 650 220
UB 0.92 0.15 0.15 0.8 0.45 2 100 800 820

degree of validity (DV) of p M1(p) 0.9 0.8 0.93 0.88 0.04 0.15 0.27 0.65 0.22
degree of non-validity (DNV) of p N1(p) 0.08 0 0 0 0.96 0.8 0.67 0.2 0.18

M
G

A
_C

M
S before PMPG

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001
UB 1 0.15 0.15 0.8 10 10 300 1000 1000

after PMPG
LB 0.91 0.11 0.14 0.75 0.4 1.5 70 600 90
UB 0.94 0.14 0.15 0.8 0.42 1.9 130 1000 760

DV of p M2(p) 0.91 0.73 0.93 0.94 0.04 0.15 0.23 0.60 0.09
DNV of p N2(p) 0.06 0.07 0.00 0.00 0.96 0.81 0.57 0 0.24

M
G

A
_M

C
S before PMPG

LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001
UB 1 0.15 0.15 0.8 10 10 300 1000 1000

after PMPG
LB 0.9 0.12 0.14 0.75 0.4 1.6 50 420 260
UB 0.94 0.14 0.15 0.8 0.42 1.9 95 720 770

DV of p M3(p) 0.9 0.8 0.93 0.94 0.04 0.16 0.17 0.42 0.26
DNV of p N3(p) 0.06 0.07 0 0 0.96 0.81 0.68 0.28 0.23

M
G

A
_C

S before PMPG
LB 0.9 0.05 0.08 0.5 0.3 1 0.001 0.001 0.001
UB 1 0.15 0.15 0.8 10 10 300 1000 1000

after PMPG
LB 0.92 0.09 0.12 0.75 0.4 1.2 40 350 220
UB 0.97 0.13 0.14 0.8 0.43 1.8 80 630 870

DV of p M4(p) 0.92 0.6 0.8 0.94 0.04 0.12 0.13 0.35 0.22
DNV of p N4(p) 0.03 0.13 0.07 0 0.96 0.82 0.73 0.37 0.13

Employing the AAQP procedure, outlined in Section 2.2, seven prognoses varying
from strongly optimistic to strongly pessimistic are constructed for the performance of the
investigated MGA, based on IFL estimations and Formulas (2)–(10). Table 4 presents the
lower and upper boundaries for the identified parameters for each of the considered here
four types of MGA.
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Table 4. Evaluated prognoses for MGA performance.

µ2S µ2E kS kE YSX YEX kO2
L a YOS YOE

LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB

Vstrong_opt 1.00 1.00 0.15 0.15 0.15 0.15 0.80 0.80 1.55 1.72 5.80 7.60 240.00 300.00 1000.0 1000.00 790.00 1000.0

Vopt 1.00 1.00 0.15 0.15 0.15 0.15 0.80 0.80 1.46 1.61 4.66 5.70 178.19 243.21 947.22 1000.00 590.30 998.71

V less_opt 0.92 0.97 0.12 0.15 0.14 0.15 0.75 0.80 0.40 0.45 1.60 2.00 80.00 130.00 650.00 1000.00 260.00 870.00

Vaver 0.91 0.94 0.11 0.14 0.14 0.15 0.74 0.80 0.39 0.43 1.45 1.90 60.00 101.25 505.00 787.50 197.50 805.00

V less_pes 0.90 0.92 0.09 0.13 0.12 0.14 0.70 0.80 0.35 0.42 1.20 1.80 40.00 80.00 350.00 630.00 90.00 760.00

Vpes 0.68 0.79 0.04 0.11 0.10 0.14 0.58 0.80 0.00 0.00 0.00 0.01 0.41 3.66 57.33 362.88 1.13 417.48

Vstrong_pes 0.63 0.77 0.00 0.11 0.09 0.14 0.55 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 150.00 0.00 220.00

The four types of MGA investigated here were again applied for parameter identi-
fication of fed-batch cultivation of S. cerevisiae using the boundaries proposed in Table 3.
Again, 30 runs of the algorithms were conducted to secure reliable results. In Table 5, we
present the average values of J, CPU time and the nine model parameters when MGA_SCM,
MGA_CMS, MGA_MCS and MGA_CS were applied, prior to and after the implementation
of PMPG.

Table 5. Model parameters’ identification.

Parameter

MGA_SCM MGA_CMS MGA_MCS MGA_CS

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

J 0.0221 0.0220 0.0221 0.0221 0.0221 0.0221 0.0222 0.0222

CPU time, s 98.96 86.52 296.45 270.95 261.34 245.42 284.81 254.22

µ2S, 1/h 0.91 0.9 0.92 0.93 0.90 0.91 0.97 0.93

µ2E, 1/h 0.12 0.14 0.12 0.13 0.13 0.13 0.13 0.12

kS, g/L 0.15 0.15 0.15 0.15 0.15 0.15 0.13 0.13

kE, g/L 0.8 0.8 0.80 0.80 0.80 0.80 0.79 0.78

YSX, g/g 0.41 0.4 0.42 0.40 0.41 0.41 0.41 0.40

YEX, g/g 1.62 1.93 1.57 1.81 1.77 1.81 1.76 1.64

kO2
L a, 1/h 96.34 88.73 76.66 62.59 84.41 97.14 70.79 78.17

YOS, g/g 768.61 696.56 604.33 500.75 673.20 770.73 566.69 628.82

YOE, g/g 809.9 291.42 601.03 454.40 462.89 500.37 864.93 228.11

Again, it is noteworthy that for all four types of MGA investigated here, running in
the “narrow” range leads to an expected decrease of the CPU time, while preserving the
high accuracy of the model in all of the cases. Additionally, specifically running MGA_CS
in the “narrow” range reduces the CPU time by about 1.12 times compared to the “broad”
range. The results obtained after the PMPG procedure score the highest accuracy, thus
demonstrating the procedure’s effectiveness across all four investigated types of MGA.

Table 6 presents the assigned estimations for all model parameters of the investigated
MGA before and after PMPG application, with respect to the data in Table 4.

Table 6 shows no particularly strong_pes and pes prognoses, thus concluding all in-
vestigated MGA as highly reliable. The demonstrated leader is MGA_SCM before PMPG,
featuring three strong_opt prognoses, five less_opt prognoses and one aver prognosis. This is
the only algorithm with three strong_opt prognoses, followed by five others exhibiting two
strong_opt prognoses each. Among them, there are three algorithms with very similar per-
formances: MGA_CMS after PMPG with two strong_opt prognoses, six less_opt prognoses
and one aver prognosis, and two other algorithms, MGA_SCM and MGA_MCS, both after
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PMPG, with less_pes instead of the aver prognosis. All four cases will be considered the
most reliable ones since they exhibit the highest degree of accuracy (the lowest achieved
values of J). Only one algorithm is distinguished from the rest by its evidently worse
prognoses, and this is MGA_CS. If CPU time is considered alone, the only undisputable
leader is MGA_SCM. Comparing MGA_SCM before and after PMPG, the appearance of
MGA_SCM before PMPG is evaluated with one additional strong_opt prognosis versus one
more less_opt prognosis in the MGA_SCM after PMPG, and one aver versus one less_pes
prognosis, respectively. Therefore, it is up to the decision maker to choose either the higher
evaluated but slightly slower MGA_SCM before PMPG, or the slightly lower evaluated,
but overall fastest MGA_SCM after PMPG.

Table 6. Estimations of model parameter.

MGA_SCM MGA_CMS MGA_MCS MGA_CS

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

Before
PMPG

After
PMPG

strong_opt 3 2 2 2 2 2 1 0

opt 0 0 1 0 0 0 0 0

less_opt 5 6 3 6 5 6 5 5

aver 1 0 3 1 1 0 2 3

less_pes 0 1 0 0 1 1 1 1

pes 0 0 0 0 0 0 0 0

strong_pes 0 0 0 0 0 0 0 0

Thus, based on the implementation of the AAQP procedure for the assessment of four
MGAs, an undisputable leader has been distinguished, namely MGA_SCM. As it has been
just mentioned, it is the user’s choice to decide which one of the algorithms to apply—the
one before PMPG for a slightly higher accuracy at the expense of more CPU time, or the
one after PMPG, for expeditiousness in the conditions of a slightly worse prognosis.

Thus, the application of the AAQP procedure presented here demonstrates its effective-
ness as an appropriate and attractive tool in evaluating the performance of different algorithms.

4. Discussion

In this investigation, intuitionistic fuzzy logic has been applied as a main tool when
assessing the quality of different algorithms performance for parameter estimation of a
fed-batch fermentation process model. For that purpose, a step-wise procedure has been
applied here for quality assessment of three modifications of the standard MGA_SCM,
namely MGA_CMS, MGA_MCS and MGA_CS, in comparison to the standard MGA_SCM.
These algorithms have been investigated for the purposes of parameter identification
of S. cerevisiae fed-batch cultivation. Aiming to retain the promising results achieved in
previous legs of this research, namely less convergence time at preserved model accuracy,
the AAQP procedure overbuilds the results obtained after the application of the recently
developed PMPG procedure. After implementing IFL, first to obtain intuitionistic fuzzy
estimations of the model parameters and then to construct different prognoses (seven in
this investigation), the results for the four investigated MGA variants have been analyzed.
As a result of the application of both PMPG and AAQP procedures for the assessment
of the four algorithms, MGA_SCM after PMPG has been distinguished as the fastest one
although not the top ranked by the AAQP procedure, while MGA_SCM before PMPG
has been estimated the top in terms of AAQP, although not the fastest one. Among the
distinguished two “leaders”, MGA_SCM in the “narrow” range is 1.12 times faster than
MGA_SCM in the “broad” range, preserving (and even slightly improving) the highest
achieved values of model accuracy.
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The results of the presented investigation confirm the following conclusions:
(1) All modifications of MGA considered here are effective, and while MGA_SCM has

been chosen as the most reliable one, quite similar results obtained support the workability
and effectiveness of all three modifications of MGA investigated here, with the selection
operator applied after the mutation and crossover.

(2) The applied procedure for purposeful model parameter genesis is effective, which
in all types of MGA considered here to an expected decrease in the CPU time while
preserving the model accuracy.

(3) The AAQP procedure has been effectively upgraded here for the first time to
handle the concurrent assessment of the performance quality of four algorithms.

5. Conclusions

In this study, the step-wise “cross-evaluation” procedure that aims at assessment of
different optimization algorithms and previously applied to compare the effectiveness of
two or three algorithms has been significantly upgraded to evaluate the performance of four
algorithms. The “cross-evaluation” of four different MGA presented here confirms both
the workability and effectiveness of all three modifications of MGA investigated here, the
effectiveness of the applied procedure for purposeful model parameter genesis, as well as
the workability of IFL estimations to assist in algorithms’ quality performance assessment.
The proposed cross-evaluation procedure has been executed to compare four different
types of MGA, exemplified with the parameter identification of a S. cerevisiae fed-batch
fermentation process model. The upgraded procedure presented here depends neither on
the objects to be assessed, nor on the type of parameters to be evaluated. In general, the
AAQP may be applied to n objects, however at the expense of research complexity. As such,
the proposed procedure can be considered as a multipurpose one—an appropriate tool for
reliable assessment of other optimization algorithms, for their respective parameters, as
well as for other optimization tasks. As such, the AAQP procedure based on intuitionistic
fuzzy logic for “cross-evaluation” of different algorithms/objects/parameters is a very
promising tool from both mathematical and engineering perspectives.
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