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Abstract: In this paper, we review two related aspects of field theory: the modeling of the fields
by means of exterior algebra and calculus, and the derivation of the field dynamics, i.e., the Euler–
Lagrange equations, by means of the stationary action principle. In contrast to the usual tensorial
derivation of these equations for field theories, that gives separate equations for the field components,
two related coordinate-free forms of the Euler–Lagrange equations are derived. These alternative
forms of the equations, reminiscent of the formulae of vector calculus, are expressed in terms of
vector derivatives of the Lagrangian density. The first form is valid for a generic Lagrangian density
that only depends on the first-order derivatives of the field. The second form, expressed in exterior
algebra notation, is specific to the case when the Lagrangian density is a function of the exterior and
interior derivatives of the multivector field. As an application, a Lagrangian density for generalized
electromagnetic multivector fields of arbitrary grade is postulated and shown to have, by taking the
vector derivative of the Lagrangian density, the generalized Maxwell equations as Euler–Lagrange
equations.

Keywords: Euler–Lagrange equations; exterior algebra; exterior calculus; tensor calculus; action
principle; Lagrangian; electromagnetism; Maxwell equations

MSC: primary 37J05; secondary 15A75

1. Introduction

In classical mechanics, the action is a scalar quantity, with units of energy ˆ time, that
encodes the dynamical evolution of a given physical system; mathematically, the action
is given by an integral functional of the trajectory or dynamical path (or an integral of
the Lagrangian density for field theories) followed by the physical system over space-
time. The principle of stationary action states that the actual dynamical path followed
by the system, subject to some appropriate boundary constraints, possibly at infinity,
corresponds to a stationary point of the action [1] (Ch. 19), [2] (Section 8). An application
of the principle yields the Euler–Lagrange equations, which describe the dynamics of the
system [3] (Section I.3), [4] (Section 3.1), [5] (Section 7.2). The historical development of the
stationary-action principle—in essence, a far-reaching generalization of Fermat’s principle—
that states that light follows the shortest-time path between two points is described in
detail in [6] (Section X).

This paper revisits the derivation of the Euler–Lagrange equations for field theories
from the principle of stationary action from the point of view of exterior algebra and
calculus. There exist several alternative mathematical representations for the fields, ranging
from the original vector calculus by Gibbs [7] and Heaviside to geometric and Clifford
algebras [8], where vectors are replaced by multivectors and operations such as the cross
and the dot products subsumed in the geometric product; a modern perspective on the use
of geometric algbra in physics is given in [9]. Early in the 20th century, tensors such as the
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Faraday tensor in electromagnetism were quickly and almost universally adopted as the
natural mathematical representation of fields in space-time [10] (pp. 135–144). In parallel,
mathematicians such as Cartan generalized the fundamental theorems of vector calculus
i.e., Gauss, Green, and Stokes, by means of differential forms [11]. Later on, differential
forms were used in Hamiltonian mechanics, e.g., to calculate trajectories as vector field
integrals [12] (pp. 194–198).

Since differential forms may be seen as the circulation or flux over appropriate space-
time regions of multivector fields, it may be preferable in some contexts to directly study
the multivector fields. Therefore, we build our analysis on the exterior algebra originally
developed by Grassmann [13], which has comparatively received little attention in the
literature and leads to simple formulae that merge the simplicity and intuitiveness of
standard vector calculus with the power of tensors and differential forms [14,15].

In Section 2, we provide the necessary background on exterior algebra and calculus,
including the important notion of multivector-valued derivative with respect to a vector
v. Then, we obtain in Section 3 two related coordinate-free forms of the Euler–Lagrange
equations for the dynamics of a multivector field a of grade r as vector derivatives of the
Lagrangian density L.

Our work is related to the geometric–algebraic multivectorial formulation of the Euler–
Lagrange equations in [16] (Equations (4.7) and (4.8)). The first form in (39) is valid for a
generic Lagrangian density that only depends on the first-order derivatives of the field,
more specifically on the tensor derivative BBB b a in (27), and is given by

BaL “ BBB ˆ
`

BBBBbaL
˘

, (1)

as a function of the vector and matrix derivatives BaL and BBBBbaL in (28) and (29), respec-
tively. The pk ` nq-dimensional differential operator BBB is defined in (20); together with
the matrix product ˆ defined in (19), the operation in the right-hand side generalizes the
concept of the divergence of a field. The second form (47), expressed in exterior algebra
notation, is specific to the case when the Lagrangian density depends only on exterior (de-
noted by BBB^; see (21)) and interior derivatives (denoted by BBB ; see (22)) of the multivector
field, and is given by

BaL “ p´1qr´1BBB
`

BBBB^aL
˘

` p´1qrBBB ^
`

BBBB aL
˘

, (2)

where r is the grade of the multivector field a. A complementary analysis, which shows
the invariance of the action to infinitesimal space–time translations in exterior algebra, was
conducted in [17], where the stress–energy–momentum tensor is evaluated and profusely
discussed. We conclude the paper in Section 4 with an application of our analysis to
a Lagrangian density for generalized electromagnetic multivector fields that leads, by
directly taking the vector derivative of the Lagrangian density, to the generalized Maxwell
equations for multivector fields of grade r [15]. We also provide a short discussion, of
independent interest, of a dual form of Maxwell equations where the exterior derivative is
replaced by the interior derivative in the definition of the field from the potential.

2. Fundamentals of Exterior Algebra and Calculus: Notation, Definitions,
and Operations
2.1. Multivector Fields

While our space-time has four space-time dimensions in relativistic terms, it will
prove convenient to consider a generic flat space-time Rk`n with k temporal dimensions
and n spatial dimensions, as this generality allows for a more natural description of the
underlying algebraic structure of the equations and of their derivations. Points and position
in space-time are denoted by x, with components xi in the canonical basis teiu

k`n´1
i“0 ; by

convention, the first k indices, i.e., i “ 0, . . . , k´ 1, correspond to time components while the
indices i “ k, . . . , k` n´ 1 represent space components. We let space and time coordinates
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have the same units. Although we shall not make use of this fact, space-time vectors
transform contravariantly under changes of coordinates.

In exterior algebra, one considers vector spaces whose basis elements eI are indexed
by lists I “ pi1, . . . , imq drawn from Im, the set of all ordered lists with m nonrepeated
indices, with m P I “ t0, 1 . . . , k` n}. Later on, in (6), we express the basis elements eI in
terms of the vectorial canonical basis ei, for an ordered list i1, . . . , im. These vectors, which
we identify with fields, live in the tangent space and transform covariantly under changes
of coordinates [18] (Ch. 2), [19] (Ch. V). We refer to elements of these vector field spaces as
multivector fields of grade m. While multivector fields do not cover all relevant physical
models, e.g., spinor fields or the tensor field in general relativity, they do model a number
of interesting cases; for instance, a scalar field is represented by multivectors of grade 0, the
electric field, the electromagnetic vector potential and source current by multivectors of
grade 1, and the electromagnetic field by a multivector of grade 2. A multivector field apxq
of grade m, possibly a function of the position x, with components aIpxq in the canonical
basis teIuIPIm can be written as

apxq “
ÿ

IPIm

aIpxqeI . (3)

We denote by grpaq the operation that returns the grade of a vector a and by |I| the
length of a list I. The dimension of the vector space of all grade m multivectors is

`k`n
m
˘

,
the number of lists in Im.

2.2. Operations on Index Lists

As the basis elements of multivector fields are indexed by lists I, it proves conve-
nient to define some basic operations on such lists: permutations and their signatures,
concatenations (mergers), and subtractions of lists.

First of all, if the list I is not ordered, let σpIq denote the signature of the permutation
sorting the elements of I in increasing order. If the permutation is even (resp. odd), the
signature is `1 (resp. ´1). If the list I contains repeated indices, its signature is 0.

More generally, for two index lists I and J with respective lenghts m “ |I| and m1 “ |J|,
let pI, Jq “ ti1, . . . , im, j1, . . . , jm1u be the concatenation of the two index lists I and J. We
let σpI, Jq denote the signature of the permutation sorting the concatenated list of |I|` |J|
indices, and let I ` J, or εpI, Jq if the notation I ` J is ambiguous in a given context, denote
the sorted concatenated list, which we refer to as merged list.

In general, we view the lists as ordered sets, and apply standard operations on sets
to the lists. For instance, I is contained in J, the list JzI is the result of removing from J
all the elements in I, while keeping the order. As another example, we denote by Ic the
complement of I, namely the ordered sequence of indices not included in I. We denote the
empty list byH; it holds that σpH, Kq “ σpK,Hq “ 1 for an ordered list K, and that eH “ 1.

2.3. Operations on Multivectors

We next define several operations acting on multivectors; our presentation loosely
follows [14] (Sections 2 and 3) and [15] (Section 2) and is close in spirit and form to vector
calculus. Introductions to exterior algebra from the perspective and language of differential
forms can be found in [18,19]. A geometric algebra perspective can be found in [9]. With
no real loss of generality, we define the operations only for the canonical basis vectors, the
operation acting on general multivectors being a mere extension by linearity of the former.

First, the dot product ¨ of two arbitrary grade m basis vectors eI and eJ is defined as

eI ¨ eJ “ ∆I J “ ∆i1 j1 ∆i2 j2 . . . ∆im jm , (4)

where I and J are the ordered lists I “ pi1, i2, . . . , imq and J “ pj1, j2, . . . , jmq and ∆ij “ 0 if
i ‰ j, and we let time unit vectors ei have negative metric ∆ii “ ´1 and space unit vectors
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ei have positive metric ∆ii “ `1. When m “ 0, we interpret the dot product in (4) as 1 since
eH “ 1.

The following operations to be defined are the interior and exterior products, which
subsume and generalize the operations of gradient, curl, and divergence of vector calculus
to multivector fields. These operations transform pairs of multivectors into a multivector
of a different grade, introducing in the process some signs, i.e., ˘1. When these signs
are related to the dot product in (4), we explicitly write the signs as quantities such as
∆I J . Other sign contributions arise from the signatures of permutations ordering lists of
indices. A common practice in the literature to deal with these signatures is to write factors
such as p´1q|I|`|J|. However, it seems more convenient to explicitly keep track of the lists
and write the permutation associated to this factor, e.g., σpI, Jq, as clearer connections
between different formulae can be established by harnessing the power of group theory for
permutations.

Let two basis vectors eI and eJ have grades m “ |I| and m1 “ |J|. As defined in
Section 2.2, let pI, Jq “ ti1, . . . , im, j1, . . . , jm1u be the concatenation of the two index lists
I and J, let σpI, Jq denote the signature of the permutation sorting the elements of this
concatenated list.

Then, the exterior product of eI and eJ is defined as

eI ^ eJ “ σpI, JqeI`J . (5)

The exterior product is thus either zero or a multivector of grade |I| ` |J|, since
σpI, Jq “ 0 when the lists I and J have elements in common. The unit scalar (multivector of
grade 0) is an identity of the exterior product, as 1^ eI “ eI ^ 1 “ eI . The exterior product
provides a construction of the basis vector eI , with I an ordered list I “ pi1, . . . , imq, from
the canonical basis vectors ei, namely

eI “ ei1 ^ ei2 ^ ¨ ¨ ¨ ^ eim . (6)

When I “ H, we adopt the usual convention that the right-hand side is 1.
We next define two generalizations of the dot product, the left and right interior

products. Let eI and eJ be two basis vectors of respective grades |I| and |J|. The left interior
product, denoted by , is defined as

eI eJ “

#

∆I IσpJzI, IqeJzI , if I Ď J,
0, otherwise.

(7)

Although we might have overloaded the meaning of σpJzI, Iq to be zero when I Ę J,
we prefer to list the separate cases in (7). The vector eJzI has grade |J|´ |I| and is indexed
by the elements of J not in common with I. The use of the word left represents the fact that
eI acts from the left on eJ and removes the elements in I from J.

Analogously, the right interior product, denoted by , of two basis vectors eI and eJ
is defined as

eJ eI “

#

∆I IσpI, JzIqeJzI , if I Ď J,
0, otherwise.

(8)

As in the previous case, the use of the word right represents the fact that eI acts from
the right on eJ and removes the elements in I from J. The unit scalar (multivector of grade
0) acting from the left (resp. right) is an identity of the left (resp. right) interior product, as
1 eI “ eI 1 “ eI .

It proves instructive to evaluate the left and right interior products between two
multivectors of the same grade, i.e., if |I| “ |J|. From (7) and (8), and taking into account
that σpH, Kq “ σpK,Hq “ 1 for an ordered list K, and that eH “ 1, we see that

eI eJ “ eJ eI “ eI ¨ eJ , if |I| “ |J|, (9)
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supporting the idea that the interior products generalize the dot product. Both interior prod-
ucts are grade-lowering operations, as the interior product is either zero or a multivector of
grade |J|´ |I|.

Finally, we define the complement of a multivector. For a multivector eI with grade m,
its Grassmann or Hodge complement, denoted by eH

I , is the unit pk` n´mq-vector

eH
I “ ∆I IσpI, IcqeIc , (10)

where Ic is the complement of the list I and σpI, Icq is the signature of the permutation
sorting the elements of the concatenated list pI, Icq containing all space-time indices. In
other words, eIc is the basis multivector of grade k ` n ´ m whose indices are in the
complement of I. In addition, we define the inverse complement transformation as

eH´1
I “ ∆Ic Ic σpIc, IqeIc . (11)

The interior products are not independent operations from the exterior product, as
they can be expressed in terms of the latter, the Hodge complement and its inverse:

eI eJ “
`

eI ^ eH
J
˘H´1

, (12)

eJ eI “
`

eH´1
J ^ eI

˘H. (13)

The vector calculus cross product between two vectors in R3 can be expressed in
several alternative ways in terms of the interior, and exterior products and Hodge dual [14]
(Equation (18)). This fact allows us to distinguish various roles that the cross product takes
in Maxwell equations and lies at the origin of generalized electromagnetism described by
multivectors in generic flat space-time [15].

2.4. Matrix Vector Spaces

We do not need to consider general tensor fields but rather the matrix field (vector)
space whose basis elements can be represented as wI1,I2 , where both I1 and I2 are ordered
lists of nonrepeated `1 and `2 elements, respectively. We may identify these basis elements
with the tensor product of two multivectors of grade `1 and `2, namely

wI1,I2 “ eI1 b eI2 . (14)

The dimension of the vector space spanned by these basis elements is
`k`n

`1

˘`k`n
`2

˘

; the
elements of this vector space can be identified with matrices A whose rows and columns
are indexed by lists, I1 P I`1 and I2 P I`2 , respectively,

A “
ÿ

I1PI`1
,I2PI`2

AI1 I2wI1,I2 . (15)

The transpose of a matrix element wI1,I2 , denoted as wT
I1,I2

, is defined as wI2,I1 . These
matrices, the underlying vector space, and the operations that we describe next are funda-
mental in the study of changes of coordinates in space-time. However, consideration of
these changes is beyond the scope of this paper. To any extent, this short section provides
a perspective on matrices from the point of view of exterior algebra, highlighting the
connections between multivectors and matrices, and bypassing the standard introduction
of tensor fields.

As we did with multivectors, we consider the dot product ¨ of two arbitrary matrix
basis elements wI1,I2 and wJ1,J2 . This dot product is written

wI1,I2 ¨wJ1,J2 “ ∆I1 J1 ∆I2 J2 . (16)
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The ordering within the pairs pI1, I2q and pJ1, J2q is important in (16). This dot product,
when applied to two matrices, is seen to give their Frobenius inner product, or equivalently,
the square of the Frobenius norm (also known as the Hilbert–Schmidt norm) [20] when the
product is of a matrix with itself.

We also define the matrix product ˆ between two matrix basis elements wI,J and wK,L
as

wI,J ˆwK,L “ wI,L∆JK, (17)

an operation that coincides with the standard product of two matrices for matrices labeled
by spatial indices. For square matrices A indexed by grade m multivectors, it is natural
to define the matrix inverse (whenever the inverse exists), denoted as A´1, such that
A´1 ˆA “ Im “ AˆA´1, where the grade ` square identity matrix, denoted by I`, is
given by

I` “
ÿ

IPI`

∆I IwI,I . (18)

Last, we define the matrix product ˆ between a matrix wI,J and a multivector eK (or
between a multivector eK and the matrix wJ,I , i.e., the transpose of wI,J) as

wI,J ˆ eK “ eK ˆwJ,I “ eI∆JK, (19)

a generalization of the idea of multiplication of a row (or column) vector by a matrix.

2.5. Exterior and Matrix Calculus

In vector calculus, extensive use is made of the partial time derivative, Bt, and the nabla
operator ∇ of partial space derivatives. In our case, we need the generalization to pk, nq
space-time to the differential vector operator BBB, defined as p´B0,´B1, . . . ,´Bk´1, Bk, . . . , Bk`n´1q,
that is,

BBB “
ÿ

iPI
∆iieiBi. (20)

As was done in [14] (Section 3), we define the exterior derivative, BBB ^ a, of a given
multivector field a of grade m as

BBB ^ a “
ÿ

iPI ,IPIm : iRI

∆iiσpi, IqBiaI ei`I . (21)

The grade of the exterior derivative of a is m` 1, unless m “ k` n, in which case the
exterior derivative is zero. In addition, we define the interior derivative, BBB a, of a as

BBB a “
ÿ

iPI ,IPIm : iPI

σpIzi, iqBiaI eIzi. (22)

The grade of the interior derivative of a is m´ 1, unless m “ 0, in which case the
interior derivative is zero.

The formulae for the exterior and interior derivatives allow us to recover some stan-
dard formulae in vector calculus. For a scalar function φ, its gradient is given by its exterior
derivative ∇φ “ BBB ^ φ, while for a vector field v, its divergence ∇ ¨ v is given by its interior
derivative ∇ ¨ v “ BBB v.

Also, for a vector fields v in R3, taking into account [14] (Equation (18)), the curl can
be variously expressed as ∇ˆ v “ p∇^ vqH´1

“ ∇ vH´1
“ ∇ vH, thereby generalizing

both the cross product and the curl to grade m vector fields in space-time algebras with
different dimensions. Specific vector calculus formulae such as that for the divergence of



Mathematics 2021, 9, 2178 7 of 16

a gradient or the curl of the curl of a vector can be seen as instances of general exterior
calculus formulae such as [14] (Equation (38)) and [15] (Equation (35)),

BBB pa^ bq “ apBBB ¨ bq ´ pBBB ¨ aqb, (23)

BBB ¨ pa bq “ pBBB ^ aq ¨ b` p´1qgrpaqpBBB bq ¨ a, (24)

where in (23), a and b are 1-vectors, while in (24), a and b are ps´ 1q-vector and s-vector,
respectively.

The exterior and interior derivatives satisfy the property BBB ^ pBBB ^ aq “ 0 “ BBB pBBB aq,
for a general twice-differentiable multivector field a. These identities imply the well-known
facts that the curl of the gradient and the divergence of the curl are zero.

The circulation Cpa,V `q and the flux Fpa,V `q of a multivector field a over an `-
dimensional space-time hypervolume V ` are defined as integrals of interior products
of the field with infinitesimal integration volumes:

Cpa,V `q “

ż

V `
d`x a, (25)

Fpa,V `q “

ż

V `
d`xH´1

a. (26)

As a specific example for (26), the flux of a field over an pk` nq-dimensional hypervol-
ume is the volume integral of the field. For both of these operations, the interior product in
the integrand is expressed as a differential form, which allows us to invoke the theory of
differential forms to prove a Stokes theorem. This Stokes theorem relates the circulation
(resp. the flux) of the field over the boundary of some hypervolume to the circulation
(resp. flux) over the same hypervolume of the exterior (resp. interior) derivative of the
multivector field.

We also define the tensor derivative of a, BBB b a, of a given vector field a of grade m as

BBB b a “
ÿ

iPI ,IPIm

∆iiBiaI wi,I , (27)

where wi,I is a matrix vector space basis element.
To conclude this section, we define a derivative operator with respect to an element of

a vector space, e.g., a multivector field or a matrix. A relevant example of vector derivative
operator is BBB, where the derivative is taken with respect to the position vector x. In general,
the vector derivative operator with respect to a multivector field a of grade m (resp. matrix
A of dimensions `1 ˆ `2) is a multivector field (resp. matrix) denoted by Ba (resp. BA) [21]
and given by

Ba “
B

Ba
“

ÿ

IPIm

∆I IeI
B

BaI
, (28)

BA “
B

BA
“

ÿ

IPI`1
,JPI`2

∆I I∆J JwI,J
B

BAI,J
. (29)

Specifically, we shall later need the exterior vector derivative of a scalar function gpxq,
denoted by Ba ^ gpxq or with some abuse of notation simply by Ba gpxq, and given by

Ba ^ gpxq “ Ba gpxq “
ÿ

IPIm

∆I IeI
Bgpxq
BaI

, (30)

and similarly for the matrix derivative. This exterior vector derivative is thus some form of
generalized gradient. We shall need the derivative of a scalar function given by a quadratic
form in the field and/or its interior or exterior derivatives. Let a and b represent two
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vectors of the same grade. Evaluation of the vector derivatives is straightforward and
coincides with the infinitesimal calculus expressions [21]:

Ba pa ¨ aq “ 2a (31)

Ba pa ¨ bq “ b. (32)

3. Principle of Stationary Action: Derivation of the Euler–Lagrange Equations
3.1. General Case: Lagrangian Dependent on the Tensor Derivative

As we briefly reviewed in the Introduction, in classical mechanics, one defines the
action S as a scalar quantity, with units of energy ˆ time, that encodes the dynamical
evolution of a physical system. Mathematically, the action S is an integral functional of
the trajectory or path over space-time, or of the Lagrangian density Lpxq for field theories,
followed by the physical system. The principle of stationary action states the the path
actually followed by the system, e.g., the field dynamics, corresponds to a stationary point
of the action [1] (Ch. 19), [2] (Section 8).

In general, the application of the principle of stationary action gives the Euler–
Lagrange equations, which describe the dynamics of the system [3] (Section I.3), [4] (Section
3.1), [5] (Section 7.2). We start by reviewing how to obtain these equations in coordinate-free
form with tensorial notation. Differently from the usual approach, that gives the dynamics
for the individual components of the field, our coordinate-free derivation directly works
with some twice-differentiable multivector field

a of grade s and its tensor derivative BBB b a in (27).
For a given region R that comprises the physical system under consideration, let the

action Spaq be given by

Spaq “
ż

R
dk`nxLpa, BBB b aq. (33)

We assume that the region R is large enough to make the physical system closed, and
that the fields decay fast enough over R so that the flux of the fields over the boundary of
R is negligible. We note that the Lagrangian density L is a real-valued function of the

`k`n
s
˘

components of a and the pk` nq
`k`n

s
˘

components of BBB b a, and the Lagrangian density
does not depend explicitly on the space-time components.

Let the field a be infinitesimally perturbed by an amount aε, possibly dependent
on the space-time coordinates, so that the field is transformed as a Ñ a ` aε and the
tensor derivative is transformed as BBB b a Ñ BBB b a` BBB b aε. We assume that aε is twice
differentiable. We can expand the Lagrangian density in a first-order multivariate Taylor
series, where the matrix of partial derivatives with respect to the pk` n` 1q

`k`n
s
˘

variables
is a block matrix having along the diagonal the vector derivatives BaL and BBBBbaL of the
density L with respect to the field a and its tensorial derivative BBBBba, defined in (28) and
(29), respectively. Neglecting terms of second and higher order in the perturbation aε and
grouping terms in the Taylor series yields

Spa` aεq “

ż

R
dk`nx

´

L` pBaLq ¨ aε ` pBBBBbaLq ¨ pBBB b aεq

¯

. (34)

We may thus evaluate the first-order change of action δS as

δS “ Spa` aεq ´ Spaq “
ż

R
dk`nx

´

pBaLq ¨ aε ` pBBBBbaLq ¨ pBBB b aεq

¯

, (35)

always neglecting all the contributions of order paεq
2 or higher in the action change.

Next, we note the following Leibniz product rule, an equality between scalar quantities
proved in Appendix A.1, for a multivector field a and a matrix field B with basis wi,I ,
involving the product ˆ defined in (19),

BBB ¨ pBˆ aq “ pBBB ˆBq ¨ a`B ¨ pBBB b aq. (36)
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Choosing a “ aε and B “ BBBBbaL in (36), we can then rewrite Equation (35) as

δS “
ż

R
dk`nx

´

BaL´ BBB ˆ
`

BBBBbaL
˘

¯

¨ aε `

ż

R
dk`nx BBB ¨

´

`

BBBBbaL
˘

ˆ aε

¯

. (37)

We identify the second integrand with a flux (26) over an pk` nq-dimensional hyper-
volume R and use the Stokes theorem [14] (Section 3.5) to rewrite the flux of the interior
derivative of a vector field as the flux of the field itself across the region boundary BR. The
second integral in (37) then vanishes if we assume that the field a and its perturbation aε

vanish sufficiently fast at infinity.
Under this assumption, if the change of action is zero for any perturbation of the field

aε, the integrand in the first summand of (37) must be identically zero. Setting to zero
the quantity between parentheses in the integrand yields the coordinate-free form of the
Euler–Lagrangian equations,

BaL “ BBB ˆ pBBBBbaLq, (38)

BL
Ba
“ BBB ˆ

ˆ

BL
BpBBB b aq

˙

. (39)

Both expressions in (38) and (39) are equivalent since they only differ in the notation
for the vector derivative. It is also possible to recover a component form of the Euler–
Lagrange equations from (39) [3] (Section I.3), [4] (Section 3.1), [5] (Section 7.2). Explicitly
writing out the definitions in (28) and (29), we obtain the standard formula for each I P Im,

BL
BaI

“
ÿ

iPI
Bi

ˆ

BL
BpBiaIq

˙

. (40)

In general, the use of coordinate-free expression as in (39) is closer to the common
practice of vector calculus and allows us to better identify the algebraic structure of the
underlying equations, which gets obscured when the components are used. Moreover,
expressions as (39) are better suited to generalizations, or more properly, particularizations,
to exterior calculus when the Lagrangian depends on the exterior and interior derivatives
of the field, rather than the tensor derivative. This case is explored and analyzed in the
next subsection.

3.2. Derivation of the Euler–Lagrange Equations in Exterior Algebraic Form

For electromagnetism, the Lagrangian density Lpxq is a function of the vector potential
A, the bivector field F, and the source density vector J. Expressed in exterior calculus
notation, the Lagrangian density is given by

Lpxq “ ´ 1
2 F ¨ F` J ¨A. (41)

Remark 1. If the field is represented by an antisymmetric tensor of rank 2, the factor before F ¨ F
becomes ´ 1

4 to account for the repeated sum over pairs of indices [3] (Section I.5), [4] (Section 3.5),
[2] (Section 27).

The Lagrangian density depends on the field through the potential A and its exterior
derivative F “ BBB ^A [15] (Section 3). Instead of using (39), which was derived from the
assumption that the Lagrangian density depends explicitly only the field and its tensor
derivative, it is worth obtaining the Euler–Lagrange equations when the Lagrangian
density is a function of a generic multivector field a of grade s, and its exterior and interior
derivatives.

As in (33), for a given region R that comprises the physical system under consideration,
and assumed to be large enough to make the physical system closed so that the fields decay
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fast enough over R and the flux of the fields over the boundary of R is arbitrarily small,
the action Spaq is given by the integral

Spaq “
ż

R
dk`nxLpa, BBB ^ a, BBB aq. (42)

Again, for an infinitesimal perturbation of the field aε, and neglecting all the contribu-
tions of order paεq

2 or higher in the Taylor expansion of the Lagrangian density and the
action, the first-order change in action δS is given by

δS “
ż

R
dk`nx

´

pBaLq ¨ aε ` pBBBB^aLq ¨ pBBB ^ aεq ` pBBBB aLq ¨ pBBB aεq

¯

. (43)

From (35) in [15], given a vector a and a vector b of grade grpaq ` 1, the Leibniz
product rule in (24) holds.

Choosing a “ aε and b “ BBBB^aL (resp. a “ BBBB aL and b “ aε) in the second (resp.
third) summand inside the integral, substituting these values in (24) and the result back
into (43), we obtain

δS “
ş

R dk`nx
´

BaL` p´1qs`1BBB pBBBB^aLq ´ p´1qs´1BBB ^ pBBBB aLq
¯

¨ aε

`
ş

R dk`nx BBB ¨
´

aε pBBBB^aLq ` p´1qspBBBB aLq aε

¯

. (44)

In the second integrand, a flux over the pk ` nq-dimensional region R, the Stokes
theorem [14] (Section 3.5) allows us to rewrite the flux of the interior derivative as the
flux across the region boundary BR. As both the field a and its perturbation aε vanish
sufficiently fast at infinity, the first-order change in action is given by

δS “
ż

R
dk`nx

´

BaL` p´1qs`1BBB pBBBB^aLq ´ p´1qs´1BBB ^ pBBBB aLq
¯

¨ aε. (45)

and the principle of stationary action, namely that the first-order change in action identically
vanishes, leads to the coordinate-free form of the Euler–Lagrange equations, in one of the
two equivalent forms:

BaL “ p´1qsBBB pBBBB^aLq ´ p´1qsBBB ^ pBBBB aLq (46)

BL
Ba
“ p´1qsBBB

ˆ

BL
BpBBB ^ aq

˙

´ p´1qsBBB ^
ˆ

BL
BpBBB aq

˙

. (47)

It might appear that the tensorial and multivectorial expressions in (39) and (47) differ.
If the Lagrangian density depends on the tensor derivative only through the interior and
exterior derivatives, we verify in Appendix A.2 that both expressions are indeed identical
and the following identity holds:

BBB ˆ

ˆ

BL
BpBBB b aq

˙

“ p´1qsBBB
ˆ

BL
BpBBB ^ aq

˙

´ p´1qsBBB ^
ˆ

BL
BpBBB aq

˙

. (48)

4. Application to Generalized Electromagnetism: Maxwell Equations
4.1. Generalized Maxwell Equations

As application of the methods derived in the previous section, we study the general-
ized Maxwell equations [15] and their associated fields. For a given natural number r, the
Maxwell field Fpxq and the generalized source density Jpxq are respectively characterized
by multivector fields of grade r and r´ 1 at every point x of the flat pk, nq-space-time [15]
(Section 3).

The potential field Apxq is a multivector field of grade r´ 1 such that

F “ BBB ^A. (49)
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If we replace the potential A by a new field A1 “ A ` Ā ` BBB ^G, where Ā is a
constant pr´ 1q-vector and G is an pr´ 2q-vector gauge field, the homogenous Maxwell
Equation (51) is unchanged [15] (Section 3). For a given Maxwell field, there is therefore
some unavoidable (gauge) ambiguity on the value of the vector potential.

Scalar fields are given by the vector potential by setting r “ 1 in Minkowski space-
time, namely k “ 1 and n “ 3. For classical electromagnetism (r “ 2, k “ 1, n “ 3), the
bivector field is usually expressed as an antisymmetric tensor of rank 2; electrostatics and
magnetostatics are recovered for k “ 0, n “ 3, by setting r “ 1 and r “ 2, respectively. The
generalized Maxwell equations for arbitrary values of r, k, and n are the following pair of
coupled differential equations:

BBB F “ J, (50)

BBB ^ F “ 0. (51)

The interior derivative in (50) and the exterior derivative in (51) are respectively
defined in (22) and (21). As we stated in Section 2.5, the interior derivative lowers the grade
by one, while the exterior derivative increases the grade by one; therefore, Equation (50) is
an identity of pr´ 1q-vectors while Equation (51) is an identity of pr` 1q-vectors.

4.2. Lagrangian Density for Generalized Electromagnetism

For electromagnetism, the Lagrangian density Lpxq is a function of the potential A,
the Maxwell field F, and the source density J. Expressed in exterior calculus notation, we
postulate the generalized Lagrangian density to be

Lpxq “ p´1qr´1

2
F ¨ F` J ¨A. (52)

For classical electromagnetism (r “ 2, k “ 1, n “ 3), if the field is expressed as an
antisymmetric tensor of rank 2 the factor before F ¨ F becomes´ 1

4 , see Remark 1. In contrast,
for electrostatics (r “ 1, k “ 0, n “ 3), the Lagrangian density is given by L “ 1

2 E ¨ E` ρφ,
where E is the electric field, ρ the charge density, and φ is the opposite in sign of the usual
electric potential, that is, E “ BBB ^ φ “ ∇φ [1] (Ch. 19).

While the Lagrangian in (52) leads to the generalized Maxwell Equations (50) and (51),
as we shall see in the following section, it is not the most general Lagrangian associated to
electromagnetism. Two terms that can be added to it respectively deal with the hypothetical
mass of the photon, that is, the Proca term [4] (p. 107), [22] (Section 12.8), and a gauge-fixing
term that appears in the context of quantization of the electromagnetic field [3] (Section
II.7), [4] (Section 7.1). This general Lagrangian density for electromagnetism is now given
by

Lpxq “ p´1qr´1

2
F ¨ F` J ¨A´

1
2

m2A ¨A`
p´1qr´1

2ξ
pBBB Aq ¨ pBBB Aq, (53)

where m is the hypothetical photon mass and ξ is a parameter that determines the so-called
Rξ gauge; for ξ “ 1, we have the Feynman gauge, and in the limit ξ Ñ 0, we have the
Landau gauge.

4.3. Euler–Lagrange Equations

For Lagrangian densities such as (52) or (53), which are essentially quadratic forms
in the field and/or its interior or exterior derivatives, evaluation of the vector derivatives
is straightforward, as the derivative has the same form as that obtained in infinitesimal
calculus for the derivative of a polynomial (31) and (32). For the Lagrangian density in
(52), evaluation of the derivatives in the Euler–Lagrange Equation (47) give

BAL “ J, (54)

BBBB^AL “ p´1qr´1pBBB ^Aq, (55)
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from which the Euler–Lagrange equations themselves (46), with s “ r´ 1, can be expressed as

J “ BBB pBBB ^Aq “ BBB F, (56)

namely the generalized nonhomogenous Maxwell Equation (50) for arbitrary r, k, and n.
The homogeneous Maxwell Equation (51) is also satisfied as a consequence of the definition
of F “ BBB ^A.

The exterior algebraic formulation of the Lagrangian and the Euler–Lagrange equa-
tions brings the advantage of allowing for a more direct derivation of the Maxwell equa-
tions, since evaluation of the vector derivatives mimicks more closely the steps carried out
in usual differential calculus to evaluate the derivatives.

The factor p´1qr´1 in the Lagrangian density is needed to compensate for the identical
term p´1qr´1 that appears in the Euler–Lagrange Equation (47). An alternative way of
writing the Lagrangian density, without this sign factor, would involve replacing one
of the exterior derivatives BBB ^A by a right exterior derivative A^ BBB, where the partial
derivative operator is understood to act from the right on the potential. In this case, the
skew commutativity of the wedge product, BBB ^A “ p´1qr´1pA^ BBBq [14] (Section 2.2),
cancels the sign in the Lagrangian density and results in a somewhat neater expression for
it.

As for the Lagrangian density in (53), evaluation of the derivatives in the Euler–
Lagrange Equation (47) give

BAL “ J´m2A, (57)

BBBB^AL “ p´1qr´1pBBB ^Aq, (58)

BBBB AL “ p´1qr´1 1
ξ
pBBB Aq, (59)

from which the Euler–Lagrange Equation (46) with the Proca and quantization Rξ-gauge
terms become

BBB pBBB ^Aq `m2A “ J`
1
ξ
BBB ^ pBBB Aq. (60)

Using the relationship (34) in [15], we may rewrite (60) in an alternative form with a
wave equation,

p´1qr´1pBBB ¨ BBBqA`m2A “ J`
ˆ

1
ξ
´ 1

˙

BBB ^ pBBB Aq, (61)

which somewhat simplifies in the Feynman gauge, for which ξ “ 1.

4.4. Dual Generalized Maxwell Equations

An interesting dual form of Maxwell equations is obtained by swapping the roles
played by the interior and exterior derivatives in the Lagrangian density and the Maxwell
equations themselves. Let the “potential” Ā and “source density” J̄ be multivectors of
grade s, and let us define a dual Maxwell field F̄ of grade r “ s´ 1 by F̄ “ BBB Ā. The
Lagrangian density is now given by

Lpxq “ p´1qr

2
pBBB Āq ¨ pBBB Āq ` J̄ ¨ Ā (62)

“
1
2
pBBB Āq ¨ pĀ BBBq ` J̄ ¨ Ā, (63)

where we used the relationship between left and right interior derivatives BBB Ā “

p´1qs`1pĀ BBBq to write (63). Direct evaluation of the Euler–Lagrange Equation (47), with
r “ s´ 1, gives

J̄ “ BBB ^ F̄. (64)
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This nonhomogeneous “Maxwell” equation is complemented by a homogeneous
equation BBB F̄ “ 0, itself a consequence of the definition of F̄ as F̄ “ BBB Ā.

As it happened with the generalized Maxwell equations, the exterior algebraic for-
mulation of the Lagrangian and the Euler–Lagrange equations allows for a more direct
derivation of the dual Maxwell equations. An interesting question, which we do not
dwell upon as it lies beyond the scope of this paper, is whether the physics of the dual
Maxwell equations is different from the usual Maxwell equations, or simply involves a
transformation of the fields, potential, and source density, with no new phenomena. Along
this direction, and leaving the details left as an exercise to the reader, it is relatively easy
to verify that one obtains a wave equation relating Ā and J̄ in a “Lorenz gauge” where
BBB ^ Ā “ 0. Solutions to this wave equation have several independent degrees of free-
dom or polarizations. The number of these polarizations is

`k`n´2
r´1

˘

, as for the standard
Maxwell Equation [15] (Section 4.3); this number can be justified as the number of possible
pr ` 1q-vectors where two dimensions, one temporal and one spatial are fixed, and the
remaining r` 1´ 2 “ r´ 1 indices have to be filled with k` n´ 2 possible values. We
also have a “Lorentz force” density f “ J̄ F̄ such that a conservation law holds for the
stress–energy-momentum tensor Tem of the field [15] (Appendix A.2), as for the usual
Maxwell equations.
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Appendix A

Appendix A.1. Proof of the Leibniz Product Rule in (36)

Let us consider a multivector field a of grade m and a matrix field B with basis
wi,I “ ei b eI , where |I| “ m. Using the definitions of dot and matrix product (4) and (19),
the first term of the right-hand side of (36) is evaluated as

pBBB ˆBq ¨ a “

˜

ÿ

i,jPI ,JPIm

∆iiBibj,J ei ˆ pej b eJq

¸

¨

˜

ÿ

IPIm

aI eI

¸

(A1)

“

˜

ÿ

iPI ,JPIm

Bibi,J eJ

¸

¨

˜

ÿ

IPIm

aI eI

¸

(A2)

“
ÿ

iPI ,IPIm

∆I I aIBibi,I , (A3)

where in (A1), we wrote the components of BBBB and a, in (A2), we computed the matrix
product and removed the j index, and in (A3), we carried out the dot product and removed
the J index.
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In turn, the second term in the right-hand side of (36) can similarly be evaluated using
the dot and times products in (16) and (19) as

B ¨ pBBB b aq “

˜

ÿ

iPI ,IPIm

bi,I ei b eI

¸

¨

˜

ÿ

jPI ,JPIm

∆jjBjaJ ej b eJ

¸

(A4)

“
ÿ

iPI ,IPIm

∆I Ibi,IBiaI . (A5)

Next, using again the definitions of dot and matrix product (4) and (17), the left-hand
side of (36) becomes

BBB ¨ pBˆ aq “

˜

ÿ

iPI
∆iiei

B

Bxi

¸

¨

˜

ÿ

IPIm

ÿ

jPI ,JPIm

aIbj,Jpej b eJq ˆ eI

¸

(A6)

“

˜

ÿ

iPI
∆iiei

B

Bxi

¸

¨

˜

ÿ

jPI ,IPIm

aIbj,I∆I Iej

¸

(A7)

“
ÿ

iPI ,IPIm

∆I IBi
`

aIbi,I
˘

. (A8)

Summing (A3) and (A5) and applying the rule for the derivative of a product yields
the desired (36).

Appendix A.2. Identity between Tensorial and Exterior Algebraic Euler–Lagrange Equations

Since both the exterior and interior derivatives are surjective linear functions of the
tensor derivative, the respective vector derivatives of the Lagrangian density are related.
Each component of the exterior and interior derivatives (21) and (22) is a scalar (affine)
function of several distinct components of the tensor derivative. The Lagrangian density
depends on the components of the tensor derivative only through these scalar functions.
We thus need to compute the derivative of a function L

`

g1pzq, . . . , g`pzq
˘

, where z stands
for a vector with the `1 “ pk` nq

`k`n
s
˘

components of the tensor derivative, and pg1, . . . , g`q
are the (differentiable) functions that give the components of the exterior (resp. interior)
derivative from the tensor derivative, where ` “

`k`n
s`1

˘

(resp. ` “
`k`n

s´1

˘

). By construction,
a given zk “ BjaJ appears only in one gipzq, the I component of either the exterior or the
interior derivative. In the former case, I “ j` J, in the latter case I “ Jzj. .

From the definition of partial derivative, and for any i “ 1, . . . , `, we have the relation

BL
Bgipzq

“ lim
hÑ0

L
`

g1pzq, . . . , gipzq ` h, . . . , g`pzq
˘

´L
`

g1pzq, . . . , g`pzq
˘

h
. (A9)

Then, assuming that Bgipzq
Bzk

‰ 0 and defining h1ik “
h

Bgi{Bzk
, we can then write for every

value of k such that the partial derivative zk “ BjaJ appears gipzq,

gipzq ` h “ gipzq ` h1ik
Bgipzq
Bzk

» gipz1, . . . , zk ` h1ik, . . . , z`1q, (A10)

where we used the differentiablility of the function gi. Substituting (A10) back into (A9)
yields

BL
Bgipzq

“
1

Bgi{Bzk
lim

h1ikÑ0

L
`

g1pzq,¨ ¨ ¨ , gipz1,¨ ¨ ¨ , zk ` h1ik,¨ ¨ ¨ , z`1q,¨ ¨ ¨ , g`pzq
˘

´L
`

g1pzq,¨ ¨ ¨ , g`pzq
˘

h1ik
. (A11)
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Since the zk component appears only in one of the functions gi, the limit in (A11) is
the partial derivative of the Lagrangian density with respect to the kth component of the
tensor derivative, for any k, that is,

BL
Bgipzq

“
1

Bgi{Bzk

BL
Bzk

. (A12)

We now proceed to evaluate the vector derivative with respect to the exterior deriva-
tive. First, we have

BL
BpBBB ^ aq

“
ÿ

IPIs`1

BL
BpBBB ^ aqI

∆I IeI , (A13)

where the Ith component of the exterior derivative, pBBB ^ aqI is the equivalent of gipzq
in (A12). The equivalent of k is any pair of j and J P Is such that I “ j ` J and the
corresponding zk is BjaJ . The partial derivative Bgi{Bzk in (A12) is thus ∆jjσpj, Jq, of value
˘1, and we therefore have for any pair of i and J P Is such that I “ j` J that

BL
BpBBB ^ aqI

“
1

∆jjσpj, Jq
BL

BpBjaJq
“ ∆jjσpj, Jq

BL
BpBjaJq

. (A14)

Substituting (A14) back in (A13) yields

BL
BpBBB ^ aq

“
ÿ

IPIs`1

BL
BpBjaJq

∆jj∆I Iσpj, JqeI , (A15)

where j and J are any pair such that I “ j` J. Now, taking the interior derivative of (A15),
we obtain for any j, J such that I “ j` J,

BBB

ˆ

BL
BpBBB ^ aq

˙

“
ÿ

iPI
∆iieiBi

˜

ÿ

IPIs`1

BL
BpBjaJq

∆jj∆I Iσpj, JqeI

¸

(A16)

“
ÿ

iPI ,IPIs`1 :iPI

∆ii∆I IBi

ˆ

BL
BpBiaIziq

˙

σpi, IziqσpIzi, iqeIzi, (A17)

where we have selected j “ i and, therefore, J “ Izi. We also note that σpi, IziqσpIzi, iq “
p´1qs.

We now evaluate the vector derivative with respect to the interior derivative in an
analogous manner,

BL
BpBBB aq

“
ÿ

IPIs´1

BL
BpBjaJq

∆I IσpJzj, jqeI , (A18)

where j and J are any pair such that I “ Jzj. Now, taking the exterior derivative of (A18),
we obtain, for any j, J such that I “ Jzj,

BBB ^

ˆ

BL
BpBBB aq

˙

“
ÿ

iPI
∆iieiBi ^

˜

ÿ

IPIs´1

BL
BpBjaJq

∆I IσpJzj, jqeI

¸

(A19)

“
ÿ

iPI ,IPIs´1 :iRI

∆ii∆I IBi

ˆ

BL
BpBiai`Iq

˙

σpI, iqσpi, Iqei`I , (A20)

where we have selected j “ i and, therefore, J “ i` I. We also note that σpI, iqσpi, Iq “
p´1qs´1.
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Putting (A17) and (A20), as well as the relationships between the product of permuta-
tion signatures, back into the right-hand side of (48) yields the expression

ÿ

iPI ,IPIs`1 :iPI

∆ii∆I IBi

ˆ

BL
BpBiaIziq

˙

eIzi `
ÿ

iPI ,IPIs´1 :iRI

∆ii∆I IBi

ˆ

BL
BpBiai`Iq

˙

ei`I . (A21)

Since the basis elements are multivectors with s components, we may rewrite (A21) as

ÿ

iPI ,IPIs :iRI

∆I IBi

ˆ

BL
BpBiaIq

˙

eI `
ÿ

iPI ,IPIs :iPI

∆I IBi

ˆ

BL
BpBiaIq

˙

eI . (A22)

The two summations in (A21) might be further combined in a single summation over
I P Is. The resulting expression coincides with the left-hand side of (48), which can be
expanded using the computation in (40) into

ÿ

i,IPIs

∆I IBi

ˆ

BL
BpBiaIq

˙

eI . (A23)
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