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Abstract: We used a Kurchatov-type accelerator to construct an iterative method with memory for
solving nonlinear systems, with sixth-order convergence. It was developed from an initial scheme
without memory, with order of convergence four. There exist few multidimensional schemes using
more than one previous iterate in the very recent literature, mostly with low orders of convergence.
The proposed scheme showed its efficiency and robustness in several numerical tests, where it was
also compared with the existing procedures with high orders of convergence. These numerical tests
included large nonlinear systems. In addition, we show that the proposed scheme has very stable
qualitative behavior, by means of the analysis of an associated multidimensional, real rational function
and also by means of a comparison of its basin of attraction with those of comparison methods.

Keywords: nonlinear systems of equations; iterative methods; acceleration of convergence; effi-
ciency; stability

1. Introduction

New and efficient iterative techniques are needed for obtaining the solution ξ of a
system of nonlinear equations of the form

F(x) = 0, (1)

where F : Ω ⊂ Rn → Rn, Ω ⊆ Rn being an open convex set, which is present in scientific,
engineering and various other models (details can be found in the articles [1–5]).

The search for the solution ξ ∈ Rn of the system F(x) = 0 is a much more complex
problem than finding a solution of a scalar equation f (x) = 0. As in the scalar case, we can
transform the original system into an equivalent system of the form:

x = G(x),

for a given vector function G : Rn → Rn, whose coordinate functions we will denote by gi

and i = 1, 2, . . . , n. Starting from an initial approximation x(0) = (x(0)1 , x(0)2 , . . . , x(0)n )T , we
can generate a succession of vectors of mathbbRn by means of the iterative formula

x(j+1) = G(x(j)), j = 0, 1, . . . , n, (2)

where x(j) = (x(j)
1 , x(j)

2 , . . . , x(j)
n )T ∈ Rn.

We say that the process is convergent if {x(j)} → ξ when j → ∞; then, ξ =
(ξ1, ξ2, . . . , ξn)T ∈ Rn will be, under certain conditions of the function G, a solution of the
system x = G(x). The vector ξ is called a fixed point of the function G and the algorithm
described by the Equation (2) is a fixed point method.
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A very important concept of iterative methods is their order of convergence, which
provides a measure of the speed of convergence. Let x(j)

j≥0 be a succession of vectors of
Rn such that they tend to the solution of the nonlinear system ξ when j tends to infinity.
The convergence of this sequence is said to be

(i) linear, if there exist M, 0 < M < 1 and j0 ∈ N such that ‖x(j+1) − ξ‖ ≤ M‖x(j) − ξ‖
for all j ≥ j0.

(ii) of order p, if there exist M > 0 and k0 ∈ N such that ‖x(j+1) − ξ‖ ≤ M‖x(j) − ξ‖p for
all j0.

This definition is independent of the norm of mathbbRn used.
We denote by e(j) = x(j) − ξ the error in the j-th iteration and call an error equa-

tion to the expression e(j+1) = Le(j)p
+ O

(
e(j)p+1)

, where L is a a p-linear function
L ∈ Lle f t(Rn,Rn,Rnright), and p is the order of convergence of the method.

The most known fixed-point iterative method is Newton’s scheme:

x(j+1) = x(j) − [F′(x(j))]−1F(x(j)), j = 0, 1, . . .

where F′ denotes the Jacobian matrix of operator F. However, there are many practical
situations where the calculations of a Jacobian matrix are computationally expensive,
and/or it requires a great deal of time for them to be given or calculated. Therefore,
derivative-free methods are quite popular for finding the roots of nonlinear equations and
systems of nonlinear equations.

The first multidimensional derivative-free method was proposed by Samanskii in [6],
by replacing the Jacobian matrix F′ with the divided difference operator:

x(j+1) = x(j) − [x(j) + F(x(j)), x(j); F]−1F(x(j)), j = 0, 1, . . .

This scheme keeps the quadratic order of convergence of Newton’s procedure. It is the
vectorial extension of scalar Steffensen’s method.

Later on, Traub defined a class of iterative methods (known as Traub-Steffensen’s
family) [7], given by

x(j+1) = x(j) − [u(j), x(j); F]−1F(x(j)), j = 0, 1, . . . (3)

where u(j) = x(j) + βF(x(j)). The class (3) can be easily recovered from Newton’s well-
known method [7] by replacing the Jacobian matrix with operator [u(j), x(j); F] ≈ F′(x(j)).
Let us remark that, for the particular value of β = 1 in expression (3), the deduced scheme
is Samanskii’s one.

In recent years, different scalar iterative schemes with memory have been designed
(a good overview can be found in [8]), mostly derivative-free ones. These have been
constructed with increasing orders of convergence, and therefore, with increasing com-
putational complexity. In terms of stability, some researchers compared the amplitude of
the set of initial points converging to the same attractor, using complex discrete dynamics
techniques. In [9], the authors observed that iterative schemes with seventh-order memory
convergence showed better stability properties than many eighth-order optimal procedures
without memory. This graphical comparison was subsequently used by different authors;
see, for example, the work of Wang et al. in [10] and Cordero et al. [11] in 2016 or the
investigations of Bakhtiari et al. [12] in 2016 and Howk et al. [13] in the following years.

Regarding nonlinear vectorial problems, some methods with memory have been
developed which improve the convergence rate of Steffensen’s method or Steffensen-type
methods at the expense of additional evaluations of vector functions, divided difference or
changes in the points of iterations. In past and recent years, a few high-order multi-point
extensions of Steffensen’s method or Steffensen-type methods have been proposed and
analyzed in the available literature [14–17] for solving nonlinear systems of equations.
All these modifications are in the direction of increasing the local order of convergence
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with the view of increasing their efficiency indices, as they usually do not involve new
functional evaluations. Therefore, these constructions occasionally possess a better order
of convergence and efficiency index, but there are very few iterative schemes of this kind
in the literature, due in part to their recent development and also due to the difficulty of
design and convergence analysis.

In 2020, Chicharro et al. [18] proposed such an extension, which is given by

w(j) = x(j) − [2x(j) − x(j−1), x(j−1); F]−1F(x(j)),

x(j+1) = x(j) − [w(j), x(j); F]−1F(x(j)),
(4)

and its higher-order version is

w(j) = x(j) − [2x(j) − x(j−1), x(j−1); F]−1F(x(j)),

y(j) = x(j) − [w(j), x(j); F]−1F(x(j)),

x(j+1) = y(j) − [w(j), y(j); F]−1F(y(j)).

(5)

The versions have third and fifth order of convergence, respectively. An extension of this
type was first reported by Chicharro et al. [18] based on Kurchatov’s divided difference op-
erator.

The authors developed in [19] a technique that, using multidimensional real discrete
dynamics tools, is able to analyze the stability of iterative schemes with memory, not only
in graphical terms, but essentially in analytical terms. Using this technique, the stability of
the fixed and critical points of secant, Steffensen’ and Kurchatov’s methods (among others)
were studied in [19]. It was also used to analyze other procedures, such as those described
in [20], the one defined by Choubey et al. in [21] and those by Chicharro et al. in [22–24].

The aim of this work was to produce two new schemes without and with memory
of orders four and six, respectively. Our scheme is also based on Kurchatov’s divided
difference operator. However, our scheme does not have only higher-order convergence,
unlike the recent scheme (5). However, we did not use any additional functional evaluation
of F or F′ (Jacobian matrix of F) or another iterative substep. We also provide a deep
analysis of the suggested scheme regarding the order of convergence (Section 2) and
its stability properties, constructing an associated multidimensional discrete dynamical
system. Therefore, the good performance in terms of convergence to the searched roots
and wideness of their basins of attraction is proven, as on polynomial functions as on
non-polynomial ones, in Section 3. In addition, we compare in Section 4 our methods to
the existing recent methods on several numerical problems with similar iterative structures.
On the basis of the results, we found that our methods perform better than the existing ones
when dealing with residual errors, the difference between two consecutive iterations and
stable computational order of convergence. Finally, some conclusions and the references
used bring this manuscript to an end.

2. Construction and Convergence of New Iterative Schemes

Combining the Traub-Steffensen family of methods and a second step with different
divided-difference operators, we propose the class of iterative schemes described as

y(j) = x(j) − [u(j), x(j); F]−1F(x(j)),

x(j+1) = y(j) − [y(j), x(j); F]−1[u(j), x(j); F][u(j), y(j); F]−1F(y(j)),
(6)

where u(j) = x(j) + βF(x(j)), β ∈ R. In order to analyze the convergence of schemes (6),
we need the definition of the divided difference operator as well as its Taylor’s expansion
(more details can be found in [5]).
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Lemma 1. Suppose F : Ω ⊂ Rn → Rn is k-times Fréchet differentiable in an open convex set Ω.
In addition, we assume that for any x, h,∈ Rj, the following expression holds:

F(x + h) = F(x) + F′(x)h +
1
2!

F′′(x)h2 +
1
3!

F′′′(x)h3 + · · ·+ 1
(k− 1)!

F(k−1)(x)hk−1 + Rk, (7)

where
‖Rk‖ ≤ sup

0≤t≤1
‖F(k)(x + th)‖‖h‖k and hk = (h, h, ..k., h).

Now, we can obtain the following Taylor series expansion of the divided difference operator,
by adopting the Genocchi–Hermite formula [5]:

[x + h, x; F] =
∫ 1

0
F′(x + th)dt, for all x, h ∈ Rj.

Then, we have

[x + h, x; F] =
∫ 1

0
F′(x + th)dt = F′(x) +

1
2!

F′′(x)h +
1
3!

F′′′(x)h2 +
1
4!

F′′′′(x)h3 + O(h4). (8)

Now, we are in a position to analyze the convergence order of proposed schemes (6), as we
can see in the following result. In it, I denotes the identity matrix of size n× n and F(k)(x)
can be considered as a k-linear operator:

F(k)(x) : Rn × · · · ×Rn → Rn, k = 1, 2, . . . .

Todeepen one’s understanding of the concepts of Taylor expansion using several variables,
we suggest references [5,25].

Theorem 1. Let F : Ω ⊆ Rn → Rn be a sufficiently differentiable function in an open convex
neighborhood Ω of a zero ξ. Suppose that F′(x) is a continuous and nonsingular at x = ξ and the
initial guess x(0) is close enough to ξ. Then, the iterative schemes defined by (6) have a fourth order
of convergence for every β, β 6= 0. They satisfy the following error equation:

e(j+1) = T2

(
I + βF′(α)

)
(2T2

2 − T3)
(

I + βF′(α)
)(

e(j))4
+ O

((
e(j))5

)
,

where e(j) = x(j) − ξ, j = 1, 2, . . . , Tk =
1
k! F′(ξ)−1F(k)(ξ), k = 2, 3, 4, . . .

Proof. Let e(j) = x(j) − ξ be the error of the jth-iteration and ξ ∈ Rn be a solution of F(x).
Then, developing F(x(j)) in the neighborhood of ξ, we have

F(x(j)) = F′(ξ)
[
e(j) + T2

(
e(j))2

+ T3
(
e(j))3

+ T4
(
e(j))4

+ T5
(
e(j))5

+ O
((

e(j))6
)]

, (9)

F′(x(j)) = F′(ξ)
[

I + 2T2e(j) + 3T3
(
e(j))2

+ 4T4
(
e(j))3

+ 5T5
(
e(j))4

+ O
((

e(j))5
)]

, (10)

F′′(x(j)) = F′(ξ)
[
2T2 + 6T3e(j) + 12T4

(
e(j))2

+ 20T5
(
e(j))3

+ O
((

e(j))4
)]

, (11)

and
F′′′(x(j)) = F′(ξ)

[
6T3 + 24T4e(j) + 60T5

(
e(j))2

+ O
((

e(j))3
)]

. (12)

By adopting the expressions (8)–(12), we obtain
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[
u(j), x(j); F

]
=F′(x(j)) +

1
2!

F′′(x(j))(u(j) − x(j)) +
1
3!

F′′′(x(j))(u(j) − x(j))2

+
1
4!

F′′′′(x(j))(u(j) − x(j))3 + O
(
(u(j) − x(j))4

)
=F′(ξ)

[
I + T2

(
2 + βF′(ξ)

)
e(j) +

(
3T3 + βT2F′(ξ)T2 + 3βT3F′(ξ) + β2T3F′(ξ)2)(e(j))2

+
(

βT2F′(ξ)T3 + 3βT3F′(ξ)T2 + 6βT4F′(ξ) + β2T3F′(ξ)T2

+ β2T3F′(ξ)T2F′(ξ) + 4β2T4F′(ξ)2 + 4T4
)(

e(j))3
+ O

((
e(j))4

)]
.

(13)

Inversion of
[
u(j), x(j); F

]
is given by

[
u(j), x(j); F

]−1
=
[

I + Z1e(j) + Z2
(
e(j))2

+ O
((

e(j))3
)]

F′(ξ)−1, (14)

where

Z1 = −2T2 − βT2F′(ξ),

Z2 = −3T3 + βT2F′(ξ)T2 + 2βT2
2 F′(ξ)− 3βT3F′(ξ)− β2T3F′(ξ)2 + β2T2F′(ξ)T2F′(ξ) + 4T2

2 .

Using expressions (9) and (14), we get[
u(j), x(j); F

]−1
F(x(j)) = −T2

(
I + βF′(ξ)

)(
e(j))2 −

[
2T3 − 2T2

2 − 2βT2
2 F′(ξ) + 3βT3F′(ξ)

+ β2T3F′(ξ)2 − β2T2F′(ξ)T2F′(ξ)
](

e(j))3
+ O

((
e(j))4

)
.

(15)

Now, use the expression (15) in the first substep of our proposed scheme (6). We have

y(j) − ξ = T2
(

I + βF′(ξ)
)(

e(j))2
+
[
2T3 − 2T2

2 − 2βT2
2 F′(ξ) + 3βT3F′(ξ)

+ β2T3F′(ξ)2 − β2T2F′(ξ)T2F′(ξ)
](

e(j))3
+ O

((
e(j))4

)
.

(16)

In a similar fashion as we did in expression (13), we can develop F(y(j)) and its derivatives
in the neighborhood of ξ, given by[

u(j), y(j); F
]
= F′(y(j)) +

1
2!

F′′(y(j))(u(j) − y(j)) +
1
3!

F′′′(y(j))(u(j) − y(j))2

+
1
4!

F′′′′(y(j))(u(j) − y(j))3 + O
(
(u(j) − y(j))4

)
= F′(ξ)

[
I + T2

(
I + βF′(ξ)

)
e(j) +

[
2T2

2
(

I + βF′(ξ)
)
+ T2

(
βF′(ξ)T2 − T2

− βT2F′(ξ)
)
+ T3

(
I + βF′(ξ)2)](e(j))2

+ O
((

e(j))3
)]

.

(17)

By using the property
[
u(j), y(j); F

]−1[
u(j), y(j); F

]
= I, we obtain[

u(j), y(j); F
]−1

=
[

I − T2
(

I + βF′(ξ)
)
e(j) +

(
− 2T2

2
(

I + βF′(ξ)
)
− T2

(
βF′(ξ)T2 − T2 − βT2F′(ξ)

)
− T3

(
I + βF′(ξ)

)2
+ T2

(
I + βF′(ξ)

)
T2
(

I + βF′(ξ)
))(

e(j))2
+ O

((
e(j))3

)]
F′(ξ)−1,

(18)

and similarly, we have[
y(j), x(j); F

]−1
=
[

I − T2e(j) +
(

T2
2 βF′(ξ)− T3

)2
+ O

((
e(j))3

)]
F′(ξ)−1. (19)
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By using the expressions (14) and (17)–(19) in the second substep of our scheme (6), the
error equation of our scheme (6) becomes:

e(j+1) =T2

(
1 + βF′(α)

)
(2T2

2 − T3)
(

1 + βF′(α)
)(

e(j))4
+ O

((
e(j))5

)
. (20)

Therefore, (6) is a parametric family of fourth-order iterative methods.

3. Extension to a Higher-Order Scheme with Memory

In this section, we construct a new scheme with memory based on our scheme (6),
without using any new functional evaluation. It is straightforward to say from error
Equation (20) that we can obtain a higher order of convergence by choosing β = −F′(ξ)−1.
However, we also know that the required solution ξ is unknown. We want to increase
the order of convergence without additional values of vector function or Jacobian matrix.
Therefore, we use one of the most efficient Kurchatov’s divided difference operators,[

2x(j) − x(j−1), x(j−1); F
]
, to approximate the value of F′(ξ), which is given by

F′(ξ) ≈
[
2x(j) − x(j−1), x(j−1); F

]
.

Then, we define

B := A(j) = −
[
2x(j) − x(j−1), x(j−1); F

]−1
≈ −F′(ξ)−1. (21)

Hence, from our scheme (6) we can deduce the following iterative method with mem-
ory:

y(j) = x(j) − [u(j), x(j); F]−1F(x(j)),

x(j+1) = y(j) − [y(j), x(j); F]−1[u(j), x(j); F][u(j), y(j); F]−1F(y(j)),
(22)

where u(j) = x(j) −
[
2x(j) − x(j−1), x(j−1); F

]−1
F(x(j)).

In the following result, we analyze the convergence order of scheme (22) with memory,
denoted by PM6.

Theorem 2. Let F : Ω ⊆ Rn → Rn be a sufficiently differentiable function in an open convex
neighborhood Ω of a zero of F, ξ. Suppose that F′(x) is continuous and non-singular in ξ. In
addition, the initial guesses x(0) and x(1) are close enough to the required solution ξ. Then, the
iterative scheme defined by (22) has sixth order of convergence.

Proof. In a similar way as we did in expressions (13) and (17), we expand[
2x(j) − x(j−1), x(j−1); F

]
in the neighborhood of ξ as

[
2x(j) − x(j−1), x(j−1); F

]
=F′(x(j−1)) +

1
2!

F′′(x(j−1))
(
2(e(j) − e(j−1))

)
+

1
3!

F′′′(x(j−1))
(
2(e(j) − e(j−1))

)2
+ O

((
e(j−1), e(j))3

)
,

=F′(ξ)
[

I + 2T2e(j) − 2T3e(j−1)e(j) + T3
(
e(j−1))2

− 4(T2
2 − T3)

(
e(j))2

+ O
((

e(j−1), e(j))3
)]

,

(23)
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where O
((

e(j−1), e(j))3
)

stands for the sum of the exponents of e(j−1) and e(j) is at mini-

mum 3. We obtain the inverse of
[
2x(j) − x(j−1), x(j−1); F

]
is given by

[
2x(j) − x(j−1), x(j−1); F

]−1
=
[

I − 2T2e(j) + 2T3e(j−1)e(j) − T3
(
e(j−1))2

+ 4(T2
2 − T3)

(
e(j))2

+ O
((

e(j−1), e(j))3
)]

F′(ξ)−1,
(24)

which further yields

I + A(j)F′(ξ) =2T2e(j) − 2T3e(j−1)e(j) + T3
(
e(j−1))2

− 4(T2
2 − T3)

(
e(j))2

+ O
((

e(j−1), e(j))3
)

,

∼ e(j).

(25)

Therefore, it is clear that we have I + A(j)F′(ξ) ∼ e(j) and adopt this value in the
expression (20). Then, we have

e(j+1) ∼ e(j)e(j)(e(j))4
=
(
e(j))6. (26)

Hence, the proof is complete, which demonstrates that the proposed scheme with mem-
ory (22) has sixth-order convergence.

4. A Qualitative Study of Iterative Methods with Memory: New and Known

In this section, we analyze the stability of the proposed scheme with memory in its
scalar form, as this kind of study yields multidimensional operators to be analyzed and it
does not support the use of vectorial schemes. However, its performance on systems of
nonlinear equations is checked in Section 5 and it is compared with other known schemes
with memory.

The expression of a scalar fixed-point iterative method with memory, using two
previous iterations to calculate the following estimation, is

xj+1 = Φ(xj−1, xj), j ≥ 1,

x0 and x1 being the starting estimations. We use the technique presented in [19,20] to
describe any method with memory as a discrete real vectorial dynamical system, in order
to analyze its qualitative behavior.

In order to calculate the fixed points of an iterative method with iteration function Φ,
an auxiliary fixed point multidimensional function Γ : R2 −→ R2 can be defined, related to
Φ by means of:

Γ
(

xj−1, xj
)
= (xj, xj+1) = (xj, Φ(xj−1, xj)), j = 1, 2, . . . ,

x0 and x1 being, again, the initial estimations. Therefore, a fixed point of this operator will
be obtained when not only xj+1 = xj, but also xj−1 = xj.

From function Γ : R2 → R2, a discrete dynamical system in R2 can be defined by
Γ
(

xj−1, xj
)
= (xj, xj+1), where Φ is the operator of the iterative method with memory. The

fixed points (z, x) of Γ satisfy z = x and x = Φ(z, x). This notation implies z = xj−1 and
x = xj. In the following, we recall some basic dynamical concepts that are direct extensions
of those used in complex discrete dynamics analysis (see [26]).

Let us consider the vectorial rational function Γ : R2 → R2, usually obtained by
applying an iterative method on a scalar polynomial p(x). Then, if a fixed point (z, x) of
operator Γ is different from (r, r), where r is a zero of p(x), it is called a strange fixed point.
On the other hand, the orbit of a point x̄ ∈ R2 is defined as the set of successive images
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from x̄ by the vector function—that is, orbit(x̄) = {x̄, Γ(x̄), . . . , Γn(x̄), . . .}. Indeed, a point
x∗ ∈ R2 is called k-periodic if Γk(x∗) = x∗ and Γp(x∗) 6= x∗, for p = 1, 2, . . . , k− 1.

The qualitative performance of a point of R2 is classified depending on its asymptotic
behavior. Thus, the stability of fixed points for vectorial operators satisfies the statements
appearing in the following result (see, for instance, [27]).

Theorem 3. Let Γ fromRm toRm be of class C2. Assume x∗ is a k-periodic point. Let λ1, λ2, . . . , λm
be the eigenvalues of the Jacobian matrix Γ′(x∗). Then, it holds that

(a) If all the eigenvalues λj verify |λj| < 1, then x∗ is attracting.
(b) If one eigenvalue λj0 verifies |λj0 | > 1, then x∗ is unstable—that is, repelling or saddle.
(c) If all the eigenvalues λj verify |λj| > 1, then x∗ is repelling.

Moreover, a fixed point is said to be not hyperbolic if all the eigenvalues λj of Γ′(x∗)
satisfy |λj| 6= 1. Specifically, if there exist an eigenvalue λi satisfying |λi| < 1 and another
one λj such that |λj| > 1, then it is called saddle point.

There is a key difference between the study of the stability of a fixed point x∗ in scalar
and vectorial dynamics: In the first case, if |Γ′(x∗)| < 1 then x∗ is attracting; in particular it
is superattracting if |Γ′(x∗)| = 0 and it is repelling when |Γ′(x∗)| > 1, Γ being the scalar
rational function related to the iterative scheme on a low-degee polynomial p(x)). In the
vectorial case, the character of the fixed points is calculated by means of the eigenvalues
of the Jacobian matrix Γ′ (see Theorem 3). Nevertheless, sometimes the Jacobian is not
well-defined at the fixed points. In these cases, we impose on the rational operator G
the condition w = z = x, so that it is reduced to a real-valued function. Therefore, the
stability of the fixed point can be inferred from the absolute value of its first derivative at
the fixed point.

By considering x∗ an attracting fixed point of function Γ, we define its basin of
attraction A(x∗) as the set of preimages of any order:

A(x∗) =
{

x0 ∈ R2 : Γm(x0) = x∗, for some m ∈ N
}

.

A key element in the stability analysis of an iterative method is the set of critical points
of its associated rational function Γ: if Γ′(x) satisfies det (Γ′(x)) = 0, x is called a critical
point. A critical point (c, c) such that c is not a root of p(x) is called a free critical point.
Another way to get critical points is finding those points that make null the eigenvalues of
Γ′. As an extension of the scalar case, if they are ant composed by the roots of polynomial
p(x), they are named free critical points. Indeed, Julia and Fatou [26] proved that there is
at least one critical point associated with each basin of attraction. Therefore, by studying
the orbit of the free critical points, all the attracting elements can be found. This result is
valid for both complex and real iterative functions.

In this section, we analyze the performance of three different schemes with memory—
our proposed scheme (22) and two known similar schemes, which are defined in (5), taken
from Chicharro et al. [18]—on quadratic polynomials that we denote by AM5, which use
Kurchatov’s divided difference in order to introduce memory. We also analyze scheme

y(j) = x(j) − [u(j), x(j); F]−1F(x(j)),

x(j+1) = y(j) −
(

3I − G(j)(3I − G(j))
)
[u(j), x(j); F]−1F(y(j)),

where G(j) = [u(j), x(j); F]−1[y(j) + cF(y(j)), y(j); F], u(j) = x(j) + γF(x(j)) and
γ = −[u(j−1), x(j−1); F]−1. It was from Petkovic et al. in [15]. We denote it by SM4.45
and use it with c = −0.01.

These schemes have several similarities: they are vectorial schemes with memory;
they include divided differences operators in their iterative expressions; they are mainly
used to define their respective accelerating parameters. However, we are going to see that
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the use of these elements does not determine the wideness of the sets of initial estimations
converging to the roots, when real multidimensional discrete dynamics tools are used.

In order to extend the results to any quadratic polynomial, the first analysis is shown
for PM6 on p(x) = x2 − c, so that the value of c yields a situation with real, complex or
multiple roots depending on c > 0, c < 0 or c = 0, respectively. The multidimensional
rational function Γ in this particular case will be denoted in what follows by PM. This
analysis can be summarized in the following result.

Theorem 4. The multidimensional rational operator associated with proposed scheme PM6, when
it is applied on polynomial p(x) = x2 − c—c 6= 0—is

PM(z, x) =
(

x,
c5 + 15c4x2 + 130c3x4 + 214c2x6 + 141cx8 + 11x10

4c4x + 56c3x3 + 192c2x5 + 200cx7 + 60x9

)
,

and it is

PM(z, x) =
(

x,
11x
60

)
,

for c = 0. Moreover, PM satisfies:

(a) There are no strange fixed points.
(b) If c < 0, there are eight different components of the free critical points, which are defined as

±√si, i = 1, 2, 3, 4, si being the (real) roots of polynomial s(t) = c4 + 32c3t + 210c2t2 +
360ct3 + 165t4. If c > 0, there are not free critical points.

Proof. Let us remark that operator PM(z, x) can be obtained by directly applying method
PM6 to polynomial p(x). Moreover, we know that fixed points of PM will have equal
components. This is the reason why, when we force the three consecutive iterates to be
equal (x = z), then the only fixed points are composed by the roots x = ±

√
c. That is,

(
√

c,
√

c) and (−
√

c,−
√

c).
Regarding the critical points, the Jacobian matrix PM′ is

PM′(z, x) =

 0 1

0 (x2−c)
5
(c4+32c3x2+210c2x4+360cx6+165x8)

4x2(c4+14c3x2+48c2x4+50cx6+15x8)
2

,

with eigenvalues
{

0, (
x2−c)

5
(c4+32c3x2+210c2x4+360cx6+165x8)

4x2(c4+14c3x2+48c2x4+50cx6+15x8)
2

}
.

By definition, the components of critical points are those values making null the
eigenvalues of PM′. By using the change of variables t = x2 on the second factor of the
numerator of the not null eigenvalue, we get s(t) = c4 + 32c3t + 210c2t2 + 360ct3 + 165t4.
This polynomial only has real roots for c < 0, denoted by si, i = 1, 2, 3, 4. Then, if
c < 0, there exist eight different componts of free critical points (±√si,±

√sj), i, j ∈
{1, 2, 3, 4}.

A very useful tool to visualize the analytical results is the dynamical plane of the
system, composed by the set of the different basins of attraction. It can be drawn by means
of the programs presented in [28], after some changes to adapt them to schemes with
memory. The dynamical plane of a method is built by calculating the orbit of a mesh of
400× 400 starting points (z, x) (although z does not appear in the rational function PM) and
painting each of them in a different color (orange and green in this case) depending on the
attractor they converge to (marked as a white star), with a tolerance of 10−3. Additionally,
they appear in black if the orbit has not reached any attracting fixed point in a maximum of
80 iterations. In Figure 1, we show the dynamical planes of this method for selected values
of c, in order to show its performance.
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(a) c = −1 (b) c = 0 (c) c = 1

Figure 1. Dynamical planes of PM6 method on p(x), for different values of c.

Let us remark that, as by definition all the fixed points have equal components, they
will always appear in the bisector of the first and third quadrants of the dynamical plane.
It can be observed that, when there are no real roots (c < 0, Figure 1a), no other attracting
element appears; when c = 0, the only root is multiple and the convergence is linear,
so there is global convergence to x = 0, as can be seen in Figure 1b. In Figure 1c, the
convergence to the roots is also observed to be global, their basins of attraction being
two symmetrical half-planes, which is exactly the same behavior as Newton’s method on
quadratic polynomials.

Moreover, let us remark that when c > 0 (real simple roots case), there are not
free critical points, as in this case the only possible performance of the method was the
convergence to the roots. The reason for this behavior is that in each basin of attraction
there must be a critical point; if the only critical points are the roots of that basin, then there
is no other possible convergence.

Comparisons with Other Methods with Memory for Nonlinear Problems

Here we compare the stability of the proposed method with that of known AM5 and
SM4.45 schemes. Firstly, we show their performances on quadratic polynomials: PM6. The
dynamical planes are plotted in the complex plane, by starting the iterative methods with
memory with an initial value of the accelerating parameter of −0.01 om each case, for
any initial guess z ∈ C, defined in a mesh of 400× 400 points and with a maximum of 80
iterations.

As shown in Figures 2 and 3, all three methods have been used to estimate the complex
roots of the unity of second and third degrees. It can be observed that the performances with
PM6 and AM5 were very similar for quadratic polynomials, showing global convergence,
similar to that of Newton’s scheme.

(a) PM6 (b) AM5 (c) SM4.45

Figure 2. Complex dynamical planes of new and known methods on x2 − 1.
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(a) PM6 (b) AM5 (c) SM4.45

Figure 3. Complex dynamical planes of new and known methods on x3 − 1.

However, this global convergence is held on cubic polynomials in the case of PM6, but
in case of AM5, black areas of no convergence to the roots appear. Iterative method SM4.45
shows these black regions both for quadratic and cubic polynomials, which are bigger in
the cubic case.

This good performance of the set of converging initial estimations of proposed method
PM6 is also shown in the case of non-polynomial equations: let us notice the performances

of all known and new methods on the complex rational function f (z) =
z2 − 1
z2 + 1

+ 1, z ∈ C
with a simple zero at ξ = 0. The basins of attraction of the root appearing in Figure 4, being
similar, are wider in case of PM6 than for AM5 or SM4.45.

(a) PM6 (b) AM5 (c) SM4.45

Figure 4. Complex dynamical planes of new and known methods on f (z) =
z2 − 1
z2 + 1

+ 1 with ξ = 0.

Additionally, in Figure 5 the basin of attraction of ξ ≈ 0.25753, the simple root of
g(z) = z2 − exp(z) − 3z + 2, is very wide in the case of PM6, with small areas of no
convergence to the root, in comparison with those of known methods AM5 and SM4.45.

Thus, it can be concluded that proposed method PM6 had very stable performance,
as in real and in complex spaces, both for polynomial and non-polynomial functions, in
the scalar case. In spite of having the same accelerating parameter as the AM5 method, the
new scheme has proven to be better than known ones in terms of order of convergence
and also in terms of stability. In the next section, its numerical performance on nonlinear
systems of different sizes is demonstrated.
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(a) PM6 (b) AM5 (c) SM4.45

Figure 5. Complex dynamical planes of new and known methods on z2 − exp(z)− 3z + 2, with ξ ≈ 0.25753.

5. Numerical Experiments

This section presents the validity of the proposed scheme with memory on some
numerical problems. The proposed method (22) was applied to numerical problems and
compared with other existing techniques with memory [15,18], presented as AM5 and
SM4.45, respectively. In all numerical problems, initially the parameter β = B(0) = −0.01I,
where I is the identity matrix, and for method SM4.45, another parameter c = −0.01
was considered. All the numerical tests were conducted by using Mathematica 10, with
400 multiple precision digits of mantissa. For all the examples, we have included in
the respective tables the following information: ‖x(j+1) − x(j)‖; j = 0, 1, 2; the residual
‖F(x(j))‖ at j = 0, 1, 2; approximated computational order of convergence (ACOC) denoted
as ρ [29]

ρ =
ln ‖x

(j+1)−x(j)‖
‖x(j)−x(j−1)‖

ln ‖x(j)−x(j−1)‖
‖x(j−1)−x(j−2)‖

, for each j = 2, 3, . . . ; (27)

and CPU − time.
Further on, the iterative procedure was stopped after three iterations and problems

were tested on three different initial values. Notice that the meaning of b(±a) is b× 10±a

in all the tables.

Example 1. Consider the following system of nonlinear equations in four unknown variables:

x2x3 + (x2 + x3)x4 = 0,

x2x3 + (x2 + x3)x4 = 0,

x1x3 + (x1 + x3)x4 = 0,

x1x2 + x3x2 + x1x3 = 1.

(28)

The approximate solution is (0.57735, 0.57735, 0.57735,−0.28867)T . Table 1 depicts that the
proposed scheme with all different initial guesses converged to a solution much faster than the
methods AM5 and SM4.45. Clearly, the residual error, functional error and computational time of
proposed method PM6 were superior to those of AM5 and SM4.45.
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Table 1. Convergence behavior of the schemes for Example 1.

x(0) Schemes ||x(1)− x(0)|| ||x(2)− x(1)|| ||x(3)− x(2)|| ||F(x(1))|| ||F(x(2))|| ||F(x(3))|| ρ CPU− Time1
...
1


PM6 8.4(−1) 2.7(−11) 1.0(−70) 1.8(−1) 5.4(−11) 2.1(−70) 6.040 0.422
AM5 2.1(−1) 1.7(−7) 2.4(−40) 4.6(−1) 3.5(−7) 4.9(−40) 5.395 0.549

SM4.45 7.9(−2) 1.3(−8) 6.9(−42) 1.7(−1) 2.7(−8) 1.4(−41) 4.917 0.577

0.5
...

0.5


PM6 1.6(−3) 1.9(−24) 2.4(−152) 3.2(−3) 3.8(−24) 4.7(−152) 6.112 0.626
AM5 1.5(−2) 4.8(−16) 5.7(−86) 3.0(−2) 9.6(−16) 1.1(−85) 5.176 1.641

SM4.45 3.6(−4) 2.2(−21) 1.8(−99) 7.2(−4) 4.3(−21) 3.6(−99) 4.534 26.58

0.4
...

0.4


PM6 3.3(−2) 1.6(−14) 8.3(−91) 6.4(−2) 3.1(−14) 1.7(−90) 6.185 0.532
AM5 1.3(−1) 5.1(−10) 1.9(−54) 2.5(−1) 1.0(−9) 3.7(−54) 5.282 0.621

SM4.45 1.6(−1) 2.1(−8) 8.5(−42) 3.1(−1) 4.3(−8) 1.7(−41) 4.859 0.682

Example 2. Another 200× 200 system of nonlinear equations defined as:

xixi+1 − 1 = 0,

xnx1 − 1 = 0, i = 1, 2, . . . , n = 200.
(29)

The exact solution of this problem is (1, 1, . . . , 1)T . This system of nonlinear equations was examined
on initial guesses (1.1, . . . , 1.1)T , (0.3, . . . , 0.3)T and (0.8, . . . , 0.8)T ; and results are shown in
Table 2. The proposed technique performed better than existing scheme AM5, whereas scheme
SM4.45 diverged for initial guess (0.3, . . . , 0.3)T . In the case of a large nonlinear system of equations,
the proposed methods demonstrated an efficient order of convergence and short CPU time when
compared with other schemes.

Table 2. Convergence behavior of schemes for Example 2.

x(0) Schemes ||x(1)− x(0)|| ||x(2)− x(1)|| ||x(3)− x(2)|| ||F(x(1))|| ||F(x(2))|| ||F(x(3))|| ρ CPU− Time1.1
...

1.1


PM6 2.9(−4) 6.4(−29) 7.3(−177) 5.8(−4) 1.3(−28) 1.5(−176) 6.000 143.215
AM5 3.2(−3) 5.1(−19) 5.2(−98) 6.4(−3) 1.0(−18) 1.0(−97) 5.000 313.076

SM4.45 1.8(−4) 3.4(−22) 2.8(−101) 3.5(−4) 6.9(−22) 5.6(−101) 4.465 180.219

0.3
...

0.3


PM6 7.5 4.2(−3) 6.4(−22) 19.0 8.5(−3) 1.3(−21) 6.000 107.329
AM5 3.9 3.2(−3) 5.3(−19) 6.8 6.4(−3) 1.1(−18) 5.000 120.001

SM4.45 d d d d d d d d

0.8
...

0.8


PM6 1.0(−2) 1.1(−19) 2.1(−121) 2.0(−2) 2.2(−19) 4.3(−121) 5.999 92.843
AM5 4.0(−2) 1.7(−13) 2.1(−70) 8.1(−2) 3.4(−13) 4.1(−70) 5.000 93.905

SM4.45 3.3(−3) 3.0(−16) 2.5(−75) 6.5(−3) 5.9(−16) 5.0(−75) 4.529 191.609

(d: stands for the divergent).

Example 3. Next, we consider the transcendental system of equations shown below

− 2
100

∑
j=1

x2
j + 2x2

j + tan−1(xi) + 1 = 0, i = 1, 2, . . . , 100. (30)

This problem has an approximated solution of (0.0736323 . . . , 0.0736323 . . . , . . . , 0.0736323 . . . )T .
The performance of the proposed method was better than those of the other methods ones, as shown
in Table 3.
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Table 3. Convergence behavior of schemes for Example 3.

x(0) Schemes ||x(1)− x(0)|| ||x(2)− x(1)|| ||x(3)− x(2)|| ||F(x(1))|| ||F(x(2))|| ||F(x(3))|| ρ CPU− Time0.3
...

0.3


PM6 6.6(−2) 2.2(−8) 4.6(−44) 2.0 6.3(−7) 1.3(−42) 5.511 638.578
AM5 8.4(−2) 7.6(−7) 3.9(−31) 2.5 2.1(−5) 1.1(−29) 3.558 726.233

SM4.45 5.2(−1) 8.6(−3) 3.7(−10) 23.0 2.4(−1) 1.0(−8) 4.134 759.5

0.1
...

0.1


PM6 7.4(−4) 5.7(−20) 2.9(−98) 2.1(−2) 1.6(−18) 8.1(−97) 4.859 677.171
AM5 2.7(−3) 3.5(−14) 1.4(−59) 7.6(−2) 9.8(−13) 4.0(−58) 4.167 685.561

SM4.45 2.4(−3) 1.4(−12) 9.7(−54) 6.9(−2) 4.1(−11) 2.7(−52) 4.461 736.844

0.5
...

0.5


PM6 5.4(−1) 1.0(−4) 4.4(−19) 21.0 2.9(−2) 1.2(−17) 5.653 897.173
AM5 5.5(−1) 2.5(−3) 2.5(−14) 22.0 7.1(−3) 7.1(−13) 4.694 809.123

SM4.45 1.4 1.3(−1) 4.5(−5) 86.0 3.9 1.3(−3) 3.352 1204.64

Example 4. We have tested the proposed method on another well-known nonlinear problem Fisher’s
equation [30] which has many applications in chemistry, heat and mass transfer, biology and ecology.
Basically, it determines the process of interaction between diffusion and reaction. This nonlinear
problem with homogeneous Neumann’s boundary conditions and diffusion coefficient D can be
defined as:

ut = Duxx + u(1− u) = 0,

u(x, 0) = 1.5 + 0.5cos(πx), 0 ≤ x ≤ 1,

ux(0, t) = 0, ∀t ≥ 0,

ux(1, t) = 0, ∀t ≥ 0.

(31)

Applying the finite difference discreitization on the Equation (31) leads to a system of nonlinear
equations. Suppose wi,j = u(xi, tj) is its approximate solution at the grid points of the mesh.
Let M and N be the numbers of steps in x and t directions, and h and k be the respective step
sizes. Use central difference to approximate the second order partial derivative uxx(xi, tj) =

(wi+1,j − 2wi,j + wi−1,j)/h2; backward difference approximation for the first-order derivative with
respect to "t" as ut(xi, tj) = (wi,j − wi,j−1)/k; and forward difference for first order derivative
with respect to x as ux(xi, tj) = (wi+1,j − wi,j)/(h). The solution of the system is obtained by
taking steps along x-axis, M = 21, and t-axis, N = 21, which form a nonlinear system of size
400, with the initial vector x(0) = (i/(M− 1)2)T , i = 1, 2, . . . , M− 1. The results have been
computed by different methods and are shown in Table 4. It can be noticed that the lowest execution
time and residual error at the third iteration correspond to the proposed method PM6. Moreover,
the approximate solution has been plotted in Figure 6.

Table 4. Convergence behavior of schemes for Example 4.

Schemes ||x(1)− x(0)|| ||x(2)− x(1)|| ||x(3)− x(2)|| ||F(x(1))|| ||F(x(2))|| ||F(x(3))|| ρ CPU− Time

PM6 2.8 1.5(−7) 1.9(−51) 2.4(2) 3.9(−5) 8.9(−49) 6.0413 1333.85

AM5 2.7 5.0(−6) 3.0(−35) 1.9(2) 9.2(−5) 1.3(−32) 5.0929 1415.90

SM4.45 4.9 5.0(−5) 5.3(−27) 5.7(2) 1.5(−2) 2.6(−24) 4.3948 3606.19
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Figure 6. Approximated Solution for Fisher’s Equation t ∈ [0, 3].

6. Conclusions

The number of iterative schemes with memory for solving multidimensional problems
is low, in part due to the difficulty of the task. Additionally, it is in part due to the lack of
efficiency of the resulting method, if the usual techniques employed in the design of scalar
methods with memory are employed as high-degree interpolation polynomials. With
the procedure used, the iterative expression of the scheme with memory remains simple,
and the order of the original method is increased by 50%. Thus, the efficiency is highly
improved. Moreover it has been proven, by means of the associated multidimensional
discrete dynamical system, that it is a very stable scheme with wide basins of attraction
and global convergence on quadratic polynomials. Its performance on other nonlinear
functions was also found to be very stable in comparison with other known schemes. The
numerical tests confirmed these results, even for large nonlinear systems and applied
problems, such as Fisher’s partial differential equation.
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