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Abstract: Cryptology, since its advent as an art, art of secret writing, has slowly evolved and changed,
above all since the middle of the last century. It has gone on to obtain a more solid rank as an applied
mathematical science. We want to propose some annotations in this regard in this paper. To do this,
and after reviewing the broad spectrum of methods and systems throughout history, and from the
traditional classification, we offer a reordering in a more compact and complete way by placing
the cryptographic diversity from the algebraic binary relations. This foundation of cryptological
operations from the principles of algebra is enriched by adding what we call pre-cryptological
operations which we show as a necessary complement to the entire structure of cryptology. From
this framework, we believe that it is improved the diversity of questions related to the meaning, the
fundamentals, the statute itself, and the possibilities of cryptological science.
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1. Introduction

Cryptology is a science that is usually explained based on its historical development.
In the study of cryptography, its methods and systems, the various procedures and tech-
niques, are explained: the Greek Skytalé, the substitution of Aeneas, the methods of the
statesman and military general Gaius Iulius Caesar (100 BC–44 BC) and the emperor
Gaius Iulius Caesar Octavianus Augustus (63 BC-14) [1], the polyalphabetic substitution
of Johannes Heidenberg, OSB, known as Tritemius (1462–1516) [2], the Girolamo Car-
dano grille (1501–1576) [3] (pp. 95–97), other transposition ciphers (rows-columns, series,
groups) [4] (pp. 102–111), and diversity of substitution methods, such as Thomas Jeffer-
son (1743–1826) [5] (pp. 51–52), Charles Wheatstone (1802–1875) [5] (pp. 47–48), Edouard
Fleissner (1825–1888) [5] (pp. 49–51), the matrix polygraphic encryption of Lester S. Hill
(1891–1961) [3] (pp. 80–92) or the Playfair polygramic encryption of Charles Wheatstone
himself [6] (pp. 100–102). Mention should also be made of the substitution by homo-
phones [4] (pp. 44–50), a system to break the natural statistics of language that maintain
the simplest transpositions and substitutions, as the polyalphabetic substitution systems
also tried to do [4] (pp. 51–76). Throughout history, to improve the systems and hinder
their cryptanalysis, some of these methods have been unified and applied together, as in
the nomenclators, especially those used with profusion from the Renaissance to the 20th
century [7] (pp. 107–119, 150–161); or several substitutions or transpositions, and even
transpositions and substitutions jointly, as in ADFGVX encryption [3] (pp. 53–54).

The development of mechanical systems of wheels and grids since the Renaissance [8]
(pp. 109–148), from the simplest, such as that of Leon Battista Alberti (1404–1472) [7] (pp. 125–
130), and following among others, with the model of Gabriel de Collange (ca. 1521–1572) [5]
(pp. 43–44), led to the construction of more complex concentric structures: the Edouard Fleiss-
ner or Charles Wheatstone variants [5] (pp. 47–51), along with the use of disc transposition,
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such as the Thomas Jefferson system [5] (pp. 51–52). From there, to the structure of discs
chained sequentially, with the rotor machines [3] (pp. 110–126, 145–156) [9,10], from the first
one of Edward Hugh Hebern (1869–1952), through those of Boris Hagelin (1892–1983) and
the Enigma of Arthur Scherbius (1878–1929) of the second decade of the 20th century, or the
Red-91-shiki injiki (Japan, 1930s), Purple-97-Shiki obun inji-iki (Japan, 1940s) and SIGABA-
ECM Mark II (USA, 1940s), among others; or those manufactured with thermionic or vacuum
valves, and ferrite cores such as ROMULUS (USA, 1950–1960) [11], to reach electronic devices
with transistors and modern computer technology.

It was also the 20th century when the perfect secret system of Gilbert Sandford Vernam
(1890–1960) appeared, specifically in 1917, although previously invented by Frank Miller
(1842–1925) [12] (pp. 103–117). Then, in 1976 the DES encryption (Data Encryption Standard,
FIPS PUB 46–3) was adopted, whose main developer was Horst Feistel (1915–1990) [6]
(pp. 169–174), predecessor encryption of the current AES (Advanced Encryption Standard,
FIPS PUB 197), standard symmetric encryption from the year 2002, by Joan Daemen (1965-)
and Vincent Rijmen (1970-) [6] (pp. 175–178).

On the other hand, and at the same time, an unexpected event happened at the be-
ginning of the last quarter of the 20th century, because in 1976 Whitfield Diffie (1944-) and
Martin Hellman (1945-) in their paper “New Directions in Cryptography” [13] announced
the discovery of asymmetric or public key cryptography, aspects also developed indepen-
dently by Ralph Merkle (1952-) in “Secrecy, Authentication, and Public Key Systems” [14]
in 1979. Until this moment all cryptography had always been symmetric, where the en-
cryption and decryption key was the same. As of now, with this new type of cryptography,
both keys are different although they are related, but one key cannot be obtained from the
other through simple computational methods. It is the emergence of systems such as the
RSA in 1978, by Ron Rivest (1947-), Adi Shamir (1952-) and Leonard Adleman (1945-) [15]
(pp. 285–291); that of Taher Elgamal (1955-) in 1985 [15] (pp. 294–298), or that of Elliptic
Curves in 1985–1987 by Victor S. Miller (1947-) and Neal Koblitz (1948-) [16]. However,
asymmetric cryptography was secretly developed from 1944 and finally perfected in 1973
by James Henry Ellis (1924–1997), Clifford Cocks (1950-), and Malcolm Williamson (1950-),
of the British Government Communications Headquarters (GCHQ), as recorded in the
documents that were made public in 1997 [8] (pp. 272–291).

This itinerary, especially on asymmetric cryptography, capable of achieving authenti-
cation, is being extended towards the so-called post-quantum cryptography, secure against
attacks by quantum machines. This new modality does not base its security on the prob-
lems of mathematical complexity as the aforementioned ones did (RSA, Elgamal, Elliptic
Curves, and the like), for the use of the algorithm of Peter Shor (1959-), as NTRUEncrypt,
by Jeffrey Hoffstein (1953-), Jill Pipher (1955-), Joseph H. Silverman (1955-), or the complete
homomorphic encryption of Craig Gentry (1973-), and its subsequent variants, and possibly,
the next cryptography to come [17–19].

However, this historical approach, being very enriching and instructive, needs to
be complemented, we believe, with some foundations and a mathematical structure that
supports it and shows cryptology as a fully-fledged branch within algebra. Something
which, on the other hand, has been done and achieved in recent decades.

This work is from the cryptological field, but as will be seen in the historical sections,
sometimes we will also find steganographic uses along with cryptographic ones. From
the work of Shannon [20], we consider the concept of secrecy in both its steganographic
and cryptographic sense (mainly in the latter for the object of the work) since we mention
both in this study. Thus, we speak of secret insofar as concealment system, in which the
existence of the message is concealed from the enemy; and also, and more commonly, in
the sense that the message is concealed by cipher, but its existence is known, not hidden
from the enemy or attacker.

We indicate that the principles of Kerckhoffs [21] do not alter the classification offered
here, despite having considered both cryptography and steganography, although they are
always desirable to be fulfilled in any secret system, if possible.
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It is worth mentioning that from Shannon’s theory we can say that there is perfect se-
crecy if the ciphertext and plaintext are statistically independent. Here, a passive adversary
can learn nothing about the plaintext from the ciphertext, except possibly its length, even
with infinite computational resources. To achieve this, the key is at least as long as the mes-
sage. However, with keys shorter than the message, which is usual, it is expected that at least
the so-called semantic security is achieved, expressed as a polynomially bounded version of
perfect secrecy, whereby a passive adversary with polynomially bounded computational
resources can learn nothing about the plaintext from the ciphertext [15] (pp. 42–43, 307).

2. Our Purpose: The Algebraic Foundation of Cryptology

Cryptology began as an art rather than a science, and it has been especially so since
the middle of the 20th century when it reached a scientific-technical status, located in the
broad field of applied mathematical science.

This maturity was reached with the work of Claude E. Shannon (1916–2001) and his
paper “Communication Theory of Secrecy Systems” in 1949 [20], preceded the previous
year by “A Mathematical Theory of Communication” [22]. Without trying to be exhaustive
in the list of authors to mention, as this is not our goal, we would like to highlight the
efforts in this direction of Charles Babbage (1791–1871) [7] (pp. 204–207), Maurits de
Vries (1876–1943) [7] (p. 737), Gaëtan H. Léon de Viaris (1847–1901) [7] (pp. 240–242), or
the aforementioned Lester S. Hill [7] (p. 739), and around the same years as Shannon’s
publication [20,22], the works of Abraham Adrian Albert (1905–1972) [7] (pp. 410, 677,
737, 739) [23] and William F. Friedman (1891–1969) [24–27]. As Abraham A. Albert stated
in a regional meeting of the American Mathematical Society in 1941, it would not be an
exaggeration to state that abstract cryptography is identical to abstract mathematics [23].

These foundations are what the later cryptological developments are based on, and which
we find in the different manuals and main bibliographic works in this discipline [3,7,15,24–31].
In these works, we find a very successful attempt at mathematization and formalization,
with multiple algebraic components and structuring that speaks of functions, bijections,
injective and surjective maps, or even permutations, as well as compositions of functions,
and next to it, endomorphisms, which also deals with the encoding of several elements at
the same time, as well as matrix expressions for various systems. However, we believe that
we need a greater systematization and precision that fully and comprehensively exposes
all cryptographic systems and methods. With that some new elements should be offered
that help us to better understand the entire field of cryptographic fundamentals.

We hope to shed light on this area with this paper. For this, we will begin by systemati-
cally reviewing, as a first approximation, the various cryptographic systems used throughout
history, which in the next section will help us to show a complete and new organization of
them, this time, already compact and complete.

Finally, based on the new proposal, we will gather some clarifications and explanations
regarding the perfect cipher and the ideal cipher, as well as the distinction between block
and stream ciphers, on the one hand, and the division between symmetric and asymmetric
encryption on the other.

3. Cryptographic Methods and Systems throughout History

We will compile the various forms of encryption that have emerged throughout history
in a synthetic way, giving a first structuring that will serve as an organized classification and
that we will subsequently modify to a more standardized and complete systematization.

The main classification of cryptography, which is the usual categorization, is that
which divides it into methods of transposition and substitution.

3.1. Cryptographic Methods
3.1.1. Transposition

Throughout history, the following, among others, have been applied. These are the
main ones, and can give us a broad idea of the diversity of use of this method.
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• Inverse or reversed. The text is written starting with the last letter until it reaches the
first, letter by letter. Sometimes the syllables, or the words, are reversed [5] (p. 23).

• Boustrophedon. A simple linguistic method in which the direction of writing sometimes
changes alternately (left–right–left–right–. . .). In others, it is even done with specular
writing in alternate sentences [32] (pp. 140–141).

• Temurah. This is a method of the Kabbalah or Jewish mysticism consisting of the
rearrangements of the letters in each of the words in the text, that is, word-by-word
transpositions [7] (p. 92).

• Geometric. These make a reading of the text arranged in geometric forms, following
horizontal–vertical two-dimensional placements, according to columns, in zigzag, us-
ing two-dimensional tables, according to gnomons or other geometric forms, systems
among which we have the Lacedaemonian Skytalé [5] (pp. 22–28).

• Disjoint partitions or series. In this case, the text is divided into disjoint sets; for example,
letters of order as prime number, letters of order as non-prime even number, and
finally, the odd non-prime letters—and are rearranged by placing the elements of the
plaintext according to those sequences [4] (p. 104).

• Grille. This method was invented by the physicist and mathematician Girolamo Car-
dano, consisting of a system of the orderly placement of letters (or even syllables
or words) according to a lattice, which was already discerned by Jacobus Silvestri
(ca. XV–XVI) and Ibn al-Durayhim (1312–1361), and was perfected in the 18th–19th
century. In short, it is a distribution of the grams or elements in a regular n-polygonal
figure of elements after a placement in N2 inside, and then, a symmetrical vector scan is
performed n times until the polygon and all its elements are finished [3] (pp. 95–97) [7]
(pp. 144–145, 180, 308–309). Sometimes to facilitate the construction of the grid or
lattice, a certain agreed method was followed with the use of a keyword previously
replaced by numerals that would help to place all the letters, sequentially arranged, of
the message, such as Colonel Roche’s method [33] (pp. 117–118, 123–125).

• Groups of permutations. The message is divided into small blocks, n-grams, of equal
length, or not. Each of these blocks is subjected to the same permutation of its elements
throughout the text (sometimes the permutation could be changed throughout the
message). An example is Cardinal Richelieu’s encryption (1585–1642) [5] (pp. 24–25).

• Anagram. It is the reordering of letters in a phrase or word, sometimes without a clear
meaning, to obtain a new expression of similar semantics or not, such as the examples
we have of the correspondence of Galileo Galilei (1564–1642), who in a letter dated
1610 sent the following message to Johannes Kepler (1571–1630): “SMAISMRMILME-
POETALEVMIBVNENVGTTAVRIAS”, which Kepler managed to decipher as “salve,
vmbistinevm geminatvm martia proles” (“hail, fiery twins, progeny of Mars”), making
Kepler think that Galileo had discovered two satellites around Mars. However, the
initial solution generated by Galileo was “altissimvm planetam tergeminvm observavi”
(“I observed that the highest planet was triple”), referring to Saturn, which he seemed
to visualize with two satellites, unable to see that it was its rings. In the most compli-
cated case of the anagram, only the cast of times of each of the letters appears, with no
more information [3] (pp. 102–105).

3.1.2. Substitution

The greatest diversity of systems has occurred in the substitution over time, offering a
very wide range of ciphers, which we can even subdivide into large families.

Monoalphabetic

In these systems, the same element of the message or plaintext is replaced by another
element, but always the same element, in the encrypted set.

• Monogramic. It is the substitution of one gram, 1-g, or origin element for another (or
others, n-grams) different from the destination set and always for the same. The most
common throughout history are as follows.
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– Rebus, acrophony, logogram, ideogram, pictogram. They are iconic and hieroglyphic
forms of diverse substitutions. Thus, the rebus is the correspondence of ideograms
or pictograms in which the first syllable or letter gives its name [32] (pp. 487–503);
by acrophony, the graphemes of a language acquire the name of an everyday
object of similar appearance and denomination such that its first letter is just
that referred to in the alphabet, an aspect that we find in the emergence of the
graphemes we use in the West [7] (pp. 71–73); in the logogram, a single symbol
has the full meaning of a concept or object [7] (pp. 75–76); the ideogram collects
unconventional signs, with a relationship between the sign and the referent, and
linguistically conditioned [34] (pp. 30–31); the pictogram is the iconic figuration
of the object or concept it represents [32] (pp. 487–503).

– Reverted or Atbash. Substitution of Semitic origin that changes each letter of the
Hebrew alphabet, which we will call ℵ, in the corresponding one according to
the expression x′ = Card(ℵ)− x, in which Card(ℵ) = 22, in the manner of an
inverse or specular image with the separation axis on half of the alphabet [7]
(pp. 76–78).

– Albam. This system applies a partition into two groups of Card(ℵ)/2 elements
on the Hebrew alphabet and replaces each letter according to the expression
x′ = x + Card(ℵ)/2 mod Card(ℵ) [7] (pp. 78–79).

– Caesar, Augustus, and other affine forms. Here there is a shift of the letter of the plain-
text by the substitution letter 3 positions, such as the Gaius Iulius Caesar system,
or only 1 shift, as the historically later system of Gaius Iulius Caesar Octavianus
Augustus. Thus, the substitutions follow the forms x′ = x + 3 mod Card(A), and
x′ = x + 1 mod Card(A), or generally, in their affine form, as x′ = ax + b mod n,
A being the set of alphabetic elements, and a, b and n integers [4] (pp. 29–43).

– Letter (vowel or consonant) preceding, next to or adjacent ±i positions. These are substi-
tutions that we find in some medieval manuscripts, in which certain letters, such
as vowels, or consonants (sometimes not all), could be replaced by the next letter
in the alphabet, or the preceding one, or by the one at certain distance from it in an
ordered alphabet. It is, therefore, a partial affine encryption, applied to only some
elements of the message [35] (p. 4).

– With key-word or key-phrase, pangram or random. All of these are methods of compli-
cating the system of replacing the original alphabetic elements with the encrypted
ones, making the correspondences, the binary relations, between origin and desti-
nation elements as random as possible [36] (pp. 76–79, 98).

– Polybios. Alphabetical square system 5× 5 of substitution of monograms in bi-
grams, devised by this Greek historian (ca. 200 BC–118 BC) [1] (pp. 147–148).

– By gender, type, or semantic groups on each letter. Generally, short messages undergo
the total or partial substitution of letters by a series of elements of a semantic
set, such as the names of birds, planets, etc., sometimes pictorially, as we already
have in Ibn al-Durayhim’s work. As we can see, it is a substitution of 1-g (letter)
to n-grams (words of different lengths) [7] (pp. 94–98).

– In general, the substitution of 1-g to {1, 2, 3, . . . }-grams. For example, the one used
by the Soviet NKVD, in which each letter or 1-g symbol had the option of 1-g or
2-g [7] (pp. 641, 650).

• Bigramic (2-g to 2-g), and in general, n-gramic to n-gramic. Giambattista della Porta
(1535–1615) was the inventor of the 2-g monoalphabetic substitution system to 2-g [2]
(pp. 291–292), a scheme from which the generalization of n-grams to n-grams is
possible, as we find in various nomenclators or the Playfair system [6] (pp. 100–102)
or the matrix system of Lester S. Hill [3] (pp. 80–92).

• {1, 2, 3, . . . }-gramic to {1, 2, 3, . . . }-gramic. It is the case of maximum generalization, in
which the set of departure can have any length of grams and the destination set can
also have different lengths, always replacing the same origin block or n-gram with
the same n-gram destination.
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As an example, we can highlight the codebooks and dictionaries, which we will see in
a later section for their particular historical importance [7] (pp. XVI, XVII, 177).
Another fascinating example is the use of the translation of a message from one
language to another, which apart from the homophonic and polyphonic diversity
present, due to the freedom existing in the translations, we can place here, and that,
in the case of it being a very little known language, the language for encryption, can
be very difficult cryptanalysis in the sending of messages, especially audio messages,
as happened with the language of the Navajo Indians in World War II by the U.S.A
codetalkers [7] (p. 550).

Polialphabetic

In this system, the same element of the message is replaced by different elements in
the encryption set, depending on the key that is being assigned.

• Monogramic. Each origin 1-g is replaced by the destination element of the alphabet
that corresponds in each case.
Leon Battista Alberti in the 15th century created the first known polyalphabetic sub-
stitution cipher [7] (pp. 125–130). He used a mechanical system with two encryption
disks with the same center. After the encryption of several words, the alphabet was
changed, having previously agreed on the opposite letters of both discs at the be-
ginning, and indicating the next alphabet change by inserting the letter of the new
correspondence into the encrypted message, in the text, marking the change with
a capital letter, an aspect that can be masked in a second information, as a secret
key, therefore through the pseudo-randomness of these changes it becomes safer
than the historically later polyalphabetic modalities of Tritemius, Belasso, della Porta
or Vigenère.
In this manner, Johannes Heidenberg, O.S.B., also known as Tritemius, would create
the so-called “tabula recta” or “flat board”, with 24 alphabets, sequentially ciphering
and changing the alphabet (that is, taking the next letter of the key) after each letter of
the plaintext [7] (pp. 130–137). Giovan Battista Belasso (1505-ca. 1565) eliminated the
rigidity of the sequentiality of the alphabet from the “tabula recta”, thus providing
the lateral key, the reciprocal key, the agreed verse key, the word key, meaningful or
not, the irregular or messy key, the syllabic and the rotational key [7] (p. 137). On
the other hand, Blaise de Vigenère (1523–1596), as a compiler of previous works and
without improving the previous forms, used words, phrases, verses, or a progressive
use of a key [7] (pp. 145–150), aspects that Giambattista della Porta also spread [7]
(pp. 137–143).
Its generalization would be the case of the polyalphabetic substitution of 1-g to {1, 2,
3, . . . }-grams.
Let’s see some of its variants:

– Progressive or sequential by letters. When enciphering each letter of the original
text, the following alphabet is used consecutively according to the sequence of
the letters of the alphabet, a method we have seen with the “tabula recta” of
Tritemius [7] (pp. 130–137).

– Sequential by blocks. The alphabet is not changed except when encrypting several
letters, maybe one or several words, etc. Examples of this system are the original
of Alberti [7] (pp. 125–130), or the Phillips military cipher [37] (pp. 185–191), that
every five letters changes the replacement alphabet, or that of Wheatstone, that
by means of a mechanical system of two discs and two needles, when turning
a complete revolution, the longest needle that marks the encrypted letter, the
smaller needle marks the new alphabet to be taken, following a period system in
the manner of clockwise in its displacement [5] (pp. 47–48).

– Key-word or key-phrase. A word or literal sequence, a phrase, which is repeated,
serves as a key to encrypt all the plaintext. They are the majority of options that
we have seen with Belasso, Vigenère, or della Porta [7] (pp. 137–150).
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– Autokey. In this case, the key is originated from the material used, either from
the plaintext or from the encryption text. Cardano himself intuited the autoclave
form, albeit with errors, by placing the same clear text as the key, beginning with
each word to be encrypted. Belasso managed to improve it by encrypting the
first word with a Tritemius-type polyalphabetic system and subsequent words
by taking the previous word in its first letter as the beginning of the sequentiality
of the polyalphabets. Vigenère perfected it using an agreed prior letter, which
allowed subsequent stream decryption from the subsequent plaintext letter as
the next letter of the key, or even using the encrypted text [7] (pp. 143–147).

– Random. With Alberti himself, we have found randomness in his choice of keys,
although after encrypting several words. In this case, it is intended to do so
for each letter. In the key-interrupted mode, a sufficiently long keyword was
taken, which was cut in certain ways several times and subsequently joined
together again, allowing a certain diversity in the encrypted result, although
it ended up looking for a key as long as the plaintext, the so-called running-
key [37] (p. 143), although the best option was for the encryption key to be
completely random, aspects suggested by della Porta or Fredrik Gripenstierna
(1728–1804) [3] (pp. 131–132), offering maximum security. This is the case of the
Vernam encryption, the perfect substitution cipher [3] (pp. 141–171).

• Bigramic (2-g to 2-g), and in general, n-gramic to n-gramic. A different substitution
of a 2-g block to a 2-g block is obtained utilizing a key, such as the one found in the
Slidefair encryption [37] (p. 199).
It is clear that this system can be generalized in a polyalphabetic of n-grams to n-grams.

• {1, 2, 3, . . . }-gramic to {1, 2, 3, . . . }-gramic. It would be the case of maximum general-
ization, in which the initial set can have any length of grams and the elements of the
destination set can likewise have different lengths, with polyalphabetism depending
on the key used.

Homophonic

In this type of encryption of an element of the plain message, an element of the origin
set can be replaced by more than one element of the encryption destination set. It can
be applied to some elements or all of them, and with two or more destination elements
for each of the substitutions, even with the same or varied types of elements for each
homophony [3] (pp. 44–46) [5] (pp. 68–71, 94–106).

Because of its importance in history, it is worth noting that from 1401 we note the first
homophony case in the Mediterranean area of Christian influence, and in a more systematic
way than ever before, clearly seeking the security of encryption, in correspondence between
the court of Mantua, in Lombardia, and Simeone da Crema (ca. XIV–XV), with four possible
substitutions for the vowels {a, e, o, u} [7] (pp. 107–108).

However, before that, we find it used by Duke Rudolfs IV of Austria (1339–1365) in an
alphabet of pseudo-Chaldean or symbolic characters, a monoalphabetic substitution cipher
with homophony duplicated for five letters and triplicate for one letter [35] (pp. 11–13).
However, its first appearance seems to be in an anonymous work of the Abbasid caliphate
in the 10th century, applied to the two most common letters, with substitution of three
possible elements [36] (pp. 20–23, 62–64); reappearing in the 13th century in the first
cryptanalysis manual, the work of Alif al-Mutargim (1187–1268), applied to the blank
spaces between words [38] (p. 19).

Polyphonic

This has hardly ever been used, due to the ambiguity in decryption, since the same
letter in the destination may correspond to more than one different letter possible in the
origin set.



Mathematics 2021, 9, 2183 8 of 28

We can cite the case of the Bavarian abbey manuscript by Ellinger von Tegernsee
(ca. 978–1056), MS. Cheltenham 816, of the 11th century, where in addition to simple
substitutions it uses homophony and polyphony, transforming the vowels “a” and “e” into
the same letter, the letter “H” [35] (p. 5); a method that is also rarely used, and for no
more than two or three elements of the cryptographer Matteo Argenti (1561–ca. 1610) [7]
(pp. 112–114).

Codebooks and Dictionaries

Systems that we have found since the end of the Middle Ages and that would become
increasingly wide and complex, up to the World Wars of the 20th century. They are systems
applied to letters, syllables, words, expressions, or phrases, that is, {1, 2, 3, . . . }-grams of
any length, almost always to specific n-gram encryption (which is usually numerical), of a
certain length. In short, and in general, it is a particular case of monoalphabetic substitution
of {1, 2, 3, . . . }-grams over {1, 2, 3, . . . }-grams.

They began to become longer and longer lists of words and expressions, the so-called
codebooks, and with the passage of time, and due to their becoming increasingly large and
unmanageable, especially in the decryption process, also forced to order these values in
the so-called code dictionaries [7] (pp. 177–186, 216–223, 314–324).

Nomenclator

This is the union of several already considered systems. It is a particular case of monoal-
phabetic, or even polyalphabetic, substitution in any of its forms, using letters, numbers, or
any possible symbol, perhaps with homophony, and with the use of codes or dictionaries.
It has been one of the most used systems from the Renaissance up to the middle of the 20th
century [7] (pp. XVII, 106–124, 160–192).

3.1.3. Arithmetic-Algebraic Operations

Having seen transposition and substitution, the two great traditional methods through-
out history, with their various subdivisions, modalities, and variations, sometimes, more or
less simple mathematical operations were also used. The realization of operations on the
elements supposes a previous substitution of the graphemic literals by numbers, on which
arithmetical operations (the basic operations of addition and product and their inverse) are
commonly applied, or more generally, the operation of the algebraic group. It would be,
therefore, more precisely, a case of internal composition between two types of substitution,
the first to numerals and the next to the new number resulting from the operation.

Let us look at the systems most commonly used over time.

• Atbah. This is a substitution of Semitic origin that starts from the numerical-alephatic
equality to give numerical values to the words (from the values of their letters), and
from these values to look for words that give similar sums, although with several
possibilities: thus, sometimes the figures and values of the units, tens and hundreds,
are obtained from the Hebrew alphabet, while on other occasions it considers the
base-22 (number of letters of the Hebrew alphabet), so that two letters are matched
and can be substituted between them if its sum gives that number. Alternatively one
letter can be substituted for two letters that give a sum similar to the previous one.
Examples of this type are not found in such recent dates as in the conformation of the
Hebrew biblical text, but in the Babylonian Talmud, from the 5th century of our era,
thus identifying both senses, in response to the search by the mystics of the Judaism
of solutions to divine and prophetic questions hidden in the sacred text [7] (pp. 79,
91–92). We find a similar system in the Muslim world in the Arabic “hisab al-gummal”
of 28 letters, with the assignment {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} [39,40]. Or the case not yet in Hebrew,
but in Greek, because we are on this occasion mentioning a Christian book written
in Greek, in which we find the number 666 (in almost all papyri and codices) or 616
(according to the P.Oxy. LVI 4499 papyrus), primarily in the text of Revelations, in the
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Christian New Testament, in chapters and verses 13, 17–18 and 15, 2, referring either
to emperor Nero (37–68) or emperor Domitianus (51–96) [41] (p. 13).

• Duplicate, triple, . . . , or divide and other forms of the product and its inverse operation.
This is a method based on the conversion of literal n-grams to numerical n-grams to
obtain other figures later and leave them as a mere numeral sequence, or hidden in
mercantile texts (thus using stereographic aspects), as we find, using the substitution
“hisab al-gummal”, in the work of Ibrahim ibn Dunaynir (1187–1229) [42] (pp. 22–25,
68–70).

• Subdivide the numerical values of each letter or gram into sum components (two, three, or
more) and other forms of additive operation. Possible forms within the Muslim “hisab
al-gummal” [39,40] and which we also found in the Armenian people in the 16th
century, being substitutions with homophony [7] (pp. 85–86).

• Any other integer or modular arithmetic operation on the numbers after the previous replace-
ment of the message grams. Among them, we can cite the related ciphers, of expression
Enc(m) = am + b mod n = c, already considered, generalizations of the Caesar and
Augustus substitutions; even the variant that we find with the encryption of Léopold
François Auvray (1819–1876), where after replacing the letters with numbers, both in
the clear text and in the key, both are added, which is still a polyalphabetic encryption,
although numerical [5] (pp. 64–65); or the most complex contemporary forms and that
we find in the asymmetric RSA, Elgamal or Elliptic Curve ciphers, among others [43]
(pp. 354–384), which we will mention later.

3.2. Other Methods

However, despite the usual assumption that we would have already exhausted the
spectrum of cryptological options having reviewed the transposition and substitution meth-
ods, as well as arithmetic-algebraic operations, we must indicate that other methods that
are not properly cryptological modes have been used throughout the history of cryptology.
We consider the ones which should be collated here, for reasons of completeness, which
we will clarify later in their foundation, and are the deletions and insertions of elements on
the original plaintext of the message.

Elimination

We mention the following as historical examples of elimination:

• Elimination of some vowels and/or consonants in the clear text of the message. A system
found in some European medieval codices, with the elimination of some vowels and
consonants [35] (p. 4), referred to as the Benedictine method by some authors [33]
(p. 138).

• Pruned text. This verbal ludic-linguistic type consists of taking smaller fragments of
words in a text, also becoming known from early dates [32] (pp. 316–329). Thus, we
find it in some Alexandrian magic papyrus of the 3rd and 4th centuries of our era, with
magic words of spells and enchantments such as “Abrakadabra”, “Abrakanarba”,
“Ablanatanalba” or “Abraxas”, generating new words with or without meaning by
eliminating one literal after another, minor and powerful forms of the same original
enchantment [44] (pp. 17, 31, 34, 68, 76, 89, 127, 248, 280, 320).

• Acronym. This is the composition of a new word from a set of words taking the first
of their letters or their first syllables. It is a linguistic-verbal figure well-known since
ancient times in examples such as “SPQR”, “Senatus Populusque Romanus” (“the
Senate and the Roman people”), or “INRI”, “Iesvs Nazarenvs Rex Ivdaeorvm” (“Jesus
Nazarene, King of the Jews”) [32] (pp. 249–254).

• In general, the elimination of any amount of {1, 2, 3, . . . }-grams. Here, we would have the
possibility of removing any number of letters or symbols under any rule, in short, {1,
2, 3, . . . }-grams.
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Insertion

We can cite the following as historical examples of insertion:

• Insertion of some letters or syllables in certain places of the clear text of the message. It is
the introduction of letters, sometimes syllables, in certain places of the message text,
sometimes in odd or even places, etc., with the consequent withdrawal of them for
the deciphered reading of these insertions; or the insertion into the first letter of the
first word, then in the second letter of the second word, and so on; and similar forms.
Some examples of this system can be found in the work “Steganographia” by the
cryptologist Tritemius [2,45] (pp. 283–287).

• Insertion of words and phrases in the clear text of the message. Examples of this method can
also be found in the work of Tritemius, in which words and even complete phrases
are introduced into the Latin texts of the original message [2] (pp. 283–287).

• Subliminal channel. This system can be seen as a method of inserting foreign words into
the text, generally applied to literal grams, since its purpose is to hide the meaning,
and therefore we can also see it as a steganographic method, placing the main text
message within another larger text [33] (pp. 228–232).
We can cite as an early example the comment by the Muslim cryptologist Ibrahim ibn
Dunaynir, or the systems of the generation of literary texts, in verse or prose, used
in later centuries, from which only certain lines had to be read, leaving the rest, to
understand the real meaning [42] (pp. 13–14, 44–49, 136–153).

• Notaricon and acrostic. Notaricon is a cabalistic method consisting of taking the first letter
of the respective words of an intelligible text, or sometimes without clear and precise
meaning, to obtain a new word, key to the meaning of the original text [7] (p. 92).
For its part, and generalizing to the aforementioned, acrostic is the composition that
arises by reading the first, or certain predetermined letter, sometimes two or three initial
letters or the first and last, of a word or phrase, of a set of words taken horizontally,
vertically, diagonally or in another specific geometric shape, obtaining another word
or text. The options as we can see are numerous, some with their names: thus, if
it consists of taking the first letter it is called acrostic, just like that; but if we select
the central letter it is called mesostic; or if it is the final one, we would talk about
teleostic; or if it consists of making a diagonal reading from the upper left we would
have the catadiagonostics; and if it is from the bottom left it would be an anadiagnostic;
and with the labyrinthine form we would have a kind of technopaegnion, almost a
calligram, in which the letters form an image according to the meaning of the text,
although without reaching it, staying in a magic square shape or close to a crossword
puzzle [32] (pp. 188–248).
These types of examples have been known since classic times, this being the way
the author of the Castilian work (from Spain) “La Celestina”, Fernando de Rojas (ca.
1470–1541) was hidden, or King Alfonso X of Spain (1221–1284) in “Las Siete Partidas”.

• Null insertion. This consists of inserting null or invalid values, that is, without semantic
meaning for the original message, into the text, once it has been encrypted, confusing
the cryptanalytic process. We found it cited early in the 10th century by an anonymous
author in the Muslim lands of the Abbasid caliphate [36] (pp. 9, 62–64, 77–87, 102–
104, 116), although from the Renaissance it was widely used until well into the 20th
century [7] (pp. 106–124, 333–337, 763).

• In general, the insertion of any amount of {1, 2, 3, . . . }-grams. This method can be general-
ized under any rule such as the introduction of any number of grams or symbols of
any type or length into the encrypted text or the message text.
A historical method that we have to mention here is that of the nullifiers, that appeared
in the year 1483, which we find in the Milanese ciphers: two symbols that converted
the sign in between without semantic utility, an aspect that will be developed in the
following nomenclators, sometimes using a single nullifier and applying it to the
preceding sign, the next one, or for all the signs until the end of the line; a system
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that would become habitual in the following two centuries in the chancelleries of the
European continent [7] (p. 111).

3.3. Composition of Methods

A detailed analysis of the different systems used throughout the broad history of
cryptology also allows us to find some more that cannot be framed or placed in the previous
ones, although they are their compositions: compositions of transpositions, substitutions,
mathematical operations, eliminations, insertions, and even a method that is outside of
cryptology, which would be steganography, although it has been part of the history of the
concealment of messages.

In this way, by the composition, we consider the successive application in any form,
order, and number of times, of the methods mentioned (including steganography) to
generate new systems; something that we had already found in Ismail al-Kindi (801–873)
when it refers to superencipherment, which is nothing more than the composition of two
or more simple methods [46] (pp. 32, 132, 142, 144).

We collate the most common below:

• Successive transpositions. The composition of transpositions is a transposition, although
looking for greater complexity and randomness in the encrypted text.
Among the best-known are the nihilistic cipher, based on transposing the columns
first and then the rows following the alphabetical order of two keywords, on a text
arranged in a quadrangular structure [37] (pp. 17–19). Or the encryption of Émile-
Arthur Soudart (ca. XIX-XX), which performs two successive transpositions utilizing
a system of wheels placed on an axis [5] (pp. 28–29).

• Successive substitutions. The composition of substitution ciphers is still a type of
substitution, although more complex, in principle.
These are methods that we have already found throughout history, for example, in
the numeral “tabula recta” [33] (pp. 152–153), using the Tritemius “tabula recta” sys-
tem and the subsequent substitution by numbers, or in the aforementioned Auvray
method [33] (pp. 157–158), literal substitution to numeral with subsequent polyalpha-
betic replacement. Others are very similar to these, such as the Gronsfeld system [37]
(pp. 117–118) or the nihilistic substitution cipher [7] (pp. 620–621), both a literal-
numeral substitution followed by a Vigenère polyalphabetic substitution.
Among all of them are also the rotor machines, such as the Enigma of Scherbius,
or those of Hagelin or Hebern, among others. These rotor machines, so popular in
World War II, and subsequent years, despite their complexity, are still progressive-key
polyalphabetic substitutions with a mixed alphabet and in general with a period
based on the number of alphabetic letters [7] (pp. 408–434) [8] (pp. 131–193).
Furthermore, the encryption of the naval Enigma variant should be noted here,
which applied a new replacement of 2-g to 2-g to the rotor machine’s encryption [3]
(pp. 61–63, 122).

• Substitutions and transpositions (and vice versa). These systems make a substitution on an
already transposed text, or a transposition to an encryption obtained by substitution,
or combinations of these two methods, as many times as desired.
In the work of Ibrahim ibn Dunaynir, we find the mention of systems that after a stage
of encryption as a monoalphabetic monographic substitution was subsequently per-
muted or transposed [42] (pp. 7–15, 28–36, 58, 76–82, 100–114, 126–140). Other famous
systems are the Thomas Jefferson cylinder [7] (pp. 192–195) or the Étienne Bazeries
system (1846–1931) [7] (pp. 247–250), where the transposition of the discs is used to
generate the disordered alphabets of the subsequent polyalphabetic substitution.
Another example is the encryption of André Lange (ca. XIX-XX), which performs a
vertical transposition in two lines of text and then replaces 2-g to 2-g [5] (p. 66).
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Another system, with n-grams, is the case of a cipher used in the American Civil War,
in which we find the transposition of words, having also replaced some of them, such
as certain names, objects, places, or times with other words, due to their strategic
importance [7] (pp. 225–226).
As examples used in World War I, we highlight the use of substitution and trans-
position composition in the famous German cipher of World War I, the ADFGVX
system [12] (pp. 188–206); and also the combined Vigenère encryption with trans-
position [7] (p. 304). Another example very similar to the latter is the Nicodemus
encryption, of the American Cryptogram Association, which after a Vigenère substi-
tution performs a transposition according to a numbering scheme obtained from the
key [7] (p. 763).
There is also, of course, the use of various compositions, such as the cipher of Félix
Marie Delastelle (1840–1902), the so-called bifid system (although he also offered a
trifid system), which is definitely a composition of three systems: It begins with a
substitution of the letters of the alphabet (1-g) to a pair (2-g) of coordinates (xi,yi)
according to a 5× 5 table disordered by a word key. Subsequently, a transposition is
applied by reading the odd elements (the xi coordinates) followed by the even ones
(yi coordinates) and then composing it with a new substitution (2-g to 1-g) in the
previous table [7] (pp. 242–244) [37] (p. 210).

• Substitutions and homophony. We have already found this composition of systems in
the nomenclators [7] (pp. XVII, 106–124, 160–192), the examples becoming numerous
over time.
We can complete more this composition of methods here, as well as citing the offi-
cial system of the Spanish Ministry of War of the late 19th century, composition of
polyalphabetic substitution and homophony [33] (pp. 189–208). Or that created by
the Spanish lieutenant Joaquín García Carmona (1857–1912), which is nothing but a
substitution of the syllabary of a language, that is, of 1-g, 2-g, 3-g and 4-g (options of
the syllables of the Spanish language), and for some more common with homophony,
and substitution by numerals [33] (pp. 235–244).
Another case, also of this type of composition, is to take a book agreed on by both
the sender and the receiver, replacing each letter (or each word) of the message with
numerals that give the location, that is, page-line-word-letter, having as expected
homophonic cases, as was the system used by Hindu independentists during World
War I [7] (pp. 371–372).
Likewise, encryption by alphabetical groups, which starts from a Polybios with
numerals, thus converting the literal 1-g to numerical 2-g, to later take for each
numerical number (1-g) one word with that number of letters, that is, {1, 2, 3, . . . }-
grams, therefore, with homophony [5] (pp. 58–59).

• Successive codebooks. This method consists of encrypting with a codebook to apply the
result as an entry in a different codebook. As an example, the one found in World
War I by the United States, where, after obtaining the 4-g from the first codebook of
phrase and word codes, it was re-encrypted by taking smaller blocks of 2-g, in another
codebook of digrams to words or phrases [7] (pp. 329–330).

• Codebook and transposition. An example that we find in a system by F. J. Sittler (ca. XIX-
XX), which used the transposition of the numeral obtained in the codebook, which,
in its four figures, gave the page and the line of the word origin of the message in
clear text, which is still a substitution (by codebook) and subsequent transposition [7]
(pp. 251–252).

• Codebook, transposition, and codebook. As an example of this composition, we know
that it was used by some groups of smugglers in the mid-20th century, who hid their
heroin traffic messages using codebook substitutions to subsequently make a change
of digit position and then choose a new code word [7] (p. 817).
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• Codebook or nomenclator, and substitution. In these cases, monoalphabetic or polyalpha-
betic encryption was performed as a result of previously encrypting with codebooks
or even with nomenclators, as was used in the 19th and 20th centuries by various
Western war embassies [7] (p. 251).
On other occasions, a first substitution was made from the words of the message to
a 4-number code, and then, after a new partition of blocks or n-grams, the numeral
pairs were replaced by 2-g, a system used by the French army in World War I [7]
(p. 312).

• Codebook and homophony. This system has already appeared in the nomenclators,
although now more systematically with longer and extended codebooks. An example
is found in the Cypher SA cipher of J. C. F. Davidson (ca. XIX-XX), from 1918, where,
after replacing the words or set of words in the codebook, it allowed homophony for
very common words [7] (pp. 278–282).

• Multiple biliteral: substitution and steganography. This is a system that we owe to Francis
Bacon (1561–1626), substitution and steganography cipher composition [7] (pp. 882–884),
the latter consisting of a binary distinction as to the type of typography, in short, a
typographical, and therefore symbolic, substitution in a neutral text that hides the
true message; and that it is possible to extend with the triliteral by Johannes Balthasar
Friderici (1639-ca. 1704), considering three types of typography, or quantity of syllables
of the words of the steganographic text [37] (p. 7).

• Agreed language: {1, 2, 3, . . . }-grams to {1, 2, 3, . . . }-grams monoalphabetic substitution and
steganography. It is a particular case of monoalphabetic substitution of any quantity of
grams over any other quantity of grams, with a semantic sense (trade, fauna, flora,
etc.) in the encrypted text, thus maintaining a steganographic aspect. We already
have examples from the Middle Ages, sometimes offering homophonic substitutions,
or insertions of words in agreed places (at the end or beginning of the sentence, odd
or even lines, etc.) [33] (pp. 222–228).

• Substitution and mathematical operations. An example of this type is the substitution
of the letters of the message to numerical {1, 2}-grams, to later take the numerical
key from a previously agreed base book, with a multitude of quantities listed in it,
proceeding to the sum base-10 of the 1-g, just as the forces of the U.S.S.R. did during
World War II [7] (pp. 650–654).

• Substitution, transposition, and mathematical operations. An example found in the Her-
rera system, a 19th-century Spanish soldier, consisting of replacing each letter of
the alphabet with the first prime numbers, to finally give the product of the result,
pending at the time of deciphering, order and arrange the primes now permuted or
transposed [33] (pp. 221–222).

• Subliminal channel: insertion and steganography. We have already mentioned this system,
this being its most proper place as it is a composition of systems. It is the insertion of
foreign or strange words into the text of the message. This is found in Ibrahim ibn
Dunaynir, who comments in his work on the insertion of the clear text, the message,
within another larger text, as a subliminal channel [42] (pp. 13–14, 44–49, 136–153).
Furthermore, the diversity of acrostics, with one letter or more, not always the first,
sometimes taking a certain order, or with the use of a Cardano grid or variant of it, or
by indication of punctuation marks on letters, syllables or words, which were widely
used systems throughout the 19th and 20th centuries [7] (pp. 520–522).

• Subliminal channel: substitution, insertion, and steganography. In the same way, as in the
previous case, it is a system already seen before, it being a composition of several systems.
It was collated by Dunaynir himself, where sometimes the numbers that appeared in
an astronomical text which referred to the number of celestial bodies, their rotations,
positions, and other properties, were used to hide the literal substitutions of a certain
message in their respective numbers or commercial and financial texts [42] (pp. 36,
46–47, 58, 140–141, 116–117).
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We also find it in Tritemius, in which we have acrostic forms (insertions) with sub-
stitutions, as we can see that he made for the preparation of his “Steganographia”, a
book that hides a second book (the real one) inside [2] (pp. 283–287).
There is also the Porta-Guyot-Friderici musical system, which transformed the letters of the
message into musical notes and sets of them, forcing the harmonization of the score, which
is an insertion, as well as being a steganographic concealment system [33] (pp. 175–178).
Also included in this category is the substitution of the clear words of the message by
others and placed in texts that are generally lengthy that deal with neutral issues, serving
to mislead, using some type of grid to locate them—even being able to place themselves
in a disorderly position, for which there would also be, in this case, transposition- or
located in places indicated by punctuation marks or marks on the paper. As we can
see, they are substitutions (and sometimes transpositions) and insertions, although the
number of words inserted is generally greater than the number of words of the original
message [7] (pp. 519–521).
An example of a pictorial nature is the graphic use of semagrams, that is, figures or
iconic forms with meaning, which have close linguistic or numerical meaning, etc.,
within a larger drawing or graphic that hides the message in sight. It would be, for
example, the use of binary codes, or Morse code, with the sketch of dots and stripes,
or long and short stripes, in landscape graphics or any other, a technique which is
sometimes called cryptoeidography [7] (pp. 522–523, 827–836, 989).

• Insertion of nulls and nullifiers in the encrypted text, sometimes in the same encryption
n-grams: substitution, insertion, and steganography. Systems that, among others, used
Tritemius, mixing null insertions in previous substitutions, are also present in his work
“Steganographia” [2] (pp. 283–287). Additionally, there are various insertions of nulls
and nullifiers (and the corresponding sequences to be canceled) in substitution ciphers
generated by the nomenclator systems that sometimes had meanings of neutral themes
and were alien to the true sense of the message they hid [7] (pp. 110–111).

• Substitutions, elimination, and insertion. This composition of encryptions is found already
in the work of Ibrahim ibn Dunaynir, where together with monoalphabetic mono-
graphic substitutions and even the use of substitutions under the “hisab al-gummal”
method, he eliminated some letters and even inserted nulls [42] (pp. 7–15, 28–36, 58,
76–82, 100–114, 126–140).

• In general, any composition of methods in variable number and order. Some examples that
we find throughout the history of cryptography are outlined below.
We start with the pioneering system of using substitutions of 1-g literals to {1, 2}-gram
literals, with homophony and insertion of nulls, like that used by the Holy See created
by Matteo Argenti in the year 1590 [3] (p. 55).
Two centuries later we have the system of the Count of Mirabeau (1749–1791), which
performs a Polybios substitution (from 1 to 5) and then a transposition of the coor-
dinates taking all of the first ones and then all of the second ones, also adding null
numbers (from 6 to 0), sometimes replacing the numerals to letters again [7] (p. 763).
Another system is that devised by Pliny Earle Chase (1820–1886), in which after the
substitution of letters from a rectangular 3× 10 to numerical 2-g (xi,yi), it took the
second coordinate under an operation (product by a constant, or sum of a constant,
or even the logarithm), to pass the new values (xi,y′i) under the inverse of the 3× 10
rectangular substitution to obtain the new letters [7] (pp. 203–204).
Another illustrative example of the composition of three methods is that used in the
Spanish–American War of the late 19th century, in which after the replacement of
words or phrases through a codebook, another substitution of literal to numeral was
made, to add a constant value to the result later [7] (p. 252).
Or the ÜBCHI system, used by Germany before and during World War I, a polyal-
phabetical substitution after numerical assignment (bijective substitution), with sub-
sequent transposition by numerical column ordering, followed by the addition of
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nulls, and again transpositions, one of them horizontal and the other vertical [7]
(pp. 301–304).
Also worth noting the complexity of compositions shown by liquor smuggling groups
in the U.S.A. in 1920–1930, where substitutions of words to numbers were sometimes
made from the codebook, followed by the addition of a constant number, with the
same or another codebook to obtain subsequently a new word to which underwent a
subsequent monoalphabetic substitution [7] (pp. 802–806).
Very similar to them was to replace the result of a numerical codebook first and then
make various groupings of different sizes of n-grams, including transpositions, to do
sums subsequently in a polyalphabetic way, very common systems during World War
II by the Axis countries, Allies or neutral powers [7] (pp. 402–403, 440).

4. General Systematization of Cryptological Methods

The examples selected in the previous section serve as support for the algebraic section
that follows. It was not our intention to mention all the existing examples that have arisen
throughout history (but all methods and systems) or from all places and civilizations.
However, we want to give some references that may be of interest to expand this matter,
beyond those listed here. For example, ancient Indians [47,48] (ch. IV) [7] (p. 74), ancient
Chinese [48] (ch. IV) [7] (pp . 73–74), Incas [49], ancient Eastern Christians [50], ancient
Scandinavians [51], Arab world [52,53], Arab-African world [39,40], or the Ottomans [54],
among the possible ones.

In the previous section, we showed a structure of methods according to a temporal
and historical study of cryptology, offering the current classification which is commonly
accepted today, at least in its section of classic cryptography, based on the two main systems,
transposition, and substitution. To better structure it, we have added the arithmetic-algebraic
functions to them, together with the methods of insertion and elimination, to later offer the
various compositions of the previous methods.

Below we offer a more fundamental general scheme of cryptological methods, which
we consider more broad and coherent, algebraically more compact, closed and complete,
based on the wide range of the aforementioned methods.

4.1. The Elements

As we have seen, the elements of the initial and final sets can be very diverse. If we
consider, in principle, linguistic texts for the initial message, we must consider their graphic
elements or graphemes, or some of them, or parts, sequences, groupings, etc., depending
on the encryption system that is applied. Thus, we can consider the vowels, the consonants,
some specific letters, syllables, words, phrases, or any n-gram as a minimum block, and
mixtures of any of these options.

Next to them, and for the possibilities of substitutions, should be considered any
number or numerical form (on any numeral basis), be they Hindu-Arabic numerals or any
other way of numbering (Romans, Cistercians, etc.). In addition, this applies to any letter
of any alphabets, pure or mixed, punctuation marks and pseudo-forms derived from them,
deformed, joining with each other, and so on, as well as alchemical, hermetic, astrological,
tironian, geometric, musical, graphic signs, etc., and forms derived from them.

In short, any icon, symbol, even sound forms or phonemes, which we will generally
call a gram, will be the various elements that we can consider in a general way in a
cryptosystem as elements of the initial and final sets, which in general we can express as
a finite set of elements of the set Σ, and that we will later see that we call X, Y, A, B, and
later M, C or K, depending on the context.

4.2. Substitutions

If we begin by analyzing the substitutions, so numerous and varied throughout history
in their modalities, we must say that we cannot consider them in their algebraic sense, as
some have pointed out, as functions, but as binary relations.
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There is a binary relationship between two initial and final sets, X and Y, when at
least ∃x ∈ X/ f (x) = y ∈ Y, which, using the relationship notation, would be expressed as
<(x, y), or x<y, being < the relation that makes them correspond.

Formally, the binary relation is defined as having previously defined the Cartesian
product between X and Y, sets, X×Y as {(x, y)/x ∈ X ∧ y ∈ Y}. Thus, a binary relation
< on X and Y is a subset of X×Y where the relation < is the one that corresponds to the
encryption, Enc(), defining from Y× X = {(y, x)/y ∈ Y ∧ x ∈ X} the inverse relation in
the same way, which we call decryption, Dec().

In the binary relations, we have to differentiate the set of departure X, and the set of
destination Y, the origin set A and the image set B. The origin set A ⊆ X is made up of the
elements of the departure set that have some relationship with the elements of Y, actually
B. The image set B ⊆ Y is made up of the elements of the destination set that have some
relationship to elements of X, actually A.

Thus we would have:

• Non-unique binary relation: some element of the origin set A has more than one image.
• Univocal binary relation: each element of A has a single image.
• Biunivocal binary relation: each element of A has a single image and each image

element of B has only one element of the origin set.
• Function: when all the elements of the departure set X have one and only one image.

A function is usually defined with two sets, D and C, domain and codomain. We say
that f is a function from D to C, or that f is a map of D into C, written f : D → C, if for
each x ∈ D there is a uniquely defined element f (x) ∈ C.

If we analyze the fundamental properties of functions, we have the following cases:

• We say that f : D → C is injective, or one-one, if for all a, b ∈ D, f (a) = f (b) implies
a = b.

• Likewise, f is surjective, or onto, if f (D) = C.
• If f is both injective and surjective, we say that f is bijective, or a one-to-one correspondence.

Sometimes we also talk about multivalued functions, which are not proper functions,
but binary relations, when all the elements of the initial set have an image, although at
least one of them has more than one.

By unifying all of the options, we see that these are defined, on the one hand, by
the sets X, Y, and those that have an image by correspondence, by A and B, with the
relation of strict inclusion or not, A ⊆ X and B ⊆ Y; and, on the other hand, for the
univocity in the origin set A, and the univocity in the image set B. There would be a
total of 16 possible options, depending on the options {yes, no} to the conditions {A = X,
B = Y, Uniqueness in A, Uniqueness in B}, which offer being {function/binary relation,
surjective/non-surjective, non-multivalued/multivalued, injective/non-injective}. There
are no more possible options.

These options are those that mark the possibility of homophonic encryption in the case
of multivalued options; or polyphonic encryption in cases where the injectivity is not given.
Although, to avoid ambiguities (which would be resolved during the decryption process
and under the support of the language itself discarding possible semantic incongruities), it
is more common that there is injectivity.

As for the other characteristics, which have to do with whether or not A = X or B = Y
is fulfilled, the following is said: It is not necessary for encryption, but it may be common
that the surjective or onto property is met (B = Y) and there are no elements in the image
set that do not have an image, that is, elements y ∈ B such that @Dec(y), although this
aspect does not generate diversity in the type of encryption. As for the property that A = X
or not, we would be dealing with binary relations where at least some element of X had
no image, that is, there was at least one value x ∈ X/@Enc(x), an aspect that does not
generate distinctions in the various substitution encryptions.
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That is why all possible cases of substitution would be included, the usual being that
the bijective property is given, as occurs in the Gaius Iulius Caesar encryption, monoalpha-
betic, or the Vigenère, polyalphabetic.

We must add that even, in general, we should not talk about f : A → B, but f :
A1 × A2 × . . .× An → B1 × B2 × . . .× Bm, and even, as binary relations: <(A1 × A2 ×
. . .× An, B1 × B2 × . . .× Bm).

More specifically, what we find is the case <(M× K,C), which, for example, we have
in polyalphabetic ciphers, such as Vigenère-Belasso. On the other hand, monoalphabetic
encryption can be expressed as <(M,C), because the key that is applied is always the same
and can be taken for granted in the relation <, while in polyalphabetics it can occur, and in
fact, it does occur, that Enc(mi, ks) 6= Enc(mi, kt) when ks 6= kt, where M is the message
space, K the key space, and C the cipher space, constituent elements of the cryptosystem.

On the other hand, by virtue of the elements of the sets, our binary relations are discrete,
therefore, the property of continuity does not exist.

With all the properties considered, and next to them, the composition of binary rela-
tions, we have completed all the possibilities that can be given, also showing the algebraic
completeness of cryptographic options.

Finally, and considering in general that the various cryptographic systems are binary re-
lations, where <(M,C) refers to an Enc() binary relation, let us see if the reflexive, symmetric
(or antisymmetric), and transitive properties are met:

• Reflexive (a<a). In general, it does not happen that Enc(mi, ks) = mi. For the en-
cryption property, the message or plaintext M must be different from the encrypted
text C.

• Symmetric (a<b→ b<a). If Enc(mi, k) = ci, the original message does not have to be
equal to the re-encryption of the encryption message, that is, in general, Enc(ci, k) 6= mi.

• Antisymmetric (a<b ∧ b<a → a = b). If Enc(mi, k) = ci and also Enc(ci, k) = mi, it
does not necessarily force mi = ci. An example is the Atbash cipher (symmetric),
which takes the specular letter within the Hebrew alphabet, so the antisymmetric
property is generally not met.

• Transitive (a<b ∧ b<c→ a<c). In general, it does not happen if Enc(m1, k) = c1 and
Enc(c1, k) = c2, it should be that Enc(m1, k) = c2.

Therefore, our binary relation Enc(mi, k) = ci, which we can express as mi<ci ≡
Enc(mi, k) = ci, for a given encryption using a key k, has neither a reflexive, symmetric,
antisymmetric or transitive property, aspects that we can understand highly desirable for
encryption.

In this way, the elements of an encryption–decryption scheme have already been
defined: (Gen, Enc, Dec), where we only have to define the Generation function, Gen,
which outputs a key k from the key space K.

4.3. Transpositions

Are transpositions a different group than substitutions? It seems that due to the huge
number of cases and options shown for binary relations when analyzing substitutions,
transpositions are not necessary.

It is clear that transpositions are bijective functions where A = B, which also alge-
braically identifies with permutations and applies to all elements or not, being able to
analyze the diversity of existing algebraic cycles in them.

In the case in which the message to be encrypted did not have any repeated element,
a bijective function f : A→ A could be created, which made a certain new assignment, a
permutation (of all the elements or only some), the result of this substitution coinciding with
a transposition. Thus, if the message was M = BYE, and the substitution the following,
defined by f (B) = E, f (Y) = Y, f (E) = B, the ciphertext C = EYV, so it is clear that it is a
transposition that can be expressed as a substitution.
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However, in the case in which some element of the message set appears more than
once, there can be no coincidence between the substitution (which in that case will require
two different elements) and the transposition. Thus, in the following example, where
M = GOOD, the substitution being as follows, we force it to be a transposition, f (G) = O,
f (O) = D, f (O) = O, f (D) = G, the ciphertext is C = ODOG. We see that there will
always be two equal values in origin set, the letter O, which has different images. This
makes the transposition no longer a function, it is more, it is not a bijection, and we cannot
say that the substitution of the letter O is a single letter because there is polyphony.

Therefore, to achieve unification, the set of keys K is required, and in this way, in
general, transpositions are substitutions, but polyalphabetic, <(M× K,C), where, through
the different values of ki, we get the desired ci value of the transposition. Thus, in the
previous example, if M = GOOD, giving the key sequence to be added under the Vigenère-
Belasso system K = XSAL, we would have a value C = DGOO, a transposition.

Consequently, given a message M = m1m2 . . . mi . . . mi . . . mj, and if any transposition
is desired as ciphertext C = mqmi . . . mj . . . mi . . . mn, it is always possible to find the
appropriate value of K = ks . . . kd . . . kw . . . kp, that added member-by-member gives the
expected result.

Therefore, transpositions cannot, in general, be defined as substitutions except when
the Cartesian extension <(M× K,C) is taken, which means that the same element mi no
longer exists, in particular, more than once, but two different elements, (mi, k f ) and (mi, kr),
which give the desired value, not necessarily the same, in the encrypted set C, according to
the desired transformation; likewise, two possible values (mj, kb) and (mm, ke), can have
the same image in C. In this way, we can define transpositions as bijective functions.

For all of these reasons, and because the analysis carried out on the binary relations
has been a complete study of all possible options, the permutations of set A on itself, the
transpositions must remain within it, although it requires us to consider all the elements of
the message M at the same time to match the ciphertext C, carefully choosing the various
values of the key K. This is the singularity of transpositions, in which the whole message
and all of the elements in them, must be considered at the same time, which does not occur
with substitutions, as we have seen in the various methods and systems over time. In
this way, they are binary relations, in which it is necessary to know all the elements of the
plaintext, the message, to build the various keys ki, and the context is necessary for the
complete sequence that must be encrypted. It is not simply a replacement element after
element. Therefore, transpositions take into account the entire sequence to be permuted,
which, we would say, is not the case with the more “genuine” substitutions.

4.4. Generalizing Substitution and Transposition

Let us clarify the previous aspects a little more with the following generalization of
both procedures, substitutions, and transpositions.

If we consider a certain message M to be encrypted, which is made up of discrete
elements, and which form an orderly sequence of its elementary units, for example,
m1m2m3 . . . mn, on each element mi only two operations can be performed {G1, G2}, taking
into account that we cannot consider more than one element (which would be subject to
an assembly of elements or a segmentation), nor eliminate it, nor add another, nor use G1
once and other times G2 (which would be object of composition of binary relations). With
this, the two operations that can occur are:

• G1, consisting of taking mi and putting another element of the sequence m1m2m3 . . . mn
(or itself, which would leave it the same) in its place, interchangeably.

• G2, consisting of taking mi and putting another element, not taken from the sequence
m1m2m3 . . . mn in its place (or not, leaving it as it is). It would, however, take it,
changed, from another set, whatever it may be, that may have the same elements as
the sequence (or not).
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There are no more options than these. Operation G1 is a transposition, and operation
G2 is a substitution. It is clear that both options are disjointed (although sometimes, as we
saw before, they can lead to the same results, which is a different matter) and both form a
complete and closed set of options on the sequence M = m1m2m3 . . . mn.

The operation that encompasses the set of G1 and G2 will be called the Get operation,
G, where G is the set that includes all transpositions (t) and all substitutions (s), since
G1 ≡ t and G2 ≡ s, hence G = t∪ s.

4.5. Arithmetic-Algebraic-Logical Operations

Throughout history, we have also seen some ciphers that used methods based on
simple operations, especially arithmetical operations, such as sum or product (successive
sums) and their respective inverses, either integer or modular operations. Or the repetition
of products, that is, the exponential, present in the current asymmetric ciphers. To them,
we must add the logical operations, which we can find especially from the DES cipher. We
have to say that logical operations are arithmetical Boolean operations with the inverse
element, and these with arithmetic are a subset of the algebraic ones. In short, it is any
algebraic operation, however complicated it may be, as well as all its possible combinations
and joint use.

However, all of them are examples of substitutions, after assigning the initial elements
of the set to numerals, however complicated they may seem or really be, whether they
are arithmetic operations such as sum or product, modular exponentiation or product,
operations with polynomials, or product operations with points of geometric curves,
summarizing operations within an algebraic group.

4.6. Pre-Cryptological Operations

Apart from the cryptological operations of the Get set G = t∪ s, we have to consider
other different operations, which serve as an aid in the information masking process,
which we call pre-cryptological operations, being related to the linguistic properties of the
message itself. In total there are four procedures, dual two-to-two, which have to do with
the sequence of the message. On the one hand, Insert and Delete, which have to do with
the inclusion or exclusion of elements; and on the other, Join and Segment, which have to
do with the unification or fragmentation of the message sequence.

4.6.1. Insert and Delete

The message M = m1m2m3 . . . mn can be considered as an ordered sequence of ele-
ments. Hence, we can consider two basic operations, which are dual of each other, the
insertion and elimination of elements.

These aspects, prior to any cryptographic action, refer to the language of the mes-
sage itself, introducing spurious elements to the plaintext, or removing the capacity for
redundancy in the language, which could lead to altering the initial sequence.

In a formal and abstract way, we can consider the message as an ordered n-dimensional
vector within a vector space, (m1, m2, m3, . . . , mn) =

−→
M. In this way, we define these

operations as:

• Insert (Insi): This increases the vector space dimension in the new coordinate i.
• Delete (Deli): This removes one dimension, the coordinate i, from the vector space.

It is clear that the repetition of Insert increases or expands the initial vector
M = m1m2m3 . . . mn ≡ (m1, m2, m3, . . . , mn) =

−→
M as much as desired. In the same way, the

repetition of Delete eliminates until all of the initial vector
−→
M disappears or is eliminated.

Thus, the composition of Insert is another function of insertion and the composition of
Delete is another elimination.
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The process of dimensional expansion Insert, for example, of a new element, mw,
increasing the dimension, after mi−1, Insmw

i (
−→
M), can be seen as the step from

(m1, m2, . . . , mi−1, mi, mi+1, . . . , mn) to (m1, m2, . . . , mi−1, mw, mi, mi+1, . . . , mn).

This is expressed with matrices by doing

(m1, . . . , mi−1, mi, . . . mn)



1 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . 0
0 . . . 1 0 0 . . . 0
0 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . 0
0 . . . 0 0 0 . . . 1

 = (m1, . . . , mi−1, 0, mi, . . . mn).

Afterwards, without forgetting that the value 0 in this representation is not properly a
sign of the set of elements M, but a null (empty) value, but that already allows it to be used
as an indication of a new dimension of the previous vector space, it reaches the sum

(m1, . . . , mi−1, 0, mi, . . . mn) + (0, . . . , 0, mw, 0, . . . , 0) = (m1, . . . , mi−1, mw, mi, . . . mn).

For its part, the process of dimensional compression or Delete eliminates a certain
value, for example, mi, Deli(

−→
M), passing from

(m1, . . . , mi−1, mi, . . . , mn) to (m1, . . . , mi−1, mi+1, . . . , mn).

Using matrices, as in the case of vector spaces, the procedure of eliminating the
respective dimension would be to multiply by a n× n− 1 matrix, with a row of zeros in
the place we wish to remove:

(m1, . . . , mi−1, mi, . . . mn)



1 . . . 0 . . . 0
. . . . . . . . . . . . 0
0 . . . 1 . . . 0
0 . . . 0 . . . 0

. . . . . . . . . . . . 0
0 . . . 0 . . . 1

 = (m1, . . . , mi−1, . . . mn).

Let us indicate that due to the intrinsic property of Deli(
−→
M), insertion and elimi-

nation are not inverse operations since it is true that Deli(Insmw
i (
−→
M)) =

−→
M, we have

Insα
i (Deli(

−→
M)) 6= −→M, since the value lost in the elimination that would have to be inserted

to recover it is unknown because the elimination operation implies a loss of message
information. It is for this reason that this operation is not usual, much less especially in
repeated compositions of operations, as it may entail not being able to recover the original
message in decryption.

4.6.2. Join and Segment

The sequence of elements, discrete elements, of the message M to be encrypted can be
seen as a sequence in a “geometric” sense, hence we can split it into pieces, an aspect that we
will now try to explain through two functions, one of segmentation, and its dual, of unification.

As we have seen in the previous historical subsection, the sequence of elements to be
encrypted, although constituted many times by minimum units, these grams are grouped
with adjacent ones, in greater or lesser lengths, forming units of different sizes, and with
it, generating new elementary units. Even, and by the use of bijective substitutions or
encodings, they are previously passed from one set of elements to another to be able to
make these new groupings.
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We will clarify it with the following example. Thus, a message M = CRYPTO,
with an assignment of letters to numbers such as the following, which is a bijection,
C → 832, R → 52, Y → 713, P → 30, T → 681, O → 46, becomes the ciphertext
M1 = 832, 52, 713, 30, 681, 46, and if blocks of 4 elements (4-g) are now taken, adding
character 5 if required, as many times as necessary, at the end, our result would remain as
M2 = 8325, 2713, 3068, 1465.

As we can see, we have transformed a set of elements, Latin-Western letters, into
numeral blocks, {0 . . . 9}4. It is an operation consisting of the change from one universe of
elements to another, whichever universes of elements we consider.

It is an operation that on many occasions is very common in cryptography, very
generally at the beginning of the cryptographic process, although, due to the composition
of transpositions and substitutions, it is also interleaved or even applied at the end of the
total encryption process.

The coding operation, as seen in the example above, would be a previously analyzed
substitution. However, the subsequent one is an operation not seen until now nor formal-
ized. We will define it as Segment (Sg), due to its geometric similarity with the application
of a certain measure on the sequence of elements. Yet we also need to define another
operation, Join (Jn).

• Join (Jn): Given a set U = {u1, u2, u3, . . . , un}, if we have any sequence M = uj, ut, us,
. . . ut, Join eliminates the discretization of the elements of the set U: Jn(uj, ut, us, . . . ut)
= ujutus . . . ut. In this way Join makes you lose the individuality of the initial elements,
and thus, generates a unified sequentiality without the distinction of discrete elements.

• Segment (Sg): Given a continuous sequence, such as that obtained through the Jn
operation, from the segmentation operation specifications, Sg divides and splits
the sequence into individual units, which will be elements of a set of W elements.
Segmentation can be done in blocks of equal length or not, and you must specify the
values to be added (if necessary) to the source sequence at its end.
In general, we can define it as

SgW1,W2,...,Ws
ω1,...,ωt (ujutus . . . ut) = w1

g, w2
d, w3

h, . . . , ws
m, w1

r , . . . , wi
l , ω1 . . . ωj,

where the different Wi = {e1, e2, . . . , ej}r sets of elements made up of their minimum
units from which we will take r from them. The different ωi are the values that will
have to be appended at the end of the sequence so that the last block has the appropriate
length that marks its respective set Wt.

With all this, returning to our previous example, Jn(M1) = 832527133068146. Then
applying Sg(832527133068146) on a set W = {0 . . . 9}4 and ω = 5 as the final addition, we
can express it as

SgW={0...9}4

ω=5 (832527133068146) = 8325, 2713, 3068, 1465.

The use of the functions Jn and Sg are quasi-inverse of each other, due to the insertion
of the elements taken from ω1, . . . , ωt, and M being the sequence to be encrypted into any
set of elements, be they numbers, letters, any symbol, pictogram, graphic, even image,
audio, etc. (Let us keep in mind that during World War II, the German, Japanese, or
American armies used, both in the temporal and frequency domain, transpositions of audio
fragments of a conversation or sub-band substitutions [7] (pp. 549–560)), allowed all the
cryptographic procedures of the set Get to be applied, G = t∪ s, as well as the functions
Insi and Deli to any object or element that we can consider.

4.7. Composition of Binary Relations

Cryptological and pre-cryptological operations can be made up between them, gener-
ating the diversity of options that we have found throughout the history of cryptography,
and all that are possible, these being complete and closed sets: on the one hand, any type
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possible of binary relation, with the diversity of options of the Get operation, {s, t}, and on
the other hand, the options on the sequence of elements, {Sg, Jn} and {Ins, Del}.

We can talk about internal compositions when the composition is applied to the same
type of these six operations or otherwise external compositions. Thus, the composition
of transpositions is a transposition; the composition of substitutions is a substitution; the
composition of insertions is a sequence of insertions; the composition of eliminations is a
sequence of eliminations; the composition of segmentations is a segmentation; and in the
case of Join, it makes no sense to make it up with itself, repeatedly, as the result is similar
to that of the first application of the operation.

The composition is used to achieve another cryptographic system that could not be
achieved with the individual systems used in the composition, and that is more secure.

It is the mixture of these compositions that offers the best results to increase security,
so that the repeated composition (what is known as rounds) of transpositions (aspect
of diffusion) with substitutions (aspect of confusion), and next to them the use of pre-
cryptological operations increases the cryptanalytic difficulty of attacking the cryptological
system and the effort or work against it.

5. Some Clarifications and Explanations

After having offered a more compact and complete algebraic scheme of crypto method-
ology, we will briefly comment on some aspects of perfect and ideal encryption, as well as
the divisions on block and stream ciphers, and symmetric and asymmetric ciphers.

5.1. Perfect Encryption and Ideal Encryption

After fully studying the cryptological and pre-cryptological operations, we can make
some additional comments.

Due to the distinction between transposition and substitution operations, the concepts
linked to them of confusion and diffusion are differentiated, as they were considered and
defined by Claude E. Shannon [22], and Horst Feistel reiterated them [55], making use of
the mixing of both transformations (composition of binary relations), not being subsumed
if the transpositions were substitutions, the concept of diffusion (linked to transpositions)
into the concept of confusion (linked to substitutions).

On the other hand, we can talk about perfect secret, and with it, about perfect encryp-
tion in confusion and diffusion, the perfect encryption is the one in which Pr(M = x/C =
y) = Pr(M = x), i.e., the probability a posteriori that the original text is x if the ciphertext
is y, is identical to the probability a priori that the original text is x. When considering
the entropy, uncertainty or equivocation, H(M/C) = H(M). The ciphering does not give
any information. Therefore, the mutual information of the message and the ciphertext,
I(M, C) = 0. Thus, considering entropy or uncertainty, H(M, C) = H(M) + H(C), so it is
also true that H(C/M) = H(C). Perfect encryption in both substitution and transposition
applied to the message sequence M = m1m2m3 . . . mn makes every mi element a perfect
substitution (Vernam encryption), which can be seen as that element having been replaced
by another ci taken under a completely random process, that is, without any relation to
mi, and thus with the entire sequence. Thus, perfect confusion is achieved. On the other
hand, a perfect transposition (different from perfect encryption, which would also require
the number of keys to equal the number of messages) would mean that in each position
between {1, 2, . . . , n} of the sequence of elements, each one has been placed in an ordinal
place randomly, so there is no relationship between its new placement and the one in the
original sequence M = m1m2m3 . . . mn. Similarly, we can call it perfect diffusion.

Cryptographic binary relations and their compositions together with the use of the
methods we call pre-cryptological focus on the properties of language, allow the linguistic
properties to be altered, achieving greater system security, as well as the ideal secret.

Calculating the unicity distance, which gives us the value of the length of the text

when the spurious keys tend to 0, this is given by n0 ≈
log2 |K|

RL log2 |M|
, RL being the language

redundancy, defined by RL = 1− HL
log2 |M|

, where HL is the language entropy, which is
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defined as limn→∞
H(Mn)

n , the preceding dividend being the entropy of a message of length
n. Therefore, using the aforementioned pre-cryptological operations, we can eliminate all
redundancy, leading to no relationship between the various characters of the message to be
encrypted, achieving total independence of the message’s grams, there being no correlation,
resulting in HL = log2 |M|, so RL = 0 and n0 tends to infinity.

We are then in the case in which the equivocation of the key and the message do
not approach zero although the message tends to infinity, fulfilling the ideal encryption
condition, and also, as the equivocation of the key, which is equal to the entropy of the key,
H(K) = log2 |K| = c, constant, we have strongly ideal encryption, according to Shannon.
In this way, it does not matter how much encrypted material you have, even n→ ∞, that
a single solution of the original message cannot be known, the Work (W) necessary to
solve the encryption is also tending to infinity. Thus, in this case, there is the situation in
which the ciphertext and the key are mutually independent, I(K, C) = 0, so considering
the equivocation, H(K/C) = H(K), and H(C/K) = H(C).

5.2. Block Ciphers and Stream Ciphers

Sometimes we talk about block ciphers (DES, AES, IDEA, FEAL, SAFER, RC5, etc.) and
stream ciphers, but this is not a very useful classification and without algebraic distinction.
By virtue of our Join and Segment operations, the origin elements of the encryption can
have different lengths, from 1 to more than 1 element, thus formalizing this differentiation.

Block ciphers can be analyzed in their components as composite structures of the
different cryptological and pre-cryptological operations [31] (pp. 265–368). Thus, if we review
the two best-known and used contemporary block ciphers, although something similar could
be done with the others, we can see how they can be included within the methods analyzed.

• DES encryption. For the “Data Encryption Standard” (DES) symmetric encryption [56],
the constituent elements of encryption (similarly to decryption) are: Starting with the
substitutions of the message literals for their binary encodings at the beginning and end
of the process (substitution), we find permutation IP operation and their inverse (trans-
position), expansion (insertion), S− box (substitution with polyphony), permutation
P (transposition), PC1 and PC2 for subkeys (transposition), shifts (transposition) and
XOR functions and modular sums (arithmetic-algebraic-logical functions). With them
we also find the Feistel structure, with its Sg and Jn operations and the various rounds
or replications of the entire set of operations (external composition of binary relations).

• AES encryption. In the symmetric encryption “Advanced Encryption Standard” (AES) [57],
the constituent elements of encryption (similarly to decryption) are: Starting with
initial substitutions of the message literals to their binary encodings at the begin-
ning and end of the process (substitution), and the various Sg and Jn that mark the
structure of the GF(28) and the Word of GF(232), we find SubBytes or S− box (substi-
tution), Shi f tRows (transposition), MixColumns (substitution), block rearrangement
(transposition), AddRoundKey or modular sums (arithmetic-algebraic-logical func-
tions), Rotate or shifts (transposition), Rcon or S − box (substitution), SubWord or
S− box (substitutions), RotWord (transposition), and XOR functions and modular
sums (arithmetic-algebraic-logical functions), as well as the various rounds or replica-
tions of the whole set of operations (external composition of binary relations).

As for the stream ciphers [31] (pp. 369–428), all of them, such as A5/1, A5/2, RC4,
Salsa20/12, Sosemanuk or Trivium, and before them from the Vigenère-Belasso method
to the Vernam one-time-pad (maximum random key without periodicity), they aim to
achieve keys as random as possible, in general using Linear Feedback Shift Registers
(LFSR) or Nonlinear FSR, but also Feedback with Carry Shift Registers (FCSRs), which are
still arithmetic-algebraic-logical operations, although sometimes they use other types of
operations, such as SEAL or Rabbit: arithmetic-algebraic-logical operations, transpositions,
substitutions, and pre-cryptological operations Sg and Jn. On the other hand, and consider-
ing that asymmetric ciphers are variants of symmetric ones with a trap-door, there are also
asymmetric stream ciphers, such as Blum–Goldwasser, by joining the problem of Integer
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Factorization and Modular Square Roots, with the pseudo-random number generator BBS
(Blum Blum Shub), thus being probabilistic.

5.3. Symmetric and Asymmetric Ciphers

Encryption performs the operation Enck(m) = c, for certain m ∈ M and c ∈ C,
and a key k ∈ K, so that decryption allows the original message to be obtained again
Deck(c) = m.

It is clear that the encryption process, for whatever system, uses the value of the key
k. That is why to decipher you have to use the same key, k. However, it is not used in the
“same way”, as the process of encryption is not usually performed in the “same way” as
that of deciphering. The truth is that there is an inverse similarity between the two, being
able to express that Enc = Dec−1 and that Dec = Enc−1. The decryption operation applies
the same steps in ciphertext as in encryption, albeit “backwards”, we could say.

Thus, if the encryption operation is a sum, the decryption process will be a subtraction.
Or in general, if the binary relation when dealing with substitutions is from the set X
to Y, in the decryption it will be from the set Y to X. In the case of transpositions, the
original element will be taken for each permuted element and returned to where it was
initially located.

Similarly, we can talk about reversing the pre-cryptological processes Ins, Del, Jn, Sg.
We can also apply the different compositions of binary relations in the opposite direction.

With all this, it is understandable that until 1976, when Whitfield Diffie and Martin
Hellman’s paper “New Directions in Cryptography” was written [13], cryptography was
considered as symmetric, where the encryption key is the same (in the exposed sense) as
the decryption key.

From that moment, we began talking about another type of cryptography, asymmetric.
However, it maintains the same characteristics as any encryption, but where some aspects
of the key are not known to everyone. Let us explain it with two of the best-known
asymmetric ciphers:

In the Elgamal cipher [15] (pp. 294–298), if we consider it as symmetric encryption, the
encrypted message, from the plaintext message m, is c = mgab, value within Zp, and the key
would be k = gab mod p. It would be a modular multiplication in Zp. In order to decipher
it, the inverse operation in the multiplicative group Zp would be applied, specifically,
cg−ab = mgabg−ab = m. However, we can give some asymmetry in the process, which is
what we call asymmetric encryption if we express the key k = gab mod p as k = (ga)b mod p.
Knowing the value gab mod p is not computationally easy to obtain the exponent b even if
the value ga mod p is known, which is known as the Discrete Logarithm Problem, allows
us to divide or split the key, or put another way, hide aspects of the key, specifically the
exponent b. With this, an actor or part of the communicative process (who knows {a, gb})
encrypts it by multiplying the message m by (gb)a, and the other part (who knows {b, ga})
deciphers it by applying division by (ga)b.

For RSA encryption, supported by the Integer Factorization Problem, and the RSA
Inversion Problem, the situation is similar [15] (pp. 285–291). Here the encrypted message
is c = me mod pq, value within Zn=pq, and the key would be k = e mod ϕ(n), where
ϕ(n) = (p − 1)(q − 1). Decryption is the inverse operation, which means dividing by
k or multiplying by k−1 = e−1 mod ϕ(n) = d mod ϕ(n). In this case, the asymmetry of
the encryption with the decryption is that given e it is not possible to obtain d if Euler’s
function ϕ(n) is unknown. For this reason, it seems that there are two keys, but they are
really the same, to be applied directly to encrypt or vice versa to decrypt. Yet because ϕ(n)
is not offered publicly, even if we have e, we cannot obtain d = e−1 mod ϕ(n), because
of the computational problems on which RSA rests, hence it seems that there are two
different keys.

Something similar can be applied to the rest of the asymmetric ciphers. This is done by
the same constitution of encryption and decryption operations in which Enc = Dec−1 and
Dec = Enc−1, and which we can express as Enck = Dec−1

k−1 and Deck−1 = Enc−1
k . Therefore,
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asymmetric encryption can always be generated if there is a relationship between k and
k−1 which is not easy to achieve (computationally speaking, as a mathematical complexity
problem), due to a restriction of information, based on symmetric encryption (or just
encryption), which is always the basis of any encryption. Hence, even the most complex
symmetric ciphers, such as DES or AES, offer in their decryption a sequencing of reverse
steps to those carried out in the encryption by applying the subkeys in the reverse order, to
obtain Deck(c) = m.

This is known as “trapdoor”, where there is additional and secret information, capable of
carrying out the reverse operation. If this information did not exist, we would talk about a one-
way function, more generally, according to our algebraic structure, one-way binary relation.

These trapdoors are built based on computationally hard problems. Some compu-
tational problems of cryptographic relevance are: Integer Factorization (IFP), RSA Inver-
sion (RSAIP), Quadratic Residuosity (QRP), Modular Square Roots (MSRP), Multivariate
Quadratic Equations (MQEP), Discrete Logarithm (DLP) and its Generalization (GDLP),
Diffie-Hellman (DHP) and its Generalization (GDHP), Subset Sum (SSP), Linear Code
Decoding (LCDP), Shortest Vector in a Lattice (SVP), Learning With Errors (LWEP).

To name but a few of the main encryption schemes, we have: RSA encryption relies on
IFP and RSAIP; Rabin on IFP and MSRP; McEliece on LCDP; Merkle–Hellman Knapsack
on SSP; Elgamal and Cramer–Shoup rely on DLP and DHP; Elliptical Curves on GDLP and
GDHP; Goldwasser–Micali on QRP; Hidden Field Equations (HFE) rests on MQEP; NTRU-
Encrypt on SVP; Fully Homomorphic Encryption of Brakerski–Gentry–Vaikuntanathan
(FHE-BGV) rests on LWEP.

Thus, all of them are based on the same principle. Even some more peculiar encryption
schemes such as Goldwasser–Micali operate bit-by-bit with pseudo-random values (in the
manner of a key sequence) to generate a semantically secure probabilistic encryption with trap-
door. Blum–Goldwasser is also semantically secure and probabilistic with trapdoor and key
sequence for the different n-grams of the message based on the BBS pseudo-random generator.

That is why we call the ciphers asymmetric—if all their elements were given, they
could be used as completely symmetric ciphers. However, due to their slowness (since they
use mathematical operations of greater computational effort than in symmetric ciphers)
it would not make much sense, although in case it was needed because secure ciphers
were not available, due to attacks on AES, T-DES, and others, such as Twofish or Serpent,
asymmetric ones could be used symmetrically.

Moreover, considering that all ciphers are essentially in the form Enck(m) = c and
Deck(c) = m, whether or not they have a pair of keys {k, k−1}, it is more or less simple
to obtain one from the other; the ciphers that we have mentioned here and that are
commonly called asymmetric are, from the perspective of their algebraic foundation,
substitutions, so in essence they are not too complex, neither usually presenting in their
structure transpositions nor the composition of binary relations nor pre-cryptological
operations, operating the substitutions under the application of various mathematical
operations in an algebraic group, be they the elements of Zp, Zn, Zn2 , F2m , or the points of an
elliptic curve E(F), a vector subspace Fn

q , a polynomial ring Fq[X], a truncated polynomial
ring Z[X]/(XN − 1), or any other, resting its strength and security on computational
properties and problems which are difficult to solve.

6. Conclusions

This work is essentially mathematical, and it is not a historical paper, much less a
survey. The diversity of systems exposed here has only been collected as examples to better
understand the subsequent categorization that we offer. They serve us in their completeness
as support for the later algebraic section.

Hence after collecting with a sufficient range the diversity of cryptographic methods
and systems, with an abundance of examples, which have emerged during the long course
of the history of Cryptology, we wanted to offer one first ordering of them based on the usual
organizational structure, which subdivides them into transposition and substitution ciphers.
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We have added elimination and insertion operations, which we also find disseminated in
the history of ciphers, and which are barely taken into account, and to which we will then
give a necessary and complete sense; in addition, in our first arrangement, we collected the
mathematical operations and compositions of operations.

From this material, we propose a classification of cryptological methods and systems.
Although we can find many mentions of function, bijection, injection, and other concepts, in
various authors, until now, that we know of, such a complete and compact one has not been
offered. The novelty is not in the concepts used but in their use, in order to give a categorization
of cryptological methods and systems.

This framework, with its various properties and options, allows the entire field of
cryptology to be completely restored and visualized, allowing us to understand its method-
ological diversity.

In addition, it has allowed us to offer a better characterization of transposition and
substitution operations, which we have placed under the diversity of binary relations. In
addition, we have joined them together under the Get set, a set of cryptological operations,
with no other option than the two, thus being a complete and closed set.

We have completed the operational set with four operations that we call pre-cryptological,
not being part of the Get set of transpositions and substitutions. They arise from the approach
to the sequence of elements of our departure and destination sets from a vision close to
Geometry since if we consider them as discrete units, by their own sequentiality, we can apply
them to operations of adding or removing, on the one hand; and union or fragmentation
operations. They are, respectively, the Insert and Delete operations, for the first couple,
and the Join and Segment operations for the second. Both groups are complete in all their
operations. Pre-cryptological operations are directly related to linguistic properties and are
necessary for the cryptographic process of information concealment.

This entire framework of pre-cryptological and cryptological operations, and its var-
ious compositions, which we apply to any possible element, allows us to visualize all
the possibilities and finally understand the reason and the location of transposition, sub-
stitution, homophony, polyphony, monoalphabetism, polyalphabetism, monograms, and
polygrams, as well as the nomenclator, or the nulls and nullifiers, the mathematical opera-
tions (arithmetic-algebraic-logical operations), so common in modern systems, etc., and that
only acquire their full meaning when seeing them under the prism of binary relations.

All this also allows us to better understand the meaning of perfect ciphers and ideal
ciphers. Along with it, we can also specify in its most appropriate sense the distinctions,
which we can take as surpassed, between symmetric and asymmetric ciphers, and also
between block and stream ciphers.

The algebraic perspective offered here also allows a reading of the categorized systems
from the viewpoint of computational or algorithmic number theory. It also helps when
choosing the various cryptanalytical methods when attacking different systems.

The encryption/decryption systems are applied to any message, regardless of its type,
be it text, audio, video, etc., once it has been digitally encoded. The modality of its structure
in the communication and transmission process, for example, in IP packets, does not alter
the classification we offer either. The same can be said of structures such as the blockchain,
which uses the usual cryptographic methods. Neither does post-quantum cryptography
modify our categorization. Thus, ciphers such as McEliece, NTRU, or Merkle signature
scheme, respectively linked to code-based, lattice-based, or hash-based algorithms, or other
post-quantum modalities, can be placed in the different methods and systems that we give.

We hope we have managed to establish and formalize the algebraic statute better, and
therefore, the fully mathematical side of cryptological science.
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