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Abstract: Since December 2019, the novel coronavirus (SARS-CoV-2) and its associated illness
COVID-19 have rapidly spread worldwide. The Mexican government has implemented public safety
measures to minimize the spread of the virus. In this paper, we used statistical models in two stages
to estimate the total number of coronavirus (COVID-19) cases per day at the state and national
levels in Mexico. In this paper, we propose two types of models. First, a polynomial model of the
growth for the first part of the outbreak until the inflection point of the pandemic curve and then
a second nonlinear growth model used to estimate the middle and the end of the outbreak. Model
selection was performed using Vuong’s test. The proposed models showed overall fit similar to
predictive models (e.g., time series and machine learning); however, the interpretation of parameters
is simpler for decisionmakers, and the residuals follow the expected distribution when fitting the
models without autocorrelation being an issue.

Keywords: COVID-19; epidemic modeling; time series prediction; nonlinear growth models; Prais–
Winsten estimation; contagion modeling; pandemic modeling

1. Introduction

The world is currently experiencing a pandemic caused by the novel coronavirus,
formally named COVID-19 by the World Health Organization (WHO). Development of a
vaccine and antiviral drugs to treat COVID-19 is still ongoing, resulting in hospitalization
and intensive care unit management as the only option in treating COVID-19. Thus, there
is a dire need for research on modeling the outbreak of COVID-19 to help officials in
their decision-making processes regarding interventions and allocation of resources [1].
At the time this manuscript was being written, the pandemic was ongoing, and most of
the epidemiological models developed focused on short-term predictions, identifying the
daily peak of COVID-19 cases, predicting the duration of the pandemic, and estimating the
possible impact of the measures implemented for minimizing exposure to the virus and
decrease the fatality rate [2–10].

As of 24 September 2020, the cumulative number of COVID-19 cases in Mexico was
reported as 715,457 [5], and 32,245,122 cases were reported worldwide [11]. Thus, the main
objective of this paper was to model the total number of COVID-19 cases per day at the
national and the state level in Mexico while simultaneously providing straightforward
information to decisionmakers; additionally, we sought to determine which model provides
the most stable short-term predictions. Figure 1 shows the accumulated cases and new
cases at the national level in Mexico. This figure shows the first wave peak of the pandemic
until the data cut-off of 24 September. Until the 24 September date, only a single wave
of infections had been observed (on 1 August). The models developed in this research
facilitate the obtaining of information to support decisionmakers in the strategic planning
activities of the Mexican states, metropolitan areas, municipalities, or cities with high

Mathematics 2021, 9, 2180. https://doi.org/10.3390/math9182180 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3076-3714
https://orcid.org/0000-0002-8661-7292
https://doi.org/10.3390/math9182180
https://doi.org/10.3390/math9182180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182180
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182180?type=check_update&version=1


Mathematics 2021, 9, 2180 2 of 17

population density. Mexican officials can use these models to aid in the management
process involving the needs and resources of the health services such as available hospital
beds, intensive care units, and respirators, as well as personal protective equipment (PPE)
for health personnel. For decisionmakers, such as public health officials, having access to
daily and permanent monitoring at the center of the pandemic allows them to anticipate the
purchase of the necessary medical equipment in advance. Further, the authors would like to
share these models so that officials and statisticians outside of Mexico can make use of them
for their own decision-making procedures during the length of the COVID-19 pandemic.
The proposed methodology in this paper can easily be applied to COVID-19 worldwide.
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Figure 1. (a) Accumulated cases and (b) new daily cases of COVID-19 in Mexico.

In this work we refer to 1–2–3 models as two-step models due to the method used to
estimate their parameters [12]. The method is performed in two steps that will combine in-
formation from time series models with non-linear growth models and polynomial models.
The two-step estimation is a process, also known as the Cochrane–Orcutt procedure, which
is defined as:

“A two-step estimation of a linear regression model with first-order serial correlation
in the errors. In the first step the first-order autocorrelation coefficient is estimated using
the ordinary least squares residuals from the main regression equation. In the second step
this estimate is used to rescale the variables so that the regression in terms of rescaled
variables has no serial correlation in the errors. This is an example of feasible generalized
least squares estimation” [13].

Several machine learning (ML) and artificial intelligence (AI) models have demon-
strated acceptable performance in the modeling of the COVID-19 pandemic; our proposed
methodology meets this expectation in addition to a simple estimation of the parameters.
Unlike the susceptible–infected–recovered–deceased (SIRD) models, the proposed models
do not require setting or assuming the value of any parameter to obtain the estimates [14,15].
Finally, another advantage of our models is the interpretability of their parameters, that is,
estimates of some parameters directly linked to the pandemic can be obtained.

The article is structured as follows: In Section 2, we summarize the most relevant
literature regarding the modeling of the COVID-19 pandemic. Next, in Section 3, the data
used are presented and the proposed methodology is described. Section 4 shows the main
results of the investigation. Finally, in Section 5, the main conclusions are presented, and
the limitations of this research are discussed.
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2. Literature Review

Research exists with data-driven approaches such as autoregressive (AR) and au-
toregressive integrated moving average (ARIMA), ranging from simple models (expo-
nential smoothing) to more complex models such as ARIMAX, ARCH, GARCH, and
ARFIRMA [2,7,8,10,16,17]. For example, we used an ARIMA model with data compiled
by Johns Hopkins University to predict models for the daily confirmed cases in countries
where the pandemic was peaking and to predict and anticipate the resources of the health-
care systems [18]. Unfortunately, these data-driven models fail to fit the data and often
lack accuracy [6,19]. Additionally, the parameters of these models cannot be interpreted
according to the reality of the pandemic. This interpretability barrier causes statisticians
and officials to make their decisions on the basis of predictive models instead of the peak
of the pandemic or the growth of the pandemic. A useful model for policy and public
health decisionmakers during the COVID-19 pandemic would be a model that, in addition
to obtaining accurate predictions, provides insights on the evolution or current behavior
of the pandemic. Another approach is real-time forecasting using a generalized logistic
growth model. This method has been previously used in China to generate short-term
forecasting of COVID-19 cases [20,21], as well as with data from Canada, France, India,
South Korea, and the UK to forecast daily cases [22,23]. These models are incredibly useful
in that they provide information on the current state of the pandemic. However, in this
study, we had two aims regarding logistic growth models: (1) to demonstrate that their
assumption of independence of and (2) that their modeling performance at the earlier
stages of the pandemic is not optimal but can be improved by the incorporation of an
autoregressive component [4,9].

The models used in this paper are based on statistical linear models, classic time series,
and restricted growth—called limited growth or nonlinear growth models [1–3,13,24]—
as well as real-time forecasting using generalized logistic growth model [4,25]. In this
paper, we propose estimations in two stages of the pandemic utilizing polynomial and
nonlinear growth functions while incorporating an autoregressive component with the
purpose of meeting the assumption of independence of residuals. First, we propose using
a polynomial function estimated using the Prais–Winsten methodology to estimate the first
stage of the pandemic (when exponential growth of COVID-19 cases was observed). Our
rationale for choosing a third-degree polynomial model was the following: under certain
scenarios: it can be converted into an increasing monotonic function, which is essential
when modeling the total of accumulated cases; the degree is three since it shows simplicity
with respect to higher-order polynomials; and when its behavior is observed, it has the
shape of an “S”.

Next, in the second stage of the pandemic (when the peak of COVID-19 cases was
reached), we propose utilization of nonlinear growth functions, logistic, and Gompertz in
order to predict the total cumulative number of cases and the growth rate of the spread of
COVID-19. In each of the models estimated before and after the peak of the pandemic, at
the second stage of modeling, we added an autoregressive component of order one (AR (1))
to compare the results to the models that do not account for the violation of independence
of residuals. This approach has been successfully used to model plant and animal growth
where measuring the same unit can lead to violation of independence of residuals [9,25,26].
Next, we selected the best estimate equation to model the pandemic by using Vuong’s test
criterion [27]. We anticipated the proposed model to have good performance similar to
neural networks (NN) or support vector machines (SVM). A disadvantage of NN is that
it is difficult to generate a day-to-day prediction in addition to finding the growth rate
and finding the maximum number of cases. These are not a problem for the functions
we propose. Furthermore, artificial intelligence (AI) has been used to identify, track, and
forecast COVID-19 cases. However, AI models are difficult to interpret—the process by
which they arrive at a decision is often referred to as a “black box” due to the complexity
in understanding how AI models arrive at certain conclusions [28]. The complex inter-
pretation may create a barrier for decisionmakers looking for straightforward solutions
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in the middle of a pandemic. Moreover, we anticipate our proposed modeling of the
pandemic will meet the assumption of independence of residuals. In contrast to NN, our
proposed model can provide predictions and will facilitate interpreting parameters such as
the highest number of infected individuals, growth speed, the initial number of infected
individuals, and the autoregressive parameter to measure the lag in reporting the new
daily cases of infections.

In summary, we present these two models (polynomial and nonlinear growth models)
because of ease of interpretation for non-statistician decisionmakers, their stable and useful
predictions while accounting for the autocorrelation of the data, and their insights regarding
the current state of the pandemic. Therefore, the objectives of this paper were to:

(1) specify the polynomial function and nonlinear growth models (logistic and Gom-
pertz) that include an autoregression component for dealing with the autocorrelated
observations in the growth data in two stages: before and after the inflection point of
the pandemic is reached, and

(2) compare the different polynomial and nonlinear growth functions in their ability to
describe the number of cases of the COVID-19 pandemic.

3. Methods
3.1. Dataset

The COVID-19 data used in this research was obtained from the publicly available data
of the Mexican Secretaria de Salud Federal that contained the number of cases confirmed
from 27 February to 24 September 2020. The dataset also included the number of recovered
patients and fatalities and can be downloaded in .csv format from the government’s
website (https://www.gob.mx/salud/documentos/datos-abiertos-152127, accessed on 27
August 2021) [5]. Data to test the models focused on the national level and three Mexican
states: Campeche, Quintana Roo, and Tamaulipas. To demonstrate the benefit of utilizing
the autoregressive term, we used data from the state of Aguascalientes. The time series
beginning point (t = 1) established was the day in which a positive COVID-19 case had not
been reported. For example, in the state of Tamaulipas, the first positive COVID-19 case
was 17 March 2020, and thus 16 March 2020 was considered (t = 1). The aforementioned
data are noisy due to the dynamics of registration of new cases, that is, there is a known
lag in the registration of new cases that depends on the site in the country. Another source
of noise linked to the dynamics of registration is with respect to the cases detected on
weekends, some of which are not reported until the following Monday. Therefore, and in
order to reduce the effect of noise caused by the dynamics of registering new cases, we
pre-processed the data by means of a moving average of two observations, that is, Yi = (Xi
+ Xi−1)/2, where Xi and Xi−1 correspond to the total number of COVID-19 cases reported
up to time i and i − 1, respectively. For the case of i = 1, Y1 = X1.

Analyses were conducted in R (version 3.6.2) and STATA (version 15.1) [29,30].

3.2. Model Selection

The current study proposes the utilization of a two-stage approach: First, Stage I
model was fit throughout the pandemic and before reaching the peak of cases (before the
inflection point), and in the second stage, once the peak of cases was reached, a different
type of model was used. We utilized Vuong’s test for model selection [27]. Figure 2 shows
a graphical abstract of the proposed methodology for this study.

3.2.1. Stage I: Before the Inflection Point

For the current study, we examined a variety of models that successfully model
the behavior of the pandemic (e.g., the maximum number of cases, growth rate) while
simultaneously meeting the assumption of independence of residuals in the data. Using
the Akaike information criteria (AIC) and the root mean square error (RMSE) criterions,
we found that the models that best described the total accumulated cases of COVID-19 in
the four data examples utilized were:

https://www.gob.mx/salud/documentos/datos-abiertos-152127
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a. Polynomial model of order three with an autoregressive error component of order
one Equation (1), known as Prais–Winsten or Cochrane–Orcutt estimation, and

b. Nonlinear growth models, including logistic and Gompertz, which had the best fit
of the models examined (Equations (2) and (3)).
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3.2.2. Stage II: After the Inflection Point

To examine which models were the best once the peak of positive COVID-19 cases had
been reached, we focused on the same three state data that showed good fit up to the peak
of the pandemic. We sampled two data periods after the inflection point: 20 days after the
inflection point (19 October) and the day before we began writing the results of this paper
(24 September 2020). The results obtained from this stage of the pandemic were compared
with those obtained before the inflection point of the pandemic. We hypothesized that
one of the nonlinear growth models would have a better fit for the stage before the peak
of cases.

3.3. Statistical Procedures

The complete two-step polynomial model used in this work has the form:

Yt = α0 + α1t + α2t2 + α3t3 + ρut−1 + εt (1)

where Yt is the number of total positive COVID-19 cases reported at time t; the coefficients
α0, α1, α2, α3 were the parameters of the polynomial component of the model; ρ is the coef-
ficient of the autoregressive component ut−1 obtained in the second step of the estimation;
and εt is a random error term, with t = 0, 1, 2, . . . , i. The value t = 1 is selected as equal
to the day of the first positive case.

The two-step logistic model used the following form:

Yt =
β1

1 + β2e−β3t + ρut−1 + εt (2)

where Yt is the number of total positive COVID-19 cases reported at time t; the coefficients
β1, β2, β3 correspond to the logistic component; ρ is the coefficient of the autoregressive
component ut−1 obtained in the second step of the estimation; and εt is a random error
term, with t = 0, 1, 2, . . . , i. β1 models the highest number of infected, β2 growth speed,
β3 is the initial number of infected individuals, and ρ models the autoregressive process to
incorporate the delay in the process of reporting the new cases of infection as well as the
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inherent pandemic dynamic. Recall that the value t = 1 is set to the day of the first positive
case observed.

The two-step Gompertz model used the following form:

Yt = β1e(−e(β2(t−β3))) + ρut−1 + εt (3)

where Yt is the number of total positive COVID-19 cases reported at time t; the coefficients
β1, β2, β3 correspond to the Gompertz component; ρ is the coefficient of the autoregressive
component ut−1 obtained in the second step of the estimation; and εt is a random error
term, with t = 0, 1, 2, . . . , i. The β1 parameter estimates the top number of infected,
β2 is growth speed, β3 is the initial number of infected individuals, and ρ models the
autoregressive component. Similarly, the value t = 1 is set to the day of the first positive
case observed. More information on two-step procedures can be found in [12].

The models were fitted in six time periods: the end date of the study (24 September
2020); 20 days before the peak of the pandemic for each of the Mexican states examined;
peak day; and 10, 20, and 30 days after the peak of cases was reached. The models were
compared in pairs utilizing Vuong’s test, a classical likelihood ratio approach to model
selection for nested and non-nested models, which uses the Kulback–Leiber information
criterion [27]. The hypotheses for Vuong’s model selection test are:

Hypothesis 1 (H1). Model fits are equal for the focal population.

Hypothesis 2A (H2A). Model 1 fits better than Model 2.

Hypothesis 2B (H2B). Model 2 fits better than Model 1.

Thus, the results will provide a p-value from Vuong’s test that can be compared to a
significance level α and aid in selecting the model that best fits the data. Graphically, we
can observe in Figure 3 the approximate modeling of the pandemic, as well as identify the
peak (when there is a change in the growth rate) and the steps where the models of interest
in the project will be used.
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4. Results

Table 1 displays the dates when COVID-19 cases peaked at the national level and in
the three Mexican states selected for the study.
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Table 1. COVID-19 peak dates.

Peak Date

Mexico (national level) 1 August
Campeche 25 July

Quintana Roo 23 July
Tamaulipas 1 August

As previously mentioned, the proposed models were adjusted to six time periods. We
used Voung’s test for each time point to see which model fit best. The p-values obtained
via Voung’s test for the alternative Hypothesis 2A (H2A) can be seen in Table 2. Note that
the p-values for the alternative Hypothesis 2B (H2B) were the complement of the p-values
for the alternative Hypothesis 2A (H2A). For example, comparing the polynomial and
logistic models, in Table 2, we can see the p-value obtained for the state of Tamaulipas
on 24 September was 0.9650 for the H2A and its complement 0.0350 was the p-value for
the H2B. At the significance level α = 0.05, we rejected the null hypothesis in favor of H2B,
suggesting that the logistic model fits the data better than the polynomial model.

Table 2. Vuong’s model selection test p-values corresponding to the H2A for the two-step proposed models.

Date Models (Model 1–Model 2) Mexico Campeche Quintana Roo Tamaulipas

24 September
Polynomial–Logistic 0.9650 1.0000 1.0000 0.9743

Polynomial–Gompertz 0.9864 1.0000 0.9741 0.9803
Logistic–Gompertz 0.9610 0.0000 0.0000 0.0957

20 days after the peak day
Polynomial–Logistic 0.0637 0.9748 0.9997 0.9277

Polynomial–Gompertz 0.5343 0.9912 0.9994 0.9309
Logistic–Gompertz 0.9799 0.0777 0.0003 0.1960

Peak day
Polynomial–Logistic 0.3932 0.6168 0.0149 0.8275

Polynomial–Gompertz 0.8866 0.6665 0.0003 0.7908
Logistic–Gompertz 0.8212 0.4220 0.4723 0.1727

10 days before peak day
Polynomial–Logistic 0.0682 0.8993 0.1991 0.3957

Polynomial–Gompertz 0.9541 0.6958 0.0500 0.7888
Logistic–Gompertz 0.9948 0.0560 0.2450 0.6750

20 days before peak day
Polynomial–Logistic 0.2028 0.8738 0.9384 0.9199

Polynomial–Gompertz 0.8593 0.9521 0.9321 0.8577
Polynomial–Gompertz 0.9641 0.7659 0.1079 0.0749

30 days before peak day
Polynomial–Logistic 0.5677 0.8874 0.3875 0.9423

Polynomial–Gompertz 0.9256 0.8919 0.6584 0.7892
Logistic–Gompertz 0.9737 0.0730 0.8777 0.3109

H2A: Model 1 fits better than Model 2. If p < 0.05, Model 1 has better fit; if p > 0.95, Model 2 has better fit. If 0.05 < p < 0.95, both models fit.

Table 3 summarizes which models fit better for each region at each of the six time
periods examined. In general, it is easy to see that the nonlinear growth models did not fit
better than the polynomial models on dates before and during the peak of the first wave
of the pandemic was reached. On the other hand, when examining the dates prior to the
first wave peak of the pandemic, we found a negligible difference between the models.
More importantly, examinations of model comparisons between dates before and during
the peak of the pandemic revealed that no model worked better than any other. That is, in
terms of modeling the growth rate of COVID-19 cases, there was no difference between
the models. However, in the late phase of the pandemic, after the inflection point, the
nonlinear growth models performed better than the polynomial model fit.
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Table 3. Model comparison summary according to Vuong’s test.

Date Mexico Campeche QRR Tamaulipas

24 September Gompertz Logistic Logistic Gompertz, logistic
20 days after the peak day Any Gompertz, logistic Logistic Any

Peak day Any Any Polynomial Any
10 days before peak day Gompertz Any Any Any
20 days before peak day Any Any Any Any
30 days before peak day Any Any Any Any

Polynomial and nonlinear growth models were useful for modeling the beginning
of the epidemic (see Figure 1) until reaching the maximum peak of daily cases for the
pandemic [5]. On the other hand, nonlinear growth models were more accurate and
effective when more information was available, and the maximum peak of daily cases was
reached. Furthermore, time series models allowed for practical real-time monitoring of
when (a) exponential growth was beginning, (b) exponential growth was in effect, and (c)
exponential growth was about to end, which indicated that the epidemic was reaching its
end. Finally, the nonlinear growth models allowed for describing the behavior at the end
of the pandemic and monitoring and detecting a possible second wave of the epidemic. In
general, the logistic and Gompertz models had the better fit. For example, for the state of
Tamaulipas, we used the Gompertz model, which was one of the models with better fit
for the peak point + 20 days. We could estimate the maximum number of COVID-19 cases
β1 = 63,640, the cases’ growth speed β2 = 0.0156, and the initial number of cases β3 = 162.

4.1. Model Performance

Once the models were estimated, it was possible to predict the total cases and the most
recent information on rates (or percentage) of positive active COVID-19, outpatients, stable
hospitalized patients, seriously hospitalized patients, and intubated hospitalized patients.
Likewise, with the information from the SENTINEL Prevention Model, we estimated the
total number of asymptomatic COVID-19 positive cases. Figures 4–7 show the cumulative
total cases of COVID-19 through 15 October (21 days out of the initial sample which was
24 September) for the four case studies (solid black line). These figures also show, with
a red line, the point predictions made by each of the three models, as well as the area
covered by the prediction intervals of said estimates with gray shading. In Figure 4, we
can observe that the predictions made by the logistic and Gompertz models were relatively
good, but not so in the case of the polynomial model, which even predicted a decrease
in the total accumulated cases (which was not possible in the context studied). Figure 5
corresponds to the state of Tamaulipas—in this figure, we can see that the worst predictions
were also made by the polynomial model. In Figure 6, we can see the predictions for the
state of Quintana Roo, wherein the model that best made predictions was the logistic one,
and the total number of cases was overestimated by the two other models. Regarding the
predictions made for the country, in Figure 7, we can see that the best predictions, by far,
were made by the Gompertz model. Table 4 shows the root mean square error (RMSE) of
each model proposed for the three state case studies and at the national level at the six time
periods of interest.



Mathematics 2021, 9, 2180 9 of 17

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 17 
 

 

4.1. Model Performance 

Once the models were estimated, it was possible to predict the total cases and the 

most recent information on rates (or percentage) of positive active COVID-19, outpatients, 

stable hospitalized patients, seriously hospitalized patients, and intubated hospitalized 

patients. Likewise, with the information from the SENTINEL Prevention Model, we esti-

mated the total number of asymptomatic COVID-19 positive cases. Figures 4–7 show the 

cumulative total cases of COVID-19 through 15 October (21 days out of the initial sample 

which was 24 September) for the four case studies (solid black line). These figures also 

show, with a red line, the point predictions made by each of the three models, as well as 

the area covered by the prediction intervals of said estimates with gray shading. In Figure 

4, we can observe that the predictions made by the logistic and Gompertz models were 

relatively good, but not so in the case of the polynomial model, which even predicted a 

decrease in the total accumulated cases (which was not possible in the context studied). 

Figure 5 corresponds to the state of Tamaulipas—in this figure, we can see that the worst 

predictions were also made by the polynomial model. In Figure 6, we can see the predic-

tions for the state of Quintana Roo, wherein the model that best made predictions was the 

logistic one, and the total number of cases was overestimated by the two other models. 

Regarding the predictions made for the country, in Figure 7, we can see that the best pre-

dictions, by far, were made by the Gompertz model. Table 4 shows the root mean square 

error (RMSE) of each model proposed for the three state case studies and at the national 

level at the six time periods of interest. 

 

Figure 4. Forecast for total accumulated cases at 21 days for the state of Campeche. Figure 4. Forecast for total accumulated cases at 21 days for the state of Campeche.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. Forecast for total accumulated cases at 21 days for the state of Tamaulipas. 

 

Figure 6. Forecast for total accumulated cases at 21 days for the state of Quintana Roo. 

Figure 5. Forecast for total accumulated cases at 21 days for the state of Tamaulipas.



Mathematics 2021, 9, 2180 10 of 17

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. Forecast for total accumulated cases at 21 days for the state of Tamaulipas. 

 

Figure 6. Forecast for total accumulated cases at 21 days for the state of Quintana Roo. Figure 6. Forecast for total accumulated cases at 21 days for the state of Quintana Roo.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 7. Forecast for total accumulated cases at 21 days at the national level in Mexico. 

Table 4. Root mean square error (RMSE) values for the four case studies for three different models examined. 

Date Models Mexico Campeche Quintana Roo Tamaulipas 

24 September 

Polynomial  631.68 17.68 27.29 120.98 

Logistic 608.40 13.15 24.76 113.62 

Gompertz 593.07 14.75 26.70 118.01 

20 days after the peak 

day 

Polynomial  557.91 15.13 27.21 127.13 

Logistic 577.16 13.81 25.19 121.63 

Gompertz 556.36 14.37 26.25 123.51 

Peak day 

Polynomial  495.67 11.00 21.93 88.45 

Logistic 498.42 10.87 22.44 81.66 

Gompertz 482.74 10.92 22.45 85.92 

10 days before peak 

day 

Polynomial  427.87 8.07 16.01 50.46 

Logistic 436.88 7.77 16.20 50.73 

Gompertz 406.15 8.02 16.26 50.20 

20 days before peak 

day 

Polynomial  386.63 6.33 13.79 42.74 

Logistic 392.59 6.27 13.46 41.11 

Gompertz 374.12 6.25 13.60 42.39 

30 days before peak 

day 

Polynomial  326.50 5.72 11.45 30.72 

Logistic 325.06 5.43 11.55 30.21 

Gompertz 303.46 5.51 11.37 30.48 

Smaller values of RMSE value being lower indicate better fit. 

As a result of the 21-day predictions mentioned above, the number of new cases of 

COVID-19 can be obtained, and the results for the four case studies and the three models 

are shown in Tables 5–8. These results are based on the official data source of the daily 

releases issued by the Mexican Secretaria de Salud on its website https://corona-

virus.gob.mx/as of 15 October 2020 [5]. 
  

Figure 7. Forecast for total accumulated cases at 21 days at the national level in Mexico.



Mathematics 2021, 9, 2180 11 of 17

Table 4. Root mean square error (RMSE) values for the four case studies for three different models examined.

Date Models Mexico Campeche Quintana Roo Tamaulipas

24 September
Polynomial 631.68 17.68 27.29 120.98

Logistic 608.40 13.15 24.76 113.62
Gompertz 593.07 14.75 26.70 118.01

20 days after the peak day
Polynomial 557.91 15.13 27.21 127.13

Logistic 577.16 13.81 25.19 121.63
Gompertz 556.36 14.37 26.25 123.51

Peak day
Polynomial 495.67 11.00 21.93 88.45

Logistic 498.42 10.87 22.44 81.66
Gompertz 482.74 10.92 22.45 85.92

10 days before peak day
Polynomial 427.87 8.07 16.01 50.46

Logistic 436.88 7.77 16.20 50.73
Gompertz 406.15 8.02 16.26 50.20

20 days before peak day
Polynomial 386.63 6.33 13.79 42.74

Logistic 392.59 6.27 13.46 41.11
Gompertz 374.12 6.25 13.60 42.39

30 days before peak day
Polynomial 326.50 5.72 11.45 30.72

Logistic 325.06 5.43 11.55 30.21
Gompertz 303.46 5.51 11.37 30.48

Smaller values of RMSE value being lower indicate better fit.

As a result of the 21-day predictions mentioned above, the number of new cases of
COVID-19 can be obtained, and the results for the four case studies and the three models are
shown in Tables 5–8. These results are based on the official data source of the daily releases
issued by the Mexican Secretaria de Salud on its website https://coronavirus.gob.mx/as
of 15 October 2020 [5].

Table 5. Daily new COVID-19 cases predicted from total cumulative cases in Mexico.

Polynomial Logistic Gompertz

Date Cases New Cases % Prediction
Error New Cases Accumulated New Cases Accumulated New Cases

9/24/20 715,457 3.40% 3.60% −0.11%
9/25/20 720,858 5401 3.48% 6001 −3.72% 2502 −0.16% 4285
9/26/20 726,431 5573 3.50% 5938 −4.16% 2407 −0.35% 4227
9/27/20 730,317 3886 3.74% 5924 −4.37% 2336 −0.30% 4182
9/28/20 733,717 3400 4.04% 5910 −4.51% 2267 −0.20% 4137
9/29/20 738,163 4446 4.19% 5896 −4.82% 2200 −0.25% 4092
9/30/20 743,216 5053 4.27% 5881 −5.22% 2134 −0.38% 4047
10/1/20 748,315 5099 4.34% 5866 −5.63% 2070 −0.53% 4003
10/2/20 753,090 4775 4.44% 5850 −6.00% 2007 −0.63% 3958
10/3/20 757,953 4863 4.53% 5833 −6.40% 1946 −0.76% 3914
10/4/20 761,665 3712 4.76% 5816 −6.63% 1886 −0.73% 3870
10/5/20 765,082 3417 5.02% 5798 −6.84% 1828 −0.67% 3826
10/6/20 769,558 4476 5.15% 5780 −7.20% 1772 −0.76% 3782
10/7/20 774,020 4462 5.27% 5762 −7.56% 1716 −0.85% 3739
10/8/20 779,127 5107 5.31% 5742 −8.02% 1663 −1.03% 3696
10/9/20 784,580 5453 5.31% 5723 −8.54% 1610 −1.26% 3652
10/10/20 789,779 5199 5.33% 5702 −9.02% 1559 −1.46% 3610
10/11/20 792,920 3141 5.60% 5682 −9.23% 1510 −1.40% 3567
10/12/20 796,399 3479 5.82% 5660 −9.49% 1462 −1.38% 3524
10/13/20 800,474 4075 5.96% 5639 −9.83% 1415 −1.45% 3482
10/14/20 805,512 5038 5.99% 5616 −10.32% 1369 −1.65% 3440
10/15/20 810,883 5371 5.98% 5593 −10.85% 1325 −1.89% 3399

https://coronavirus.gob.mx/as
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Table 6. Daily new COVID-19 cases predicted from total cumulative cases in the state of Campeche.

Polynomial Logistic Gompertz

Date Cases New Cases Accumulated New Cases Accumulated New Cases Accumulated New Cases

9/24/20 6027 2.64% −0.40% 2.90%
9/25/20 6033 6 2.57% 5 −0.48% 5 2.92% 15
9/26/20 6046 13 2.41% 3 −0.60% 5 2.93% 14
9/27/20 6056 10 2.27% 1 −0.68% 5 2.99% 14
9/28/20 6072 16 2.01% 0 −0.87% 5 2.95% 14
9/29/20 6076 4 1.92% −2 * −0.86% 5 3.09% 13
9/30/20 6089 13 1.66% −3 * −1.00% 4 3.08% 13
10/1/20 6106 17 1.31% −5 * −1.21% 4 3.00% 13
10/2/20 6116 10 1.05% −6 * −1.31% 4 3.03% 12
10/3/20 6128 12 0.73% −8 * −1.45% 4 3.02% 12
10/4/20 6143 15 0.33% −10 * −1.64% 4 2.96% 11
10/5/20 6155 12 −0.04% −11 * −1.78% 3 2.94% 11
10/6/20 6165 10 −0.41% −13 * −1.89% 3 2.95% 11
10/7/20 6173 8 −0.78% −15 * −1.97% 3 2.99% 11
10/8/20 6182 9 −1.20% −16 * −2.07% 3 3.00% 10
10/9/20 6191 9 −1.64% −18 * −2.17% 3 3.01% 10
10/10/20 6194 3 −2.02% −20 * −2.18% 3 3.11% 10
10/11/20 6209 15 −2.63% −21 * −2.39% 2 3.02% 9
10/12/20 6224 15 −3.28% −23 * −2.59% 2 2.92% 9
10/13/20 6230 6 −3.81% −25 * −2.66% 2 2.96% 9
10/14/20 6237 7 −4.39% −27 * −2.74% 2 2.98% 9
10/15/20 6246 9 −5.05% −29 * −2.85% 2 2.97% 8

* Due to the nature of the polynomial model that was used only for Stage I, we predicted a decrease in the total number of cases accumulated
that did not match reality, as we can see from the negative numbers. The table above reflects the disadvantage of this type of model.

Table 7. Daily new COVID-19 cases predicted from total cumulative cases in the state of Quintana Roo.

Polynomial Logistic Gompertz

Date Cases New Cases Accumulated New Cases Accumulated New Cases Accumulated New Cases

9/24/20 11,455 5.13% 0.30% 3.80%
9/25/20 11,500 45 5.03% 77 0.02% 39 3.96% 66
9/26/20 11,583 83 4.93% 75 −0.41% 34 3.79% 65
9/27/20 11,621 38 5.19% 74 −0.46% 32 3.99% 65
9/28/20 11,653 32 5.49% 73 −0.46% 31 4.23% 64
9/29/20 11,693 40 5.72% 72 −0.54% 31 4.40% 63
9/30/20 11,742 49 5.87% 72 −0.71% 30 4.49% 63
10/1/20 11,832 90 5.68% 71 −1.23% 29 4.24% 62
10/2/20 11,888 56 5.76% 70 −1.47% 28 4.26% 61
10/3/20 11,956 68 5.74% 69 −1.82% 27 4.18% 61
10/4/20 12,013 57 5.79% 68 −2.08% 26 4.18% 60
10/5/20 12,048 35 6.01% 67 −2.16% 25 4.36% 59
10/6/20 12,055 7 6.44% 66 −2.01% 24 4.74% 58
10/7/20 12,146 91 6.21% 65 −2.57% 24 4.46% 58
10/8/20 12,172 26 6.48% 65 −2.59% 23 4.68% 57
10/9/20 12,179 7 6.88% 64 −2.46% 22 5.05% 56
10/10/20 12,189 10 7.25% 63 −2.36% 21 5.38% 56
10/11/20 12,241 52 7.29% 62 −2.62% 21 5.38% 55
10/12/20 12,347 106 6.91% 61 −3.34% 20 4.96% 54
10/13/20 12,366 19 7.19% 60 −3.33% 19 5.21% 54
10/14/20 12,405 39 7.30% 59 −3.50% 19 5.30% 53
10/15/20 12,447 42 7.39% 58 −3.69% 18 5.35% 52
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Table 8. Daily new COVID-19 cases predicted from total cumulative cases in the state of Tamaulipas.

Polynomial Logistic Gompertz

Date Cases New Cases Accumulated New Cases Accumulated New Cases Accumulated New Cases

9/24/20 28,159 7.60% −1.20% 2.30%
9/25/20 28,320 161 7.85% 295 −1.30% 85 2.35% 165
9/26/20 28,454 134 8.29% 294 −1.48% 82 2.44% 162
9/27/20 28,534 80 8.90% 294 −1.48% 79 2.69% 159
9/28/20 28,606 72 9.52% 294 −1.46% 76 2.96% 156
9/29/20 28,764 158 9.86% 293 −1.76% 73 2.93% 153
9/30/20 28,847 83 10.42% 293 −1.80% 70 3.14% 151
10/1/20 28,946 99 10.92% 293 −1.91% 67 3.29% 148
10/2/20 29,085 139 11.29% 292 −2.17% 64 3.29% 145
10/3/20 29,224 139 11.65% 292 −2.44% 61 3.29% 143
10/4/20 29,266 42 12.30% 292 −2.37% 59 3.60% 140
10/5/20 29,319 53 12.90% 291 −2.36% 56 3.86% 138
10/6/20 29,364 45 13.51% 291 −2.32% 54 4.14% 135
10/7/20 29,496 132 13.86% 290 −2.60% 52 4.12% 133
10/8/20 29,617 121 14.23% 289 −2.84% 49 4.13% 130
10/9/20 29,719 102 14.65% 289 −3.03% 47 4.20% 128
10/10/20 29,813 94 15.08% 288 −3.19% 45 4.28% 125
10/11/20 29,873 60 15.60% 288 −3.24% 43 4.47% 123
10/12/20 29,877 4 16.27% 287 −3.11% 41 4.82% 121
10/13/20 30,073 196 16.39% 286 −3.64% 40 4.56% 118
10/14/20 30,104 31 16.97% 286 −3.62% 38 4.81% 116
10/15/20 30,224 120 17.28% 285 −3.90% 36 4.78% 114

4.2. Autocorrelation

An autoregressive model was fitted to the residuals of the logistics and Gompertz
models estimated in a single stage to eliminate the autocorrelation. We fit an autoregressive
model to the logistic and Gompertz functions to eliminate the residual autocorrelation.
The analysis revealed that the inclusion of an autoregressive component of the second
order improved the fit of the data. For example, for the state of Aguascalientes, Figure 8a,b
shows the autocorrelation residual and partial autocorrelation plots for models without
the autoregressive terms. In these figures, it is clear that the residuals show a pattern of
dependency. Furthermore, Figure 8c,d demonstrates a good fit, and there is no evidence
of linear relationship. The patterns in the data revealed that nonlinear models with au-
toregressive terms met assumptions of independence. The models showed good fit while
accounting for autocorrelation of residuals while providing better interpretability of the
model coefficients in terms of growth rate, maximum number of cases, and initial number
of cases. Thus, the model proposed in this paper produces a substantial improvement of
the predictions.
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5. Conclusions

The modeling of the COVID-19 cases is a unique challenge for statisticians, considering
the fact that the data are limited and there are often delays in updating the data. Our
approach to modeling the pandemic can provide assistance to decision-making officials
for containing and anticipating a “second wave” of the COVID-19 pandemic in Mexico.
We divided the pandemic data into two stages, and at each stage, three two-step models
were adjusted. In Stage I, as can be seen in Table 3, the polynomial model of order three
with an autoregressive error component of order one was computed through applying
the Prais–Winsten or Cochrane–Orcutt estimation, which had a better performance than
nonlinear growth models. In Stage II, after the peak of COVID-19 cases, two-step nonlinear
growth models outperformed the polynomial model. Further, the models used in this
paper were different than those used in predictive models using time series or machine
learning; however, our model met the assumption of independence of residuals, and the
interpretability of our model was superior to those of machine learning—particularly for
government officials without a statistics or machine learning background.

Although it is not the objective of this research, another purpose for the proposed
models concerns the identification of the peak of the pandemic. That is, an analytical way
to know if the pandemic is currently in a period of growth, peak, or decline of sustained
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cases is through the adjustments of the models. For example, at the moment that any of the
non-linear growth models fits significantly better than the other models, we will be at the
point of sustained reduction of daily cases, which would mean that the peak has already
passed, and that said model must be used to make predictions of total cases and obtain
insights of the pandemic at that point.

In summary, this paper showed the efficacy of utilizing two different types of models
estimated in two stages (stages depending on the state of the pandemic). The majority of
the efforts to model the COVID-19 pandemic are nonlinear models, such as logistic and
Gompertz [4,5]. However, these models do not take into account autoregression, thus
possibly skewing short-, medium-, and long-term predictions. In contrast with the SIR
models, where it is necessary to fix or assume a few initial parameters, our proposed
models do not require initial parameter assumptions. Our first recommendation, due to
simplicity in fitting the model, is that in the early stages of the pandemic where there was an
exponential growth (during or before the peak), one should utilize a polynomial model of
the third order estimated with an autoregressive component. Our second recommendation
is that for the later, more advanced stages when the peak of the pandemic was reached,
one should utilize a nonlinear growth model (logistic or Gompertz) estimated with an
autoregressive component. In the event that two models show the best fit, if any of
these is the polynomial model, it will be necessary to question whether it is in the public
health decisionmakers’ interest to have insights (provided by the βs of the non-linear
growth models) of the current state of the pandemic; if yes, then we recommend using
the non-linear growth model. In the opposite case, where it is not in the interest of the
decisionmakers to know insights of the pandemic, the use of the polynomial model is
recommended since it does not require initial values for its estimation. Another scenario
could be that within the tie, there are two linear growth models, wherein either of the two
can be used.

This research is not without limitations. The projections resulting from the models
were estimated without considering any type of intervention. In other words, the interven-
tion effects—such as mask mandates, lockdowns, social distancing, or vaccines—are not
considered in our models. Any of the aforementioned variables should be considered with
care. Regarding vaccination, as this article was being written, there was no official site of the
Mexican government where the total number of people vaccinated could be retrieved, only
unofficial sites where progress is reported; however, these numbers are not trustworthy.
Regarding the measures of lockdowns and use of face masks, given the federal nature of
the country, the states of the republic are free to take or not take actions on their population;
thus, to analyze any variable of this nature, an exhaustive study must be carried out on the
states that took similar measures, and the effect of these measures must be evaluated by
means of an effect or additive or multiplicative variable in the statistical model.

Due to the characteristics of the models used, the atypical characteristics of the COVID-
19 pandemic, and the results and information derived from the monitoring strategy—well
known in epidemiology science as SENTINEL Prevention Model—the following should
be considered:

The data show a lot of variability from one day to another. Part of the noise caused by
the dynamics of new case records was smoothed out by pre-processing the data (moving
average) and the AR (1) component of the model; in future work, to further reduce the noise,
we could add complex structures in the residuals, such as ARMA, ARIMA, or SARIMA.
Furthermore, at the time of the data cut-off date, the second wave of the pandemic had
not yet occurred. In the event that it is required to use this model for a second wave of
the pandemic, care must be taken with the estimation of the components of the non-linear
models (specifically the autoregressive and nonlinear component). That is, the nonlinear
models used are not designed to model spikes in cases (second wave or third waves),
and this will affect the estimation of parameters—such as growth speed, maximum cases,
and the autoregressive component—being able to obtain estimates out of context of the
pandemic (very high or low numbers), or uniroot problems in the time series component.
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As previously mentioned, the residual autocorrelation analysis was performed, look-
ing for linear autocorrelations. Regarding the precision of the predictions, future research
will focus on comparing our proposed models against machine learning and artificial
intelligence models. In some cases, such as the state of Aguascalientes, it was necessary to
add a second order autoregressive component.

The benefit of utilizing a second-order autoregressive component is shown in Table 9
for the state of Aguascalientes (before 20 August 2020). For the Gompertz nonlinear
growth model, we corrected for the dependency between observations by including an
autocorrelation term of the second order in the model that considerably improved the
overall fit criteria. Thus, we recommend the inclusion of an autoregressive term of the
second order when modeling COVID-19 case growth.

Table 9. Comparison models by goodness of fit criteria for the state of Aguascalientes.

Model Type Durbin–Watson AIC BIC

Gompertz (3, 139) = 0.0569 1509.95 1519.08
Gompertz + AR (1) (4, 139) = 1.1040 968.83 980.56
Gompertz + AR (1) + AR (2) (5, 139) = 2.2986 * 937.6 952.27

* p-value > 0.05 taken from Durbin–Watson statistical table values.
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